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Abstract— This paper considers optimal control of a quadro-
tor unmanned aerial vehicles (UAV) using the discrete-time,
finite-horizon, linear quadratic regulator (LQR). The state of a
quadrotor UAV is represented as an element of the matrix Lie
group of double direct isometries, SE2(3). The nonlinear system
is linearized using a left-invariant error about a reference
trajectory, leading to an optimal gain sequence that can be
calculated offline. The reference trajectory is calculated using
the differentially flat properties of the quadrotor. Monte-Carlo
simulations demonstrate robustness of the proposed control
scheme to parametric uncertainty, state-estimation error, and
initial error. Additionally, when compared to an LQR controller
that uses a conventional error definition, the proposed controller
demonstrates better performance when initial errors are large.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are increasingly used

for delivery, search and rescue, and inspection operations
[1]–[4]. Quadrotor UAVs are a popular option for tasks
that require highly agile maneuvers in complex, constrained,
environments [5]. Control approaches that lead to robust
and high performance operation of quadrotors are needed
to execute tasks in a dependable manner.

The linear quadratic regulator (LQR) formulation is a pop-
ular means to design an optimal full-state-feedback controller
for linear, or linearized, systems. In [6], a quaternion-based
LQR controller is presented where the nonlinear dynamics
model of the quadrotor is linearized at the current timestep
in order to synthesize the LQR gain. A similar approach
is taken in [7], but errors are defined in a multiplicative
fashion for attitude and in an additive fashion for position and
velocity. In both approaches, the collective thrust and angular
velocity of the quadrotor are considered control inputs,
necessitating a lower-level controller to regulate the true
angular velocity to the desired angular velocity calculated
by the LQR formulation. In addition, in [7], the differentially
flat properties of the dynamics of the quadrotor, as shown in
[8] and [9], for example, are used to compute the reference
trajectory and nominal control inputs. Rather than using
an LQR approach in concert with linearization for control,
nonlinear controllers applied to quadrotors are available in
the literature [10], [11].

The duality between full-state-feedback control and state
estimation is well known. The formulation of the estimation
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problem for robotic and aerospace systems directly on matrix
Lie groups has been considered within the invariant extended
Kalman filter (IEKF) framework [12], [13]. The use of the
invariant framework has also been applied to the control
problem in [14], where an invariant LQG (ILQG) controller
is derived for state estimation and control of a simplified car
model. The ILQG controller derived in [14] linearizes the
system about a desired reference trajectory. The formulation
of the control problem directly on a matrix Lie group leads
to improved robustness of the LQG controller to large initial
deviations from the desired reference trajectory.

The optimal control formulation proposed in this paper
leverages key ideas from the invariant framework, much like
[14] does. Rather than considering only the attitude as an
element of a matrix Lie group, as is done in [7], herein the
quadrotor position, velocity, and attitude are all cast into an
element of the group of double direct isometries, SE2(3),
introduced in [13]. The error between the state and reference
trajectory is defined as an element of SE2(3). Specifically, a
left-invariant error definition is used. The linearized system,
once discritized, is used to compute an optimal gain sequence
that can be calculated a priori. Simulation results show
that the use of the invariant framework leads to better
performance when the error between the true states and
reference states is large, which coincides with the findings
of [14].

To account for unmodelled dynamics and parametric un-
certainty, the proposed controller includes integral control
similar to [11]. Feedforward terms, similar to [9], are also
used to account for the effects of drag forces and moments
acting on the quadrotor.

In contrast to [6] where an infinite-horizon LQR control
problem is solved at each timestep, in this paper, a finite-
horizon LQR control problem is solved to compute a se-
quence of control gains. This allows a cost to be placed on
the terminal state, which may be very useful if minimizing
tracking error at the end of a given trajectory is important,
such as during landing of the quadrotor.

The primary contribution of this paper is defining the
error as an element of SE2(3), appropriately linearizing
the nonlinear error dynamics, and synthesizing an optimal
control gain sequence by solving the finite-horizon LQR
control problem, all for quadrotor control. Doing so leads to
improved robustness to initial error compared to when a con-
ventional error definition is used. Secondary contributions of
this paper are the linearization about the reference trajectory
leading to an optimal gain sequence that can be computed
a priori, and the inclusion of drag compensation terms and
an integrator to account for parametric uncertainty within
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an optimal control formulation. This paper combines and
builds on ideas from [6], [7], [9], [14], where the specifics
of quadrotor control is considered, as in [6], [7], [9], and
insights from the invariant framework are used to formulate
the control, as in [14].

The paper is organized as follows. Section II outlines
necessary preliminaries regarding matrix Lie groups, kine-
matics, and reference frames. The quadrotor equations of
motion and details on the group SE2(3) are also provided.
Section III details the proposed controller, including the
control objective and control inputs, as well as the feedback
and feedforward components of the controller. Section IV
provides simulation results as well as Monte-Carlo simula-
tions, to demonstrate robustness of the proposed controller
to state-estimation error, initial conditions, and parametric
uncertainty.

II. PRELIMINARIES

A. Matrix Lie Groups

A general matrix Lie group G is composed of invertible
n × n matrices with k degrees of freedom closed under
matrix multiplication [15]. The Lie algebra associated with
G, denoted g, is the tangent space of G at the identity
element, denoted 1. The exponential map is the mapping
between the matrix Lie algebra and the matrix Lie group,
such that exp(·) : g → G. For matrix Lie groups, the
exponential map is the matrix exponential. The inverse of the
exponential map is the logarithmic map and maps elements
in the matrix Lie group to the matrix Lie algebra, such that
log(·) : G → g. The “vee” operator, (·)∨ : g→ Rk, maps the
matrix Lie algebra to a k dimensional column matrix. The
“wedge” operator, (·)∧ is the inverse operator and is defined
as (·)∧ : Rk → g. An element of a matrix Lie group G,
X, can be perturbed using a left or right multiplication as
X = exp

(
δξ∧

)
X̄ or X = X̄exp

(
δξ∧

)
respectively, where

δξ ∈ Rk. For small δξ, the element exp
(
δξ∧

)
can be

linearized as exp
(
δξ∧

)
≈ 1 + δξ∧.

B. Kinematics and Reference Frames

The inertial reference frame denoted Fa is composed of
three orthonormal basis vectors [16]. An unforced particle
in Fa is denoted w [17]. The frame that rotates with the
quadrotor body is denoted Fb and Cab ∈ SO(3) is the
direction cosine matrix (DCM) that relates the attitude of
Fa to the attitude of Fb. The transpose of Cab is denoted
Cba where Cab = CT

ba. A physical vector v−→ can be resolved
in either Fa or Fb as va or vb. The relation between the two
is va = Cabvb.

C. Quadrotor Equations of Motion

Consider a quadrotor UAV modelled as a rigid body
subject to gravitational, thrust, and drag forces, similar to
[9]. Denoting point z to be the centre of mass of the vehicle,

the translational and rotational dynamics are

v̇zw/aa = ga +
Cab13fT

mB
− 1

mB
CabDCT

abv
zw/a
a , (1)

ω̇bab = JBz
−1

b

(
mr
b − ωba

×

b JBzb ω
ba
b − ECT

abv
zw/a
a − Fωbab

)
,

(2)

where mB is the mass of the UAV, JBzb is the second moment
of mass of the quadrotor resolved in Fb, ga =

[
0 0 −g

]T
is the gravity vector resolved in Fa, g = 9.81 m/s2, ωbab
is the angular velocity of Fb relative to Fa resolved in
Fb, and vzw/aa is the velocity of point z relative to point
w with respect to Fa, resolved in Fa. The cross operator
(·)× is a mapping from R3 to so(3) such that a×b =
−b×a ∀a,b ∈ R3. The third column of the identity matrix
is 13 =

[
0 0 1

]T
. In addition, fT represents the collective

thrust force produced by the rotors, and mr
b represents

a collective control moment produced by the rotors. The
additional terms in (1) and (2) are drag terms that are linear in
velocity and angular velocity. The constant diagonal matrix
D = diag (dx, dy, dz) is composed of rotor-drag coefficients,
and E and F are constant drag matrices in the rotational
dynamics. Identification of D, E, and F is discussed in [9].

The translational and rotational kinematics are given by

ṙzwa = vzw/aa , Ċab = Cabωba
×

b , (3)

where rzwa is the position of z relative to w resolved in Fa.
Equations (1), (2), and (3) are the equations of motion.

D. The Group of Double Direct Isometries

The quadrotor states Cab, vzw/aa , and rzwa can written as
an element of the group of double direct isometries, SE2(3),
introduced in [18]. Specifically,

X =

Cab vzw/aa rzwa
0 1 0
0 0 1

 ∈ SE2(3). (4)

The column matrix ξ ∈ R9 can be mapped to the Lie algebra,
se2(3), via

ξ∧ =

ξφξv
ξr

∧ =

ξφ× ξv ξr

0 0 0
0 0 0

 ∈ se2(3). (5)

The exponential map from se2(3) to SE2(3) is given by

exp
(
ξ∧
)

=

expSO(3)

(
ξφ
×
)

Jξv Jξr

0 1 0
0 0 1

 ∈ SE2(3),

(6)

where ξ∧ ∈ se2(3) and J is given by

J =
sinφ

φ
1 +

(
1− sinφ

φ

)
aaT +

1− cosφ

φ
a×, (7)

where φ =
∥∥∥ξφ∥∥∥ and a = ξφ/φ. In addition, the closed form

solution for the exponential map from so(3) to SO(3), that
being expSO(3) (·), is given by the Rodrigues formula [16].



III. CONTROL

A. Control Objective

Denote the desired reference frame by Fr, the desired
velocity by vzrw/aa , and the desired position by rzrwa . The
desired state can be cast into an element of SE2(3) as

Xr =

Car vzrw/aa rzrwa
0 1 0
0 0 1

 ∈ SE2(3). (8)

For systems with states that are an element of a linear vector
space, the tracking error, δx, is defined additively, as x =
xr + δx or δx = x − xr. However, for systems with states
that are an element of a matrix Lie group, a multiplicative
error definition is used. Consider the left-invariant tracking
error [13]

δX = X−1Xr =

δC δv δr
0 1 0
0 0 1

 , (9)

where the individual errors δC, δv, and δr are given by

δC = CT
abCar, (10)

δv = CT
ab

(
vzrw/aa − vzw/aa

)
, (11)

δr = CT
ab (rzrwa − rzwa ) . (12)

The tracking error can also be written as

δX = exp
(
δξ∧

)
. (13)

The control objective is to drive the tracking error to zero
such that δX = 1 or, equivalently, δξ = 0.

B. Control Inputs

As in [6] and [7], it is assumed that a desired angular
velocity can be accurately tracked using a low-level angular
velocity controller. Under the assumption that the bandwidth
of this lower-level controller is sufficiently high, the control
inputs to the system are the collective thrust force, fT, and

the body angular velocity, ωbab , such that u =
[
fT ωba

T

b

]T
.

C. Control Structure Overview

An overview of the proposed control scheme is shown in
Figure 1. Specific aspects of the proposed control method-
ology are discussed in this section.

Recall that the dynamics of the quadrotor are differentially
flat. For differentially flat systems, a set of outputs can be
found, equal to the number of inputs, such that all states
and inputs can be determined from these outputs without
integration [19] [20]. For a quadrotor, the differentially flat
outputs are the position, rzwa , and yaw angle, ψ, of the
vehicle. Consider a smooth trajectory in the flat outputs,

µ(t) =
[
rzrw

T

a (t) ψr(t)
]T
. (14)

The desired position and yaw angle at time k are written
rzr,kwa and ψr

k respectively. From the reference position and
yaw angle, the states Cark , vzr,kw/aa , as well as feedforward

reference thrust fTr

k and reference angular velocity ωrkark
can

be found, as will be shown in Section III-F. The reference
attitude, velocity, and position at timestep k are then placed
into an element of SE2(3), as in (8). Then, the left-invariant
tracking error is computed as in (13), and the element δξk
is extracted using δξk = log (δXk)

∨.
A feedback law of the form

δuk = −Kk,LQRδξk (15)

is used to find feedback control inputs δu =
[
δfTk δωT

bk

]T
,

where Kk,LQR is the gain that is the solution to the discrete-
time, finite-horizon LQR problem, discussed in Section III-
D. In addition, δωbk is the feedback desired angular velocity
resolved in Fb. The feedback control inputs are combined
with the feedforward control inputs to compute the total
control input u =

[
fTk ωbka,contr

T

bk

]
, where

fTk = fTr

k − δf
T
k , (16)

ωbka,contrbk
= δCkωrkark

− δωbk . (17)

Note that the reference angular velocity, ωrkark
, is resolved in

Fr, and therefore must be resolved in Fb using δCk before
being combined with the feedback control input δωbk .

To determine the control torques to apply to the body,
a controller with both feedforward and proportional-integral
(PI) terms of the form

mrk
b = ÊCT

abk
vzkw/aa + F̂ωbkabk −Kωeωk

b −Ki

∫ t

0

eωk

b dτ,

(18)

is used, where eωk

b = ωbkabk −ω
bka,contr
bk

is the angular velocity
error resolved in Fb, Ê and F̂ are estimates of the constant
drag matricies E and F, and Kω = KωT

> 0 and Ki =
KiT > 0 are PI control gains.

D. Discrete-Time Finite-Horizon LQR

Consider the discrete-time linearization of the system
dynamics given by

δξk+1 = Akδξk + Bkδuk. (19)

Consider the cost function

J (δu0, . . . , δuN−1) =
1

2
δξTNSδξTN

+
1

2

N−1∑
k=0

(
δξTkQδξk + δuT

kRδuk
)
, (20)

where S = ST ≥ 0 is a weight on the terminal error, Q =
QT ≥ 0 the error-deviation weight, and R = RT > 0 is the
control effort weight. The solution to the discrete-time, finite
horizon LQR problem is given by [21]

δuk = −Kk,LQRδξk, (21)

where Kk,LQR is the LQR gain at the k’th timestep, and the
LQR gain is given by

Kk,LQR = R̄−1k+1BT
kPk+1Ak, (22)
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Fig. 1: Proposed controller scheme.

where R̄k+1 = R + BT
kPk+1Bk. The sequence Pk, k =

0, . . . , N can be found by solving the discrete-time Riccati
equation

Pk = AT
k

(
Pk+1 − Pk+1BkR̄−1k+1BT

kPk+1

)
Ak + Q (23)

backwards in time using the terminal condition PN = S. The
optimal gain sequence involves evaluating the Jacobians Ak
and Bk at each controller timestep over the chosen horizon
and solving (23) backwards in time. The choice of horizon
and timestep are user-defined parameters that depend on the
chosen trajectory and the capabilities of the platform used.

E. Linearization of Equations of Motion

To find the linearized, discrete-time, equations of motion
of the quadrotor, the equations of motion are linearized about
the reference trajectory [22] in continuous-time, and then
discritized using any desired discritization scheme. Note that
the quadrotor rotational dynamics are not linearized, since
ωbab is not considered a state in SE2(3).

Using the SE2(3) error definitions in (9), along with the
angular velocity and thrust errors defined as

δωb = δCωrar − ωbab , δfT = fTr − fT, (24)

the linearized dynamics of the system are given by

δξ̇ = Aδξ + Bδu, (25)

where the A and B matrices are given by

A =

 0 0 0
A2,1 A2,2 0

0 1 −ωra×r

 , B =

 0 1
13 1
mB

0
0 0

 , (26)

where δξ =
[
δξφ

T

δξv
T

δξr
T
]T

and δu =[
δfT δωT

b

]T
, and the individual elements A2,1 and

A2,2 are given by

A2,1 =
1

mB

((
DCT

arvzrw/aa

)×
− D

(
CT
arvzrw/aa

)×
−
(
fTr 13

)×)
,

(27)

A2,2 = −ωra
×

r −
D
mB

. (28)

A partial derivation of the linearized dynamics can be found
in the Appendix. Unlike the LQR controllers presented in

[6] and [7], the proposed controller linearizes the dynamics
about the reference states and inputs, and not the true states
and inputs. This leads to Jacobians that only depend on
the reference trajectory for the attitude Car, the angular
velocity ωrar , velocity vzrw/aa , and thrust force fTr . Because
the Jacobians can be calculated a priori, the entire optimal
gain sequence for a given trajectory can be calculated offline,
which is computationally beneficial.

To reduce steady-state error due to unmodelled dynamics
and parametric uncertainty, the system can then be aug-
mented with integral control of the form

ξi =

∫ t

0

(c1δr + δv) dτ, (29)

where c1 > 0 is a constant, δv is given in (11), and δr
is given in (12). This integrator has a similar form to the
integrator in the outer-loop position controller of [11].

The linearized dynamics can then be augmented with the
integrator as

δξ̇
φ

δξ̇
v

δξ̇
r

δξ̇
i


︸ ︷︷ ︸
δξ̇

aug

=


0 0 0 0

A2,1 A2,2 0 0
0 1 −ωra×r 0
0 1 c11 0


︸ ︷︷ ︸

Aaug


δξφ

δξv

δξr

δξi


︸ ︷︷ ︸
δξaug

+

[
B
0

]
︸︷︷︸
Baug

δu.

(30)

The augmented continuous-time linearization of the system
can be discritized using any desired discritization method to
yield the discrete-time linear dynamics of the form

δξaugk+1 = Aaug
k δξaugk + Baug

k δuk, (31)

where the augmented state-space and augmented Jacobians
are used in the finite-horizon LQR gain computation. The
system is discritized using the matrix exponential [23].

F. Computation of Reference Trajectory

The reference trajectories for the states vzrw/aa , Car, and
ωrar , and fTr can be calculated from a given trajectory
in the flat outputs, µ. First, trajectories for the desired
velocity vzrw/aa and desired acceleration v̇zrw/aa are found by



differentiating the position trajectory. The reference velocity
and acceleration at time k are then denoted vzr,kw/aa and
v̇zr,kw/aa respectively. These are used to find a reference
control force through

f rka = m̂Bv̇zr,kw/aa + m̂Bg13 + C̄arkD̂C̄T
ark

vzr,kw/aa , (32)

where C̄ark is initially set to 0. In these feedforward terms,
m̂B is the best estimate of the mass and D̂ is the best estimate
of the diagonal drag coefficient matrix.

Using both the reference control force f rka and the desired
yaw angle ψr

k, the reference DCM Cark can be computed.
Denote the third basis vector of Fr as r−→

3. Following [8],
the components of r−→

3 resolved Fa are given by

r3ka =
f rka
‖f rka ‖

. (33)

The components of an intermediate vector c−→
1 resolved in

inertial frame Fa are

c1ka =
[
cos(ψr

k) sin(ψr
k) 0

]T
. (34)

The components of the remaining basis vectors defining
reference frame Fr can then be found through

r2ka =
r3k
×

a c1ka∥∥∥r3k
×

a c1ka
∥∥∥ , r1ka = r2k

×

a r3ka . (35)

The DCM relating the attitude of frame Fr relative to the
attitude of the inertial frame Fa is

Cark =
[
r1ka r2ka r3ka

]
. (36)

Then, a new control force is computed using (32) setting
C̄ark = Cark , and the procedure from (32)-(36) is repeated
until convergence of the reference control force. Upon con-
vergence, the control force f rka is projected onto the reference
r−→

3 axis to yield the reference thrust force, fTr

k , given by
fTr

k = 1T3 CT
ark

f rka . Next, the desired angular velocity is found
using the discrete-time Poisson’s equation

Cark = Cark−1
expSO(3)

(
Tωrka

×

rk

)
, (37)

and solving for ωrkark
, where T is the controller timestep.

IV. SIMULATION RESULTS

The proposed control scheme was tested in simulation on
a model of a quadrotor with equations of motion given by
(1). The mass, inertia, and drag properties of the quadrotor
model, as well as the controller gains used in simulation, are
given in Table I.

For all simulations performed, the same reference trajec-
tory in the flat outputs is used, that being

rzrwa (t) =
[
3 sin(t) 3 cos(t) 0.5t

]T
m, ψr(t) = 0 rad,

(38)

where the desired position trajectory is a helix. More ad-
vanced methods of trajectory generation in the flat output
space are discussed in [8] and [24].

The proposed SE2(3) LQR controller is compared to a
conventional LQR controller that uses standard error defini-
tions, similar to those defined in [7]. The error definitions
used by the conventional LQR control are

δC = CT
abCar, (39)

δvzw/aa = vzrw/aa − vzw/aa , δrzwa = rzrwa − rzwa , (40)

leading to a linearization of the form

δẋ =

 0 0 0
Ac

2,1 Ac
2,2 0

0 1 0


︸ ︷︷ ︸

Ac

δx +

 0 1
Car13
mB

0
0 0


︸ ︷︷ ︸

Bc

[
δfT

δωb

]
, (41)

where δx =
[
δξφ

T

δvzw/a
T

a δrzw
T

a

]T
and Ac

2,1 and Ac
2,2

are given by

Ac
2,1 =

1

mB

(
Car

(
DCT

arv
zrw/a
a

)×
− CarD

(
CT
arv

zrw/a
a

)×
− Car

(
fTr 13

)×)
, (42)

Ac
2,2 = − 1

mB

(
CarDCT

ar

)
. (43)

Throughout, the superscript (·)c is used to denote the Jaco-
bians associated with the conventional LQR controller.

The conventional LQR controller is also augmented with
an integrator in a similar way as the SE2(3) LQR controller
is augmented with an integrator. The integrator used in the
conventional controller is

xi =

∫ t

0

(
c1δrzwa + δvzw/aa

)
dτ, (44)

leading to a final row in the augmented Jacobians that is
identical to that given in (30).

In both the proposed SE2(3) LQR controller and the con-
ventional LQR controller, linearization is performed about
the reference trajectory. When the true quadrotor states are
far from the reference trajectory, the linearization is no longer
valid. The Jacobians A and Ac given in (26) and (41),
respectively, depend more heavily on the reference trajectory
through the terms Car and vzrw/aa . By setting D = 0, both
A and Ac, respectively, simplify to

Ā =


0 0 0 0

−
(
fTr 13
m

)×
−ωra×r 0 0

0 1 −ωra×r 0
0 1 c11 0

 , (45)

Āc =


0 0 0 0

−Car(fTr 13)
×

mB
0 0 0

0 1 0 0
0 1 c11 0

 . (46)

Now the Jacobian for the SE2(3) LQR controller, Ā, de-
pends on the reference angular velocity, and the Jacobian
for the conventional LQR controller, Āc, depends on the



reference attitude Car. Regardless of the inclusion of drag in
the linearization, the Jacobian Bc is dependant on Car while
the Jacobian B is not. Greater independence of the Jacobians
Ā and B on the reference attitude is beneficial because the
Jacobians are less sensitive to large attitude errors. Note that
drag forces are still accounted for through the integrator, as
well as the feedforward terms in the controller, through (32).

The performance of the proposed SE2(3) LQR controller
and the conventional LQR controller are compared when us-
ing Jacobians that do and do not include drag. All parameters
and control weights are kept constant between simulations.
The robustness of the controllers to initial state error is
first investigated, and then the robustness to parametric
uncertainty is shown. Monte-Carlo simulation results are then
presented to compare the performance of both controllers
subject to state-estimation error, actuator dynamics, initial
tracking error, and parametric uncertainty.

A. Robustness to Initial Error

Firstly, the robustness of both the SE2(3) LQR controller
and the conventional LQR controller to initial error are inves-
tigated, for both the linearization including drag, yielding the
Jacobians (26) and (41), as well as linearization excluding
drag, resulting in the Jacobians (45) and (46).

For each controller, simulations are performed in a “per-
fect” simulation environment, where the true states and
parameters of the system are known exactly and are used in
the controller. The RMSEs δφ = logSO(3) (δC)

∨, δv, and δr
for 10 seconds of simulation time, for various initial heading
angle errors are shown in Figure 2. The errors over time are
also shown for 10 seconds of simulation in Figure 3, when
the initial heading error is δφ3,0 = 180◦.
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Fig. 2: RMSE compared to initial heading error for both
controllers.

The SE2(3) LQR controller and the conventional LQR
controller regulate the tracking errors to zero, when using
the Jacobians that include and exclude drag, as shown in
Figure 3. However, the Jacobians for the proposed SE2(3)
LQR controller are not dependant on the reference attitude
Car when drag is neglected, and hence, improved perfor-
mance is seen in the transient period where the actual
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Fig. 3: Tracking results for 180◦ initial heading error.

quadrotor attitude is far from the desired attitude compared
to each of the other three controllers tested. As the initial
heading angle error increases, the proposed SE2(3) LQR
controller outperforms the conventional LQR controller for
both linearization schemes, as demonstrated in Figure 2. This
is consistent with the conclusions drawn from [14], where
it was found that the use of the invariant error definition
in the linearization lead to improved performance when the
true states are very far from the reference states. In addition,
these results are consistent with the fundamental results
of the invariant framework when used for state estimation.
As discussed in [25], the performance benefit of the IEKF
compared to a conventional EKF for state estimation can
be attributed to better performance in the transient period.
The linearization used in the IEKF depends less on the state
estimate compared to the conventional EKF, and when the
estimated states are far from the true states, the linearization
using the invariant framework is more accurate.

B. Robustness To Parametric Uncertainty

To demonstrate robustness of the proposed SE2(3) LQR
controller to parametric uncertainty, the simulation presented
in Figure 3 is repeated, but this time, the estimated mass
m̂B and estimated drag parameters Ê, F̂ and D̂ used in the
controller are all set to 80% of their true values. Figure 4
shows the tracking error and control effort for both con-
trollers using the linearization scheme without drag, with and
without integral control. Augmenting the controllers with an
integrator of the form (29) reduces the steady state position
error in the presence of parametric uncertainty. As shown
in Figure 4, for both the SE2(3) LQR and conventional
LQR controllers, a steady-state error remains when integral
control is not used. The particularly large steady-sate error
in the position is due to the mass uncertainty. However, even
without integral control, the performance of the SE2(3) LQR
controller is improved in the transient period compared to the
conventional LQR controller for large initial heading errors,
as shown by the dotted lines in Figure 4.
C. Monte-Carlo Simulation Results

Lastly, Monte-Carlo simulation results ensure robustness
of the proposed controller to state-estimation error, actuator
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Fig. 4: Tracking errors with and without integral control.

dynamics, initial error, and parametric uncertainty.
To ensure robustness to state-estimation error, an IEKF

based on [26] is used to provide an estimate of the quadrotor
states, which are an element of SE2(3), and sensor biases.
Biased rate gyro and accelerometer measurements are used
as interoceptive prediction sensors, and GPS position and
velocity measurements, as well as magnetometer measure-
ments, are used as correction sensors. The resultant state
estimates are then used within the controller.

To test the robustness of the proposed SE2(3) LQR
controller and the conventional LQR controller to parametric
uncertainty, the estimated mass, m̂B, and estimated drag
matrices Ê, F̂, and D̂ are all assumed to be perturbed from
their true value such that

m̂B = κ1mB, Ê = κ2E, F̂ = κ3F, D̂ = κ4D, (47)

where the parameters κı, ı = 1, 2, 3, 4, are taken from a
normal distribution such that κı ∼ N

(
1, σ2

ı

)
. The values

for the parameters σı are σ1 = 0.03kg, and σ2 = σ3 =
σ4 = 0.15. For each trial, the initial position of the quadrotor,
rz0wa is randomized such that rz0wa ∼ N

(
0, σ2

pos

)
, where

σ2
pos = 1 m. The initial heading is also randomized such that

the initial attitude of the quadrotor is set to Cab0 = C3 (ψ0),
where ψ0 ∼ N

(
0, π2

)
. The control loop is run at 400 Hz

and its outputs are all saturated at reasonable values. Actuator
dynamics are modelled as a first-order low pass filter. Note
that a control allocation problem can be solved to determine
the required actuator inputs (i.e., the required motor speeds),
to generate the collective desired thrust and desired control
moments [27], [28].

The results for the average RMSEs for 100 Monte-Carlo
trials for both controllers are shown in Figure 5. The lower
bounds of the error bars are set to a percentile of 2.5 and the
upper bounds of the error bars are set to a percentile of 97.5,
meaning the results of 95% of the trials lie within the error
bars. The proposed SE2(3) LQR controller outperforms the
conventional LQR controller, even in the presence of state-
estimation error, parametric uncertainty and unmodelled dy-
namics. It is noted that the performance benefit of the SE2(3)

controller shown in the Monte-Carlo results is attributed to
the improved robustness to initial error.

Fig. 5: Monte-Carlo simulation results.

TABLE I: Quadrotor and Controller Parameter List

Parameter Value Units
mB 1.1 kg

JBzb diag(0.0112, 0.01123, 0.02108) kgm2

D diag(0.605, 0.44, 0.275) s−1

E diag(0.05, 0.05, 0.05) Ns−1

F diag(0.1, 0.1, 0.1) Nms rad−1

Kω diag(5, 5, 5) Nms
Ki diag(3,3,3) Nms−1

V. CLOSING REMARKS

In this paper, the discrete-time, finite-horizon LQR control
problem using errors defined on SE2(3) was formulated
and solved in order to control a quadrotor UAV. Based on
the differentially flat properties of the quadrotor’s dynamics,
linearization was performed about the desired reference
trajectory, leading to an offline computation of optimal gain
sequence for the controller. A feedforward controller and
integrator were also included within the controller to account
for drag, unmodelled dynamics, and parametric uncertainty.
Simulation results demonstrate that the proposed controller
scheme showed robustness to large initial heading error,
parametric uncertainty, and state-estimation error. Future
work will focus on an MPC approach, rather than an LQR
approach, to control the UAV on SE2(3) in order to explic-
itly handle state and control constraints.

APPENDIX I
QUADROTOR DYNAMICS LINEARIZATION DERIVATION

Linearization of the quadrotor dynamics is partially pre-
sented in this Appendix. The attitude error propagation is
given as

δĊ = ĊT
abCar + CT

abĊar
= −ωba

×

b CT
abCar + CT

abCarω
ra×

r

= −ωba
×

b δC + δCωra
×

r . (48)



Next, using ωbab = −δωb + δCωrar yields

δĊ = − (−δωb + δCωrar )
×
δC + δCωra

×

r . (49)

Linearizing by letting δC ≈ 1 + δξφ
×

yields

δξ̇
φ×

= −
(
−δωb +

(
1 + δξφ

×)
ωrar

)× (
1 + δξφ

×)
+
(

1 + δξφ
×)
ωra

×
r

= −
(
−δωb + ωrar + δξφ

×
ωrar

)× (
1 + δξφ

×)
+
(

1 + δξφ
×)
ωra

×
r

= δω×b + δω×b δξ
φ× −ωra

×
r −ωra

×
r δξφ

×
−
(
δξφ
×
ωrar

)×
−
(
δξφ
×
ωrar

)×
δξφ
×

+ ωra
×

r + δξφ
×
ωra

×
r . (50)

Neglecting higher order terms, and cancelling necessary
terms, yields

δξ̇
φ×

= δξφ
×
ωra

×

r − ωra
×

r δξφ
×
−
(
δξφ

×
ωrar

)×
+ δω×b .

(51)

Next, the identity u×v× − v×u× = (u×v)
× where u and

v ∈ R3, is used. Applying the identity yields

δξ̇
φ×

= −
(
ωra

×

r δξφ
)×
−
(
δξφ

×
ωrar

)×
+ δω×b . (52)

Uncrossing both sides yields

δξ̇
φ

= −ωra
×

r δξφ − δξφ
×
ωrar + δωb = δω

In matrix form, the attitude dynamics are written

δξ̇ =
[
0 0 0

]
δξ +

[
0 1

]
δu. (53)

The error dynamics for δv̇, δṙ and the integrator are
derived in a similar fashion. The Jacobians for the conven-
tional LQR controller are also derived similarly, using the
conventional error definitions given in (39)-(40).
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