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Abstract— Providing persistent intelligence, reconnaissance,
and surveillance of targets is a challenging, but important
task when time-critical information is required. In this letter,
we provide a decentralized routing algorithm for coordinating
multiple autonomous vehicles as they visit a discrete set of pre-
defined targets with weighted revisit priorities. The algorithm
utilizes a block coordinate ascent algorithm combined with
a Monte Carlo tree search to tractably decide each vehicle’s
route. The result is a non-myopic algorithm for multiple vehicles
that is decentralized, computationally tractable, and allows for
target prioritization. Guarantees are provided that all targets
will have finite revisit times and that the block coordinate
ascent algorithm will converge to a block optimal solution.
Numerical simulations illustrate the utility of this method by
showing that the results are comparable to those of a centralized
exhaustive search and that they degrade gracefully with limited
communication and scale under increasing numbers of targets
and vehicles.

I. INTRODUCTION

Providing persistent intelligence, reconnaissance, and
surveillance (PISR) of target locations is beneficial for many
scientific and military applications [1], [2]. This is an ideal
application for cooperating unmanned air vehicles (UAVs)
that can autonomously monitor targets. UAVs, however, are
typically constrained in their payload capacity which results
in limited computational and communication capabilities.
This paper presents a cooperative routing algorithm that
satisfies typical UAV constraints while guiding them to
persistently monitor locations of interest.

The cooperative route planning algorithm is designed to
minimize the maximum weighted revisit-times of targets.
It achieves this by maximizing an objective function that
rewards revisiting targets not recently observed. Targets are
given weights that prioritize the value in monitoring each
location. Due to the weighting, a single target may be visited
repeatedly prior to all the other targets being visited.

The PISR application is similar to the well-studied multi-
vehicle travelling salesman problem. However, it differs by
allowing targets to be revisited more than once per tour
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[3]. In [4] a closed-walk path that allowed multiple target
visits was found using a mixed integer linear programming.
The solution assumed a pre-determined number of target
visits and was solved for a single vehicle with equal target
weighting.

The work in [5] provided a variant of the travelling
salesman problem where all target locations are visited
exactly once, but are interspersed with visits to a depot
to transmit gathered information. The trade-off between
visiting the depot often (to promptly disseminate gathered
information) and minimizing the cycle time (with infrequent
visits to the depot) is handled using a linear program that
scales exponentially in the number of targets. To combat the
poor scaling inherent in exact solutions, the authors of [6]
determined routes using genetic algorithms (GA) for a single
vehicle.

In [7] the practical challenges of implementing a routing
algorithm with multiple cooperating vehicles were addressed.
The decentralized solution provided scalable optimization
using heuristic methods and assuming a myopic control
policy. Preliminary flight tests, using two unmanned vehicles,
showed promising results. However, the decentralized imple-
mentation assumed all vehicles were provided with identical
inputs, a restriction the authors found challenging to enforce.

Similar to [7], this work focuses on the practical im-
plementations of the multiple vehicle routing problem with
the goal to execute on hardware typical for a small to
medium sized unmanned vehicle. This necessitates solving
the objective function heuristically, since exact solutions are
too costly [2]. We mitigate many shortcomings found in prior
research by providing a decentralized, non-myopic, route-
planning algorithm that is computationally tractable, incor-
porates multiple vehicles, allows for target prioritization, and
degrades gracefully under communication loss.

We choose vehicle routes using a combined block coor-
dinate ascent (BCA) optimization with a Monte Carlo tree
search (MCTS). The BCA enables each vehicle to plan
independently whereas MCTS judiciously selects which of
the potential routes to consider, mitigating the need for an
exhaustive search. Routes are planned to a pre-determined
event horizon, then replanned when a UAV reaches a target.
Targets are assumed to be static and deterministic with po-
sitions and weights known prior to operations. Since targets
have nonuniform distances between each other, routes have
unique execution times necessitating asynchronous vehicle
planning.

Block coordinate ascent algorithms are derivative-free
optimization approaches where a block of variables or
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coordinates is optimized conditioned on all other vari-
ables/coordinates being held constant [8]. In this paper,
the route of an individual vehicle is parameterized by its
policy, an ordered list of fixed length containing targets
to visit. The vehicle’s policy defines a block of variables
that are optimized, assuming all other vehicle routes (peer
blocks) remain constant. BCA reduces the computational
complexity of the planning algorithm while providing an
intuitive approach for decentralized route-planning that is
robust to lost or delayed communication messages.

Coordinate ascent algorithms typically require strict as-
sumptions, such as the objective function being strictly
convex [9], to ensure convergence (even to a local minima).
If these requirements are not met then it is possible that
the solution will cycle infinitely [8]. However, for this
application, despite using a non-convex objective function,
we can guarantee that the BCA algorithm will converge to a
block optimal solution where each vehicle’s policy becomes
fixed. This is a necessary condition for guaranteeing that
targets will have finite revisit times.

To further reduce the computational complexity in the
route-finding algorithm, we incorporate MCTS to heuristi-
cally solve BCA. MCTS is a tree-search method where the
nodes selected provide a balance between the exploration
of new branches with the exploitation of ones known to
have a high reward [10]. It is a popular approach to solving
challenging problems, such as the AI version of the game
Go [10] and has been extended to various path planning
algorithms [11]–[13].

The contribution of this paper is the development of a
novel route finding algorithm that finds good solutions for the
weighted PISR problem for multiple vehicles. The algorithm
uses MCTS in an atypical way to account for the uncertainty
present in approximating an infinite sequence with a finite
horizon. When combined with a BCA optimization the route
finding algorithm is decentralized, computationally tractable,
and degrades gracefully with communication limitations.
Furthermore, we show that it will converge to a block optimal
solution, guaranteeing that all targets have finite revisit times.

This paper proceeds as follows. Section II introduces the
problem statement. For a single vehicle, guarantees for finite
revisit times are provided in Section III. The multi-vehicle
case is presented in Section IV where the BCA/MCTS
algorithm is also described. Computational and simulation
results are provided in Section V and conclusions are made
in Section VI.

II. VEHICLE ROUTING OBJECTIVE FUNCTION

Vehicle routes are chosen to minimize the weighted revisit
times to targets. This incentivizes frequent observation of
high priority targets. However, we also consider the vehicle’s
travel time to avoid choosing routes with unnecessarily
long paths. This combination ensures that targets with large
weighted revisit times will be prioritized while concurrently
reducing the path lengths. In this section, our notation is
closely aligned with that presented in [7].

Let a control policy for vehicle a be described by a
sequence of states, πa = {s1, s2, . . . , sL} where each state

sk = (vi, t(vi)) is composed of a target vi and the elapsed
time since it was last visited, t(vi). The notation, sk[1] = vi
and sk[2] = t(vi) is used to indicate the target of state sk and
its elapsed time, respectively. Elapsed times are reset when
a vehicle arrives at a target’s location, i.e. t(vi) = 0. Since
revisiting targets is permitted, the target indices in a policy
are not necessarily unique.

The time it takes for the vehicle to travel from target vi to
vi+1 is d(vi, vi+1) = ‖x(vi+1) − x(vi)‖2/νa where x(vi)
is the Cartesian position of target vi, νa > 0 is vehicle
a’s speed, and ‖·‖2 is the Euclidean norm. We assume
that the time distance between targets satisfy d(vi, vj) <
(d(vi, v`) + d(v`, vj)) ensuring that targets are not observed
while a vehicle is transiting.

Let sk[1] = vi and sk+1[1] = vj . The cumulative time at
which vehicle a will arrive at state sk+1 under control policy
πa is Tπak+1 = Tπak + d(vi, vj), with Tπa1 = 0.

The routing objective function is composed of an instan-
taneous reward for visiting a target and a discount factor
that penalizes the time it takes to reach the target. The
instantaneous reward is r(sk, πa) = ωi (t(vi) + Tπak ), where
ωi > 0 is the weight of target vi and t(vi) is the elapsed time
since vi was last seen by any vehicle. The revisit time when
the vehicle will arrive at vi is t(vi) + Tπak . This rewards
the vehicle for visiting targets with high weighted elapsed
times. To penalize the vehicle for travelling long distances,
the instantaneous reward is combined with a discount factor
e−βT

πa
k where β > 0 is a discount gain.

Let π = {π1, π2, . . . , πA} be the concatenation of the
policies for all the vehicles. The cumulative reward for
executing the policies of multiple vehicles, each with event
horizon L is

J(π) =

L∑
k=1

(∑
a∈V

e−βT
πa
k r(sk, πa)

)
, (1)

where V = {1, . . . , A} is the set of vehicles available for the
mission. The dependence of the reward on the elapsed time
t(vi) requires that the objective function be evaluated in order
of each vehicle’s time of arrival at the targets. Therefore,
the outer summation of (1) is often partially evaluated prior
to fully evaluating the rewards for all the vehicles (inner
summation).

This objective function encourages vehicles to visit high
priority targets, but discounts the reward as a function of the
cumulative time it takes to reach them. The discount factor
is necessary because the event horizon specifies a number
of target visits rather than a fixed clock time, as is typical
for most receding horizon controllers. Without this factor the
highest reward for a vehicle may be realized by maximizing
its travel time, allowing the elapsed time for the targets to
increase.

We assume that vehicles do not alter their next destination
mid-flight, but continue on their current path until they arrive
at the next target. Furthermore, the UAVs are assumed to
travel at a constant altitude in straight lines from one target
to another. We assume that the difference in travel times



between straight-line trajectories and dynamically feasible
vehicle paths are negligible and can be ignored.

III. SINGLE VEHICLE

In this section, we consider routing a single vehicle. Given
that targets may be visited repeatedly, we show that the
vehicle does not get trapped into exclusively visiting a subset
of the targets, ensuring that all targets will be visited in a
finite time.

Let t̄d(vi) be the time when a vehicle will decide to
visit target vi. Vehicle’s do not change course mid-route,
therefore, once a decision is made, the target’s revisit time
will be the addition of t̄d(vi) with the time it takes the vehicle
to complete its current route and then continue on to vi.

We will prove that there is a finite bound on a target’s
revisit time. Rationale for this result was given for a single
vehicle with a myopic control policy in [14] using a proof
by contradiction. Using an inductive proof (Lemma 1), we
re-prove the result with the addition of an upper bound
on the target’s revisit time. We then expand this result
to include non-myopic control policies in Lemma 2 and
multiple vehicles in Theorem 1.

The following two lemmas use definitions on the minimum
and maximum time distances between targets within a set
N = {v1, v2, . . . , vn} and between targets in N and an
additional target vn+1. We define the minimum and max-
imum travel time between any two targets in N to be dN =
minvi,vj∈N{d(vi, vj)} and d̄N = maxvi,vj∈N{d(vi, vj)},
respectively. Consider an additional target vn+1. The mini-
mum and maximum travel time between vn+1 and any target
in N are defined as dM = minvi∈N{d(vi, vn+1)} and d̄M =
maxvi∈N{d(vi, vn+1)}. Furthermore, let ω̄ = maxvi∈N{ωi}
be the maximum weight value for any targets in N .

Lemma 1. Let N contain n targets which have a maximum
revisit time bounded by b̄. When a single vehicle (V = 1)
with a one-step look-ahead policy (L = 1) is routed using
the objective function given by (1), target vn+1 will have a
finite revisit time. Furthermore, after an elapsed time greater
than or equal to

t̄d(vn+1) = max

{
e−β(dN−d̄M ) ω̄

ωn+1
(b̄+ d̄N )− dM , 0

}
,

(2)
the vehicle will decide to visit vn+1. The bound on the revisit
time for target vn+1 is bn+1 = t̄d(vn+1) + d̄N + d̄M <∞.

Proof. For a single vehicle, with L = 1, the one-step look-
ahead policy is π1 = {s1, s2}. Let the targets associated with
the current and future state of this policy be s1[1] = vi and
s2[1] = vj , respectively. Under these conditions, (1) can be
written as a function of vi and vj ,

J(π1) = J(vi, vj) = e−βd(vi,vj)ωj(t(vj) + d(vi, vj)). (3)

The policy with the largest reward when visiting targets N =
{v1, . . . , vn} is bounded by J̄Nmax where

max
π1

{J(π1)} ≤ e−βdN ω̄(b̄+ d̄N ) , J̄Nmax. (4)

By induction, we will show that at time t̄d(vn+1) (2) the
reward for visiting target s2[1] = vn+1 exceeds the reward
for visiting any target in N and the vehicle will proceed to
vn+1, once it completes its current route.

Base Case: With a single target v1 ∈ N , once the vehicle
arrives at v1, the set will have a bounded revisit time of
b̄ = 0 (i.e. the vehicle will always remain at v1). In this set,
J(v1, v1) = J̄Nmax and there is no reward for remaining at
target v1, J(v1, v1) = e−βd(v1,v1)ω1(t(v1) + d(v1, v1)) = 0,
since both t(v1) = 0 and d̄N = d(v1, v1) = 0.

The decision time, which cannot be negative, is t̄d(v2) = 0
(2). Substituting t̄d(v2) = 0 for the elapsed time into the
objective function yields J(v1, v2) = e−βd(v1,v2)ω2(t̄d(v2)+
d(v1, v2)) = e−βd̄Mω2dM > J̄Nmax. The vehicle will arrive
at target v2 at time b2 = d(v1, v2) < ∞. The target set
{v1, v2} then has a revisit bound of b̄ = b2 + d(v2, v1).

Inductive Step: Let N contains n targets which have a
maximum revisit time bounded by b̄. We will show that
an additional target vn+1 will have a bounded revisit time
bn+1 <∞ and a decision time t̄d(vn+1) given by (2).

The vehicle will decide to visit vn+1 when J(vi, vn+1) ≥
J(vi, vj) ∀i, j ∈ N . Using (4) to bound the reward on
J(vi, vj) we desire,

J(vi, vn+1) = e−βd(vi,vn+1)ωn+1(t(vn+1) + d(vi, vn+1))

≥ e−βdN ω̄(b̄+ d̄N ) = J̄Nmax,

∀ vi ∈ N . Solving for t(vn+1) when J(vi, vn+1) > J̄Nmax
yields

t(vn+1) ≥ e−β(dN−d(vi,vn+1)) ω̄

ωn+1
(b̄+ d̄N )− d(vi, vn+1).

Maximizing the right side of the inequality provides the
decision time given in (2),

t̄d(vn+1) ≥ e−β(dN−d̄M ) ω̄

ωn+1
(b̄+ d̄N )− dM .

When this inequality holds, the reward for visiting vn+1

exceeds the reward for visiting any other target and the
optimal policy requires that the vehicle travels there next.

The decision time may occur when a vehicle is traveling
between targets. Let d̃(vi) be the time distance left in the
current route from d(vj , vi) at time t̄d(vn+1). Then the
bound on the revisit time is bn+1 = t̄d(vn+1) + d̃(vi) +
d(vi, vn+1) < t̄d(vn+1) + d̄N + d̄M <∞.

By mathematical induction all additional targets have finite
revisit times with decision time dictated by (2).

Remark 1. The revisit bound b̄ may be computed for a set of
targets by beginning with two targets from the list and setting
the group’s revisit time bound to 2d(v1, v2) then recursively
adding in new targets using bound bn+1 = t̄d(vn+1)+ d̄N +
d̄M with (2). The maximum bound using all permutations of
the target list is b̄ for the set. Note that, due to the need to
find all permutations, computing the bound is only practical
using this method when there are a limited number of targets.

We now extend this result to show that the revisit time of
a target will also be bounded when executing a multi-step
reward function with event horizon L.



Lemma 2. Let N = {v1, . . . , vn} contain n targets for
which the maximum revisit time is bounded by b̄. When a
single vehicle (V = 1) is routed using the objective function
defined by (1) with a multi-step look-ahead policy (L > 1)
an additional target, vn+1, will also have a bounded revisit
time. Furthermore, a bound on the elapsed time prior to the
vehicle deciding to visit target vn+1 is given by

t̄Ld (vn+1) = max

{
Le−β(dN−d̄M ) ω̄

ωn+1
(b̄+ d̄N )− dM , 0

}
.

(5)
The revisit time for target vn+1 is bounded by bn+1 =
t̄Ld (vn+1) + d̄N + d̄M <∞.

Proof. When V = 1 and L > 1 (1) becomes

J(π1) = e−βT
π1
1 ωs1[1] (t(s1[1]) + Tπ1

1 )

+ e−βT
π1
2 ωs2[1] (t(s2[1]) + Tπ1

2 ) +

...
+ e−βT

π1
L ωsL[1] (t(sL[1]) + Tπ1

L ) , (6)

where π1 = {s1, s2, . . . , sL} is the policy for the vehicle.
Since the time Tπ1

k strictly increases at every step, the
exponential discount factor is strictly decreasing and the
least penalized reward is provided by the first term in (6).
Therefore, the maximum reward for visiting targets in N is
bounded by J̄N,Lmax < LJ̄Nmax, where J̄Nmax is defined in (4).

Base Case: Assuming N = {v1}, the vehicle’s policy π1

when operating over N consists of L identical states s1 =
. . . = sL = (v1, 0). The revisit bound and rewards are b̄ = 0
and J(π1) = J̄N,Lmax = 0.

Given a second target v2, the policy which will maximize
(6) is π1 = {s1, . . . , sL} where sk[1] is v2 if k is odd and
v1 if k is even ∀ k ∈ [1, L]. The time when the vehicle
decides to travel to v2 is t̄Ld = 0, resulting in upper bound of
b2 = d(v1, v2) = d̄M . The combined target group {v1, v2}
has a revisit bound of b̄ = b2 + d(v1, v2) = 2d̄M <∞.

Inductive Step: Assume the set N = {v1, . . . , vn}
contains n targets for which the maximum revisit time is
bounded by b̄. We will show that an additional target, vn+1,
will have a bounded revisit time and an upper bound of
t̄Ld (vn+1) on its decision time.

Since targets visited early in a policy are discounted less,
the policy that maximizes the reward maxπ1

{J(π1)} must
place the first target to be visited as the one with the highest
one-step reward. We will evaluate the time at which the one-
step reward for visiting vn+1 will exceed the reward for
visiting any L targets in N .

Let a one-step reward policy be π1 = {vi, vn+1} for any
vi ∈ N . Using (3) and the reward bound for an L-step look-
ahead policy we desire J(π1) > J̄N,Lmax,

J(π1) = e−βd(vi,vn+1)ωn+1(t(vn+1) + d(vi, vn+1))

> Le−βdN ω̄(b̄+ d̄N ) = J̄N,Lmax.

Solving for t(vn+1) when this inequality holds yields

t(vn+1) ≥ Le−β(dN−d(vi,vn+1)) ω̄

ωn+1
(b̄+ d̄N )−d(vi, vn+1).

Maximizing the right side of the inequality provides the
decision time given in (5),

t̄Ld (vn+1) ≥ L
(
e−β(dN−d̄M ) ω̄

ωn+1
(b̄+ d̄N )

)
− dM .

At this time the reward for visiting vn+1 exceeds the reward
for visiting any other target. Equation (6) is then maximized
when target vn+1 is placed as the first target visited. There-
fore, at or before time t̄Ld the vehicle will decide to visit
vn+1 next, ensuring that the revisit time will be bounded by
bn+1 = t̄Ld (vn+1) + d̄N + d̄M <∞.

By mathematical induction all additional targets have finite
revisit times with decision time dictated by (5). This theorem
holds for a multi-step look-ahead policy with an arbitrarily
large, but finite event horizon.

IV. MULTIPLE VEHICLES

We now consider the case with multiple vehicles, A ≥ 2.
An exhaustive search to find the optimal solution to the
reward function (1)) is computationally intractable as the
complexity grows exponentially in the number of vehicles
and the time horizon. BCA/MCTS provides a scalable solu-
tion to the multiple-vehicle routing problem. BCA enables
separate optimization of each vehicle’s route and facilitates
the decentralized implementation. MCTS provides an intel-
ligent tree search method that is used to efficiently find high
reward vehicle routes without needing to exhaustively search
the decision tree. In the following subsections we describe
both components of the algorithm and show that BCA is
guaranteed to converge to a block optimal solution.

A. Blockwise Coordinate Ascent

Block coordinate ascent algorithms are non-derivative op-
timization approaches where, for each iteration, the reward
is maximized over a block of coordinates while keeping the
others fixed [8]. For this application, each vehicle’s policy is
grouped as the optimization block while the other vehicle’s
policies are kept fixed.

To optimize a single vehicle’s route we use a local reward
function for vehicle a defined as

fa(π) =

L∑
k=1

e−βT
πa
k ωk (t(sk) + Tπak )︸ ︷︷ ︸

variable reward(πa)

+

∑
b∈V \a

L∑
k=1

e−βT
πb
k ωk (t(sk) + Tπbk )

︸ ︷︷ ︸
conditional reward(πaC )

. (7)

The vehicle’s maximize fa(π) by choosing a policy π∗a
conditioned on the policies of its peer vehicles πaC . The
peer vehicle’s policies are the latest policies shared with
vehicle a. If communication is interrupted or delayed, the
vehicle assumes the peer-vehicle policies are unchanged. As
with the global reward function, the reward for visiting a
target depends upon the time it was last seen. Therefore,
the summations are evaluated in target-arrival chronological
order.



Algorithm 1 presents pseudo-code for the BCA algorithm
where each vehicle iteratively finds the policy π∗a that will
maximize it’s local reward function (7) using π̂pa, the most
up-to-date policies known to vehicle a at iteration p. If
reliable communication is available then π̂pa is identical for
all vehicles and consists of each vehicle’s locally optimal
policy. Convergence is reached when all vehicle policies,
πa ∀a ∈ A, remain unchanged for a full round (loop through
all the vehicles). In practice the algorithm may be cut off
after a set number of iterations or once a time limit has been
reached.

Algorithm 1: Blockwise Coordinate Ascent (BCA)
Input : target state information (IDs, locations,

weights), objective function, and event horizon
Output: π̂: policies of all vehicles

iteration p = 0;
while converging do

for a← 1 to A vehicle do
1) Solve π∗a = arg max

πa

{fa(π̂pa)}, let π̂pa be

the policies for all vehicles known to vehicle
a at iteration p.

2) Set π̂p+1
a = (π∗a, π̂

p
aC

)
3) Communicate π∗a with neighbors
4) Vehicles in communication range update

their policies, π̂p+1
aC

= latest(π̂p+1
a )

5) p = p+ 1, update the iteration count
end

end

Note that at every iteration p, the reward function is
nondecreasing, i.e. J(π̂p+1) ≥ J(π̂p). This is because (7)
is a subproblem of (1) and a new policy πa will only be
chosen when the reward for fa(π̂p+1

a ), and thus J(π̂p+1),
is increased.

In the following theorem we show that Algorithm 1 will
converge to a block optimal solution. Letting π̃a represent
all possible policies for vehicle a, the solution π̂ is block
optimal if J(π̂) ≥ fa(π̃a) for all a ∈ V where π̃a =
(π̃a, π̂aC ). This definition is satisfied if the policies become
constant, meaning a full round of the BCA algorithm is
completed without any vehicle updating its locally optimal
policy π∗a.

In the theorem, we utilize ([15], Lemma 6) which guar-
antees that the sequence of local objective functions will
become constant when using a discrete set of bounded input
values. This occurs because a finite and bounded set of input
values correspond with a finite set of output values. Since the
local objective function is nondecreasing, the output values
must converge. This is the block optimal solution and does
not necessarily correspond with the global optima.

Theorem 1. Given all-to-all communication, A vehicles
executing Algorithm 1 will converge to a block optimal policy
π∗. Furthermore, under a constant policy, all targets have
finite revisit rates.

Proof. The target ID’s and positions provides a finite and
bounded set of discrete input values with inter-target dis-
tances that are deterministic and bounded. Bounded input
values result in bounded outputs for both local fa(π̂pa)
and global J(π̂p) reward functions. With full communi-
cation, each vehicle uses their peer’s current policies to
update their own policy which ensures that both fa(π̂pa) and
J(π̂p) weakly increase at every iteration. According to ([15],
Lemma 6), the objective functions will weakly increase until
they become constant.

By Lemma 2, when a target’s elapsed time grows suf-
ficiently large it becomes the first target in the receding
horizon control. Once a target is queued to be visited, there
are no other targets that can be chosen to give that vehicle a
higher reward. Other vehicles may decide to visit that target,
but will also choose it as its first target if it increases the local
and global reward values. Therefore, once a target becomes
the highest one-step reward it will be included as the next
target visited for one of the vehicles in any locally optimal
policy π̂.

B. Monte Carlo Tree Search

Despite the computational advantages of BCA, solving
each subproblem fa(π) ∀a ∈ V will frequently be too
costly to execute in real-time. To overcome this challenge, we
propose using Monte Carlo Tree Search (MCTS) to provide a
solution to the decision tree. Because MCTS is an “anytime”
solution, we can terminate the search at any point knowing
we will have the best current solution.

MCTS searches a tree by selecting new nodes based upon
a balance of exploring new branches and expanding high
reward branches. The tree is expanded to incorporate the
children nodes while tracking a mean reward over paths
evaluated under the parent. Given enough samples, MCTS is
guaranteed to converge to the subproblem’s optimal solution.

Let the tree for vehicle a be denoted Ta = (Va, Ea) where
Va are the nodes and contain the total states of the system.
The edges Ea encode the transitions. Each node v ∈ Ta
contains a unique sequence of node-edge pairs connecting
it to the root node k (or current target). This sequence of
decisions is a valid route or policy for the vehicle and the
length of this policy is limited by the event horizon length
L. The tree encapsulates the exhaustive set of valid policies
for the vehicle. Given χ targets, each node has χ−1 children
nodes, describing the potential targets the vehicle may choose
to visit next.

The reward for each node, f̄a(v), is the average reward
of all explored control policies containing node v. Nodes
are added to the search tree in a cyclic manner following
the four general steps: selection, expansion, simulation, and
backpropagation.

1) Selection: Node selection maximizes an upper
confidence bound for trees: UCT (p, c) = f̄a(c) +
κp
√

ln q(p)/q(c), [16] where p is the parent node, c are
children nodes, q returns the number of times a node has
been selected while exploring the control policies, and κp is
a tuning parameter to weight exploration. The UCT metric



is iteratively applied at every level of the tree, until an
unexplored node is reached.

2) Expansion: Chosen, unexplored nodes are expanded
to identify it’s (χ−1) children. Child nodes are initialized
with an infinite mean reward f̄a(c) =∞, ensuring that they
will be explored at least once prior to sibling nodes being
re-selected.

3) Simulation: Simulation is the process of expanding the
route until the event horizon is reached. We use a greedy
heuristic policy to complete the control sequence by choosing
the next target with the highest instantaneous reward. Once a
complete control sequence is chosen, the local reward fa(π)
is calculated by combining this simulated policy with the
policies of other vehicles and solving (7).

4) Backpropagation: Once a new local reward is com-
puted, each node along that control sequence v ∈ π updates
their average local reward f̄a(v) by averaging (or backprop-
agating) in this new reward.

The process of selecting, expanding, simulating, and back-
propagating is repeated until a stopping criterion is reached,
such as a time limit or specific number of samples.

V. RESULTS

Numerical simulations are now provided to illustrate the
efficacy of the decentralized BCA/MCTS algorithm. First,
we present simulations comparing solutions for equally
and unequally weighted targets. Then, using Monte Carlo
(MC) simulations, we compare the BCA/MCTS algorithm
to a centralized algorithm which exhaustively searches a
joint decision-tree for all vehicles. The joint optimization
is computationally expensive and necessitated restricting the
number of UAVs, targets, and look-ahead steps to run MC
simulations. Results are also provided for scenarios with
varying numbers of vehicles and vehicles where communi-
cation is unreliable.

Fig. 1 illustrates the BCA/MCTS solution when all targets
are equally weighted. The target positions were chosen
randomly and the two UAVs quickly settled into the cyclic
patterns shown in Fig. 1a. Fig. 1b presents the elapsed time
since that each target was visited. The revisit times for all
targets are nearly equal with a maximum time of 3.9 s.

Fig. 2 compares the result when the targets have weights
ω = [2.5, 1, 4.5, 1, 1]T . All other initial conditions were
identical to those used in Fig. 1. In this example, the vehicles
cooperatively visit the higher weighted targets. They settle
into a single cyclic pattern, as shown in Fig. 2a, where the
two vehicles separate themselves half way through the cycle.
There is a wider divergence in the target’s weighted elapsed
time as shown in Fig. 2b. However, Target 3, which has the
highest revisit time, always has a vehicles travelling to it.
Given the target configuration, this cycle minimizes the max
revisit times.

Fig. 3 compares BCA/MCTS to a centralized solution
which exhaustively searches the joint action space of all
vehicles. BCA/MCTS uses different sample strategies that
limit its search to 25%, 50%, 75%, and 100% of each ve-
hicle’s individual routing tree. One hundred MC simulations

were run using two vehicles, L = 2, with β = 0.1 and
a simulation time of 500 s. Fig. 3a shows results given
targets in χ = {5, 10, 15, 20, 25}. The error bars provide
the 1-σ bounds. The results show there is nearly identical
performance between each MCTS sampling strategy.

Fig. 3b compares the percentage increase of BCA/MCTS
from the centralized solution.The BCA/MCTS solutions typ-
ically remained within 7% of the centralized algorithm (the
25% sampling strategy, cyan line, being the only exception).
The highest divergence from the centralized solution was
given with six targets. For this case, the minimum, mean, and
maximum average revisit times are provided for the averaged
MC runs in Fig. 3c. Both these plots show that BCA/MCTS
solutions are close to those of the centralized solution.

Fig. 3a and Fig. 3b also provide a comparison for two other
routing methods. The first (yellow line) depicts a limited
communication method implemented in [7]. In this work a
heuristic solution to (3) is presented where the cooperating
vehicles broadcast a message once a target visit is complete.
Coordination between vehicles does not occur at the plan-
ning stage. Both figures show that the coordinated planning
presented in this paper provides a significant advantage in
reducing the maximum revisit times of targets.

The second comparison shows a multi-vehicle traveling
salesman problem solution (green line) implemented using
Google’s ORTools [17]. This solution found the closed-walk
paths that minimized the distance travelled to all the targets.
The result illustrates the need for allowing weighted targets
to be visited more than once per tour since there can be as
much as a 67% increase in the average maximum weighted
revisit times when compared to the centralized solution.

Table I shows the runtime advantage in using the
BCA/MCTS algorithms for the MC runs depicted by Fig. 3a.
The centralized joint-vehicle tree shows an exponential in-
crease as the number of targets grows. Whereas BCA/MCTS
shows more amenable runtime values that scale with the
percentage of the tree that is searched.

Fig. 4 shows the average maximum weighted elapsed time
for 25 targets with varying numbers of vehicles. This figure
again shows that exploring only a percentage of the decision
space doesn’t strongly diminish the results. Additionally,
this graph shows the advantage of increasing the number of
vehicles in the operational space by the reduction in average
revisit times. However, as expected there are diminishing
returns with each additional vehicle. Fig. 4 indicates that
a reduction in the percentage of the tree searched will not
significantly affect the results.

Fig. 5 shows that BCA/MCTS degrades gracefully un-
der intermittent communication. Four target sets, χ =
{5, 10, 15, 20}, are used while the maximum communication
distance was varied from 0% (no communication) of the
operational area to 100% (constant communication). This
simulation used two vehicles in order to depict the extreme
effects of communication. Adding additional vehicles would
provide similar trends provided the vehicles do not saturation
the operational space or target assignments. Vehicles outside
of communication range updated their routes using the most
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Fig. 1. The (a) steady-state routes and (b) elapsed times for two UAVs visiting five equally weighted targets.
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Fig. 2. The (a) steady-state route and (b) weighted elapsed times for two UAVs visiting five unequally weighted targets.
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Fig. 3. Monte Carlo simulations showing the average maximum weighted target elapsed times of BCA/MCTS. (a) Elapsed times for target sets χ =
{5, 10, 15, 20, 25}. (b) Elapsed times as a percentage increase from the centralized solution. (c) The average minimum, mean, and maximum target
revisit time for six targets.

TABLE I
MEAN RUNTIME AND STANDARD DEVIATION FOR A VEHICLE’S DECISION CYCLE AVERAGED OVER 100 MC RUNS.

5 Targets 10 Targets 15 Targets 20 Targets 25 Targets

MCTS (25%) 10.0±1.5 (s) 22.8±2.9 (s) 38.6±4.4 (s) 58.6±4.9 (s) 82.9±6.2 (s)
MCTS (50%) 14.3±2.3 (s) 37.4±4.8 (s) 69.5±7.3 (s) 110.1±9.0 (s) 161.0±11.2 (s)
MCTS (75%) 18.1±3.0 (s) 52.4±7.0 (s) 100.3±10.4 (s) 163.4±13.6 (s) 244.7±17.2 (s)
MCTS (100%) 22.7±3.8 (s) 69.3±9.25 (s) 131.9±13.6 (s) 219.0±18.4 (s) 333.7±23.7 (s)
Central 58.97±6.9 (s) 686.8±86 (s) 6.9×103±986 (s) 6.2×104±9.9×103 (s) —-
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recent policy of the peer vehicles. Vehicles within communi-
cation range shared their updated policies. This figure shows
a graceful decay in the vehicle’s performance under limited
communication ranges for each target set. Improvements for
additional communication become more pronounced with
larger targets numbers and taper off when communication
is available for ~60% of the operational area.

Intermittent communication may result in multiple vehi-
cles visiting the same targets. However, it won’t cause target
revisit times to go unbounded since targets with large elapsed
times (defined by (5)) will be placed first in the vehicle’s
policy. Once in that position, it cannot be removed without
confirmation that another vehicle has placed it first in their
policy. The target will then be visited by at least one vehicle.

VI. CONCLUSION

This paper presented a decentralized BCA/MCTS algo-
rithm that enables persistent monitoring of targets using
cooperating UAVs. The vehicles coordinated their routes by
optimizing their own policies, conditioned upon the known
policies of their peers. Guarantees were provided that the
BCA/MCTS algorithm will converge to a block optimal so-
lution, giving all targets finite revisit rates. When limitations
are placed on the algorithm, such as computational or com-
munication constraints it was shown that the performance

degrades gracefully and typically remains close to the ideal.
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