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Abstract— Current approaches combining task and motion
planning require intensive geometric and symbolic reasoning to
find feasible motions for task execution. The poor expressiveness
of task planning domains for characterizing geometric changes
with actions and the difficulties faced by current approaches
to efficiently identify motion dependencies for plan execution
produce expensive callings to motion planning on unfeasible
actions and intensive reasoning to find realizable plans. In
this work we combine two recent approaches to address
these problems. Task planning is carried out using an object-
centered description of geometric relations that consistently
characterizes changes in the object configuration space. Plan
execution is implemented using a symbol to motion hierarchical
decomposition that depends on consecutive actions in the plan,
rather than on single actions, which permits considering motion
dependencies across plan actions for a successful execution.

I. INTRODUCTION

Task planning [1] is an efficient tool for automatically
defining the sequence of instructions to a robot for the execu-
tion of manipulation tasks. It permits representing structures
of the environment that are relevant to describe object
configurations and actions that can be performed on them in
an intuitive manner, using a declarative notation compatible
with human language: on cup table, to indicate that a
cup is on the table, or pick cup table, to instruct the
action of picking the cup from the table. The sequence
of instructions to fulfill a task, the task plan, is generated
using searching strategies that evaluate the changes produced
by action executions encoded in the so called planning
operators. For the execution of the task, it is mandatory
to ground the symbolic actions to let the robot physically
interact with the real world [2]–[6]. This is normally done
by integrating methods of different levels of abstraction
into a task and motion planning (TAMP) framework [7]–
[10], where task and motion planning are brought together
through geometric reasoning mechanisms that search for
feasible robotic motions for the execution of task plans.
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However, this strategy is not cost-effective since it requires
intensive computations and several calls to motion planning
on unfeasible actions to search for solutions in the usually
large object configuration space.

We propose a TAMP framework that generates feasible
motions for task plan execution without intensive geometric
reasoning or unfruitful callings to motion planning. The
framework combines, on the one hand, a task planning
approach that uses a novel representation of geometric con-
straints in the object configuration space for the generation
of geometrically consistent plans and, on the other hand, a
method for grounding symbolic actions based on a hierar-
chical decomposition of abstract tasks into specific motions.
The selection of which hierarchical decomposition is most
suitable for the execution of a symbolic action is determined
by the geometric constraints of consecutive plan actions
encoded at the task planning level.

A. Related Works

Several strategies have been proposed to alleviate the
computational effort of combined task and motion planning
(TAMP). A widely used approach is to hierarchically de-
compose a complex abstract task into several simple sub-
tasks that can be easily solved and executed [11]–[14].
Along this line, Kaelbling et al. [12] interleave hierarchical
planning with plan execution on small sub-tasks to limit
the reasoning effort. The approach generates a global plan
using only highly abstract tasks and without checking in
detail the forward progression of the effects of actions. Given
this global plan, each of the involved tasks is resolved as a
smaller TAMP problem that is immediately executed. The
resulting state is used to initialize the next task in the global
plan, repeating the process. In this manner, the approach
focuses on the execution of the task at hand but at the
expense of facing frequent planning impasses. Our approach
also relies on a hierarchical decomposition of plan actions.
However, contrary to [12], our task planner consistently
assesses the propagation of effects of actions in the plan
using a rich representation of geometric changes.

The framework presented in [15] integrates a hierarchical
decomposition of tasks, in the form of grammar models,
and haptic predictions for complex manipulation on single
objects. Grammar models are encoded in a graph repre-
sentation that contains words (single actions) or sentences
(sequences) at terminal nodes. These graphs are used for
task plan generation according to the history of actions
rather than from propagating the effect of actions in the
reasoning process. The approach is specially suitable for
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complex manipulation of single objects involving action
selection based on forces but does not address the general
TAMP problem of efficiently defining motion parameters on
configuration spaces comprising several objects.

Another approach to tackle the TAMP problem is to use
a semantic representation of geometric constraints to better
interface continuous motion parameters and symbolic task
descriptions [16], [17]. Wells et al. [16] propose to train
a support vector machine classifier that uses semantics of
geometric constrains to quickly classify motions as feasible
or not feasible. The classifier has a relatively low accuracy
provided the coarse granularity of semantic representations
but helps reducing the effort of motion exploration, which
is still required to define the motion parameters to ground
symbolic actions. The approach in [17] also incorporates
semantics descriptions of geometrical constraints to evalu-
ate motion feasibility of single actions. However, contrary
to [16], the constraints are used within the task planning
algorithm, rather than in separate methods. The task planner
generates candidate plans adding and removing constraints
incrementally while a sampling-based motion planner checks
actions feasibility using geometric reasoning. The described
approaches focus on grounding single plan actions without
considering motion dependencies between actions in the plan
and require the introduction of additional methods to handle
the semantic representations. Our approach, instead, permits
generating motions compatible with consecutive actions in
the plan, rather than with single actions, and avoids the
necessity of defining intermediate semantics or heuristics.

Logic programming is an appealing alternative to task
planning based on state-space search. Logic programming
methods search for solutions directly in the plan space, rather
than in the state space, which permits better considering ge-
ometrical constraints compatible with entire plan executions
[18], [19]. Lagriffoul et al. [18] use logic programming to
find plans compatible with symbolic constraints as expla-
nations of plan failures produced by collisions. Toussaint
[19], in turn, proposes an approach specially designed for
creating pile of objects with stable configurations, where
symbols are tailored to describe geometric and differential
constrains, e.g. (in-)equalities, for optimizing the entire plan
execution. Logic programming approaches need a model of
the robot dynamics to find optimal solutions after intensive
computations. Our approach, instead, does not require the
robot dynamics and is able to generate plans at low computa-
tional costs using off-the-shelf linear planners. Although we
consider motion dependencies between consecutive actions
rather than in the entire plan, as in logic programming, it
provides a low-complexity alternative to these methods.

In this work, we adapt and combine two methods to
address the efficiency problem of TAMP frameworks: 1)
the generation of geometrically consistent task plans based
on an object-centered representation of geometrical relations
[20], and, 2) the transformation of abstract tasks into motion
parameters using a symbol-signal hierarchical decomposition
[21]. The main contributions of this work can be summarized
as follows:

• The integration into a TAMP framework of a planning
domain compatible with off-the-shelf, computationally
efficient, linear planners that permits considering rele-
vant geometrical constraints for plan execution already
at the task planning level.

• The integration of task planning with a hierarchical
symbol-signal decomposition of actions that combines
learning from demonstration and action segmentation
for plan action execution.

• A method for selecting adequate motion parameters
considering motion dependencies on consecutive actions
in a task plan without the need of intensive geometric
reasoning or multiple callings to motion planning.

The rest of the paper is organized as follows. Section II
describes the basic elements of our framework, namely the
task planner and the hierarchical task representation. In Sec.
III, we describe how planning and hierarchical task decompo-
sition are effectively combined to execute manipulation tasks.
Experiments on a real robot are presented in Sec. IV. Section
V states the conclusion and propose further extensions.

II. PRELIMINARIES

A. Task Planning

We use the traditional task planning domain definition
comprising a set of objects (e.g. cup, table) and a set
of predicates, coding object relations and properties (e.g.
on cup table), which are logical functions that take value
true or false. The set of predicates describing a particular
scenario defines the symbolic state s. We define a set of plan-
ning operators (PO), encoded in the traditional precondition-
action-effect notation [22]. A PO describes the changes on
a symbolic state with an action execution. The precondition
part comprises the predicates that will be changed by the
execution of the PO, as well as those predicates that, even
though they don’t change with the execution, are necessary
for these changes to occur. The effect part describes the
changes in the symbolic state after the PO execution. We
define a symbolic action as the name of the PO that consists
of a declarative description of an action and may contain
parameters to ground the predicates in the precondition
and effect parts. In task planning, the planner receives the
description of the initial state, sini, and a goal description, g,
as a set of grounded predicates that should be observed after
task execution. With these elements, the planner searches
for a sequence of actions called plan that would permit
producing changes in sini necessary to obtain the goal g
using the set of planning operators [1]. In this work, we use
the off-the-shelf linear planner Fast Downward [23].

For the generation of realizable plans, it is important to
encode in the planning domain task-relevant geometrical
descriptions that permit consistently characterizing changes
in the object configuration space. To this end, we define a set
of predicates that can be unambiguously obtained from object
parameters describing the object configuration space. Using
the poses and bounding boxes of objects, we can identify
six sides of the bounding boxes of each objects: top, bottom,



TABLE I
EXAMPLE PLANNING OPERATORS

(:action pick-top (:action place-top
:parameters :parameters
(?obj1 ?obj2) (?obj1 ?obj2)
:precondition (and :precondition (and
(on ?obj1 air) (on ?obj1 hand)
(under ?obj1 ?obj2) (under ?obj1 air)
(on ?obj2 ?obj1) (on ?obj2 air)
(in hand air) (in hand ?obj1)
:effect (and :effect (and
(on ?obj1 hand) (on ?obj1 air)
(under ?obj1 air) (under ?obj1 ?obj2)
(on ?obj2 air) (on ?obj2 ?obj1)
(in hand ?obj1) (in hand air)
(not (on ?obj1 air)) (not (on ?obj1 hand))
(not (under ?obj1 ?obj2)) (not (under ?obj1 air))
(not (on ?obj2 ?obj1)) (not (on ?obj2 air))
(not (in hand air)))) (not (in hand ?obj1))))

front, back, left and right. We use the sides to describe the
relation of each object with others through simple relational
predicates: on o1 o2 (object o2 is on object o1), under
o1 o2 (o2 is under o1), in o1 o2 (o2 is inside o1), and so
on. These relational predicates have been widely used in the
TAMP community. However, the newly introduced concept
here is that these relations are described from an object per-
spective, rather than from an observer perspective. Using an
object perspective permits describing the object configuration
space only with simple relational predicates, without the need
of introducing additional arbitrary names. For example, the
predicate on cup table would describe that the top of the
cup is touching the table. If, instead, the bottom of the cup is
touching the table, the predicate under cup table would
be used. Instead, the interpretation of an external observer of
the predicate on cup table is that the cup is on the table,
no matter if it is lying upright, horizontally, or upsidedown.
To fully describe the cup-table configuration, it would be
necessary to introduce additional arbitrary symbols such as
isOriented, upright, upsidedown [9]. This difference
becomes important when the task requires to distinguish
object relations with different orientations in configuration
spaces involving several objects. An exhaustive analysis
of the benefits of this representation is presented in [20].
Table I presents two example planning operators for picking
and placing an object encoded using the object-centered
predicates. These predicates permits characterizing important
geometric conditions for the execution of these operators. For
instance, for a picking from top action, the conditions that
the hand is empty and that the top of the object is clear for
grasping are encoded as in hand air and on ?obj1 air,
respectively, where air is an abstract object indicating that
no object is in contact with the corresponding side. For the
placing action, in turn, the conditions under ?obj1 air

and on ?obj2 air permit checking that the surfaces of the
two objects that will get in contact are not obstructed. After
a plan is generated, we need to define the mechanisms for
plan execution. This could be done using different strategies,

ranging from predefined behaviours (e.g. control trajectories)
to more elaborate methods involving geometric reasoning
and motion planning. In this work, we ground plan actions
using a hierarchical symbol-signal decomposition.

B. Hierarchical Task Decomposition

In [21], we decompose symbolic tasks into rooted trees,
where each node corresponds to a certain robot behavior
activated when a set of pre-conditions are met. In this
representation, here referred as schema, the task planning
reduces to simple three transversal and logical condition
checking. The correct execution of a behavior modifies
the value of the assigned post-conditions, regulating the
execution. This is computationally effective but rather rigid,
i.e. a schema cannot handle significant variations in the
execution context. We exploit an augmented version of a
typical schema where each node is associated to a partic-
ular robot behavior and it is defined by the 5-tuple B =
(lb, rb, pb, cb, eb), where lb is a unique label, rb are the pre-
conditions or releasers, pb are the post-conditions, cb are
the child nodes, and eb is a continuous emphasis parameter.
The emphasis conveys in the tree information about the
task execution coming from the sensors, allowing for a
rapid adaptation of the task execution and helping to solve
possible conflicts generated by multiple behaviors active at
the same time. In this work, we continuously monitor the
object poses to check the presence of the target object and
plan motion trajectories in object frame. All the existing
schemata are stored into a knowledge base in the form

schema(node name(Obj),
〈(child node 1(Obj), pre conditions 1),
( · · · ),
(child node j(Obj), pre conditions j)〉,
node post conditions)

schema(child node 1(Obj),〈 〉,
post conditions 1)

At run-time, we use the unique label of the root node
to query for a specific schema. The task tree is dynamically
instantiated and periodically traversed to monitor the task ex-
ecution. Abstract schemata are grounded into concrete robot
motions via kinesthetic teaching. Human demonstrations are
automatically segmented using two simple rules, namely a
new segment is generated if i) the robot enters/leaves the
surveillance area (a sphere of radius 0.2m) of an object or
if ii) the user commands to open/close the gripper. In this
phase, the emphasis is used to assign the generated segments
to the most emphasize node, corresponding to the active
behavior with Obj=closest obj. In this way, knowledge
is incrementally added by providing new demonstrations.
The outlined approach has the following limitations:

L1 The segmentation strategy generates unnecessary seg-
ments if the robot accidentally enters the proximity area
of non-target objects.

L2 Only the bottom level of the tree is learned from
demonstration, while higher levels are defined by a
domain expert.
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Fig. 1. General diagram representing the learning (green) and execution
(red) mechanisms to ground plan actions using schemata. For the grounding
of the plan action at, the system looks for an active action context in the set
AC for the plan segment (at−1, at, at+1) (Sec. III-A). If no active action
context is found, the system generates a new AC for that plan segment and an
abstract schema (without motion parameters) associated to m. Afterwards,
the system requests for a demonstration of the action at, which is performed
using kinesthetic teaching. The demonstrated motion is segmented and the
motion parameters for each segment are generated (Sec. III-B). If, on
the contrary, an action context gets activated with (at−1, at, at+1) the
associated schema m is retrieved from the Schema database and executed
(Sec. III-C). Queries to the schema database are indicated with dashed lines.

L3 Although the emphasis introduces some flexibility, a
tree remains a relatively rigid structure that cannot
consider significant variations in the executive context.

In this work, such limitations are overcome by combining
the schema with a task planner as detailed in Sec. III.

III. TAMP USING HIERARCHICAL DECOMPOSITION OF
CONTEXTUAL ACTIONS

In this section, we present the strategy to bring together the
task planning approach based on object-centered geometrical
descriptions (Sec. II-A) with the hierarchical decomposition
of tasks using schemata (Sec. II-B). These two approaches
are articulated through a new representation that we denote
action context (AC). An AC is a tuple that represents
consecutive actions in a plan and will play a fundamental
role in learning schemata encoding feasible motions for task
plan execution. This section presents the insights of such
mechanisms, which are summarized in Fig. 1.

A. Action Context

We define an action context (AC) as a 4-tuple ac =
{apre, anow, apost,m}, where apre, anow, and apost represent
symbolic actions with grounded arguments (see Sec. II-
A), and m represents an action grounding mechanism. We
use the notation AC to refer to the set of action contexts.
Given a task plan p = {a0, a1, ..., at−1, at, at+1, ..., an},
we say that an action context is active at time step t, if
at = anow, and the previous and posterior actions in the
plan fulfill at−1 = apre and at+1 = apost, respectively.
We refer to this active action context as acpt . Active action
contexts are used to execute action at in a plan p through
the action grounding mechanisms m ∈ acpt . Note that, in the

general case, action contexts can be associated to different
mechanisms for grounding symbolic actions: e.g. a plain
set of dynamic movement primitive parameters [24] or a
hierarchical task decomposition. In this work, m identifies
the schema used to execute the action context.

Action context is a newly introduced concept that plays
an important role for the grounding of symbolic actions. For
example, if the action of picking a bottle (at) is followed
by the action pouring (at+1), the motion performed should
permit a posterior stable pouring. These specific movements
for picking the bottle might be different if the next action
is just to place the bottle somewhere else. In the same
manner, previous actions also matter for defining adequate
motions. The picking for pouring described before may
involve different motions depending on if the robot picks
the bottle after placing an object to the right or to the
left of the bottle. An example of this situation is shown in
Fig. 8. These different motions will be encoded in different
schemata considering the adequate motion parameters. In
general, associating symbolic actions to schemata through
action contexts permits defining geometric parameters for
motion planning depending on the action intentions and on
the ongoing task. This allows for the generation of feasible
trajectories between consecutive symbolic actions.

B. Learning from human demonstrations

To make our framework suitable for online planning and
execution in variable scenarios, we define learning mech-
anisms that automatically generate action contexts and the
associated schemata every time a new plan segment is ob-
served. These mechanisms correspond to the green modules
in Fig. 1. Given a task plan p, the context of the action at the
current time t, at−1, at, at+1, is used to retrieve the active
action context acpt from the action context set AC. If no
action context is found, which indicates that the given plan
segment was never observed before, a new AC is generated.
The newly generated AC is stored in AC and triggers an
instance of schema learning, where a human demonstration is
requested to execute the action plan according to its context
(e.g. pick the bottle from the table to pour water in the cup).
The demonstration is used to generate a new schema that
is stored in the schema database, associated to the newly
generated AC through m. More in details, the new AC is
used to instantiate an abstract schema (see Fig. 2 left), where
the target object is specified by the planner. The schema
has always a TRUE pre-condition, assuming the relevant
preconditions for a successful execution of the schema were
already checked at the task planning level. For instance,
the AC activated for the action pick side bottle table

in a plan segment place top cup table - pick side

bottle table - pour water bottle cup is generated
only if there is a bottle on the table and no object has
been previously grasped. The post-condition of the schema
also comes from the planner and let the system switch
to the next active AC after the correct execution of the
current schema. Therefore, the prior knowledge needed to
instantiate new schemata comes from the task planner and
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Fig. 2. Grounding of the AC into a schema with associated movement
primitives. At run-time, object poses are used to adapt the motion execution.

not from an expert user as in [21] (limitation L2 in Sec.
II-B). The new abstract schema is grounded into a con-
crete robot behavior using human demonstrations. The user
kinesthetically guides the robot to show the AC execution
(e.g. pick a bottle as in Fig. 2). The demonstration is
automatically segmented using robot to target object distance
and gripper commands as described in Sec. II-B. The fact that
a single target object is considered for the abstract schema
makes the segmentation strategy more robust, resolving the
limitation L1. Indeed, even if multiple objects are present,
we need to monitor only the target object and trigger new
segments when the robot reaches it. Considering the example
in Fig. 2, the first segment is generated when the robot
enters the surveillance area of the bottle independently from
the other objects in the scene. The generated segments
are linked to the abstract schema. Since the segments are
sequentially demonstrated, it is reasonable to assume that
they are sequentially executed. This behavior is obtained
by properly defining pre- and post-conditions that are au-
tomatically assigned to the segment nodes. After the demon-
stration the schema has J segments (leaves), indicated as
s1(Obj), · · · , sJ(Obj), where a segment sj(Obj) has
been demonstrated after sj-1(Obj). The post-condition of
each segment sj(Obj) is sj(Obj).done ∀ j=1,. . . ,J.
The first segment (s1(Obj)) has a TRUE pre-condition
(like s1(bottle) in Fig. 2) and it is then executed first.
The second segment (s2(Obj)) has s1(Obj).done as
pre-condition and it is executed after s1(Obj), and so on
until the last segment sJ(Obj) is reached. sJ(Obj) sets
the post-condition of the schema, successfully terminating
the execution of the action context and returning to the
planner that generates the next action context. The generated
segments are also uniquely associated to motion primitives
used to generate motor commands for the robot. Poses
collected during the demonstrations are used to generate
these motion primitives as stable dynamical systems. Pick
and place motions require simple point-to-point motions
which are effectively represented by linear dynamical system
connecting current and goal poses. Other action contexts,
like pouring, require more sophisticated movements that
generated using the dynamic movement primitives (DMPs)
framework [24]. Initial and goal poses, as well as the robot

trajectory, are automatically extracted from the demonstra-
tion and used to fit the DMP. A known problem of DMPs
is the trajectory overshooting when generalizing to different
initial/goal pose. To prevent the overshooting, in [21] the
robot first reaches the surveillance area of the target object
with a linear motion and then uses the DMP. This simple but
effective strategy is used also in this work.

C. Autonomous execution

In case an active action context is found in AC associated
to the observed plan segment, the execution mechanisms
identified by m are triggered (red modules in Fig. 1). First,
the corresponding schema is retrieved from the schema
database. Then, the schema is executed segment by seg-
ment using the associated motion primitives—either DMP
or linear system—and the current pose of the target object
for trajectory generation. Motion trajectories are generated
relative to the object pose and on-line transformed into
the robot base frame using the forward kinematics. In this
way, the generated motions adapt to changes between the
demonstrated and the actual execution context. At run-time,
the schema is periodically traversed to determine the active
leaf, i.e. the next segment that the robot has to execute.

The emphasis parameter, that in this work is the inverse
of the robot-object distance squashed between 0 and 1, is
also periodically updated. In case the object is removed
from the scene or moved to an unreachable position, the
schema execution is preempted and its post-condition left
unchanged. This prevents the robot to execute useless and
potentially dangerous movements. The planner is informed of
the failure through the unchanged post-condition, and it can
generate new action contexts to recover the task. It is worth
noticing that the hierarchical structure described in Sec. II-B
has limited re-planning capabilities (see the limitation L3 in
Sec. II-B) and that the proposed combination of task planning
and schemata contributes to mitigate this limitation. If the
schema ends successfully, the post-condition(s) is set and
the planner proceeds with the next action context. Finally, the
object pose, periodically monitored to update the emphasis, is
used to adjust the motion in case of unexpected perturbations.
An example of this behavior is shown in Sec. IV.

IV. EXPERIMENTS

We evaluate the effectiveness of our approach with a set of
manipulation experiments where a real 7 degrees-of-freedom
robot (Kuka LWR IV) is asked to solve different pouring or
stacking tasks. These tasks require several planning steps
and the execution of complex manipulation actions. In all
the experiments, the schemata are generated from scratch
using the learning mechanisms presented in Sec. III-B. The
evaluation of predicates describing the object configuration
space is carried out as described in Sec. II-A. The scenario
for the stacking task (see Fig. 5), comprises 3 boxes, namely
the white (whiteB), blue (blueB), and green (greenB)
boxes. In addition to whiteB, blueB, and greenB, we define
the objects tablel, tablem, and tabler to indicate the left,
middle, and right parts of the table. The table is considered



as composed of 3 parts to facilitate consistency checking for
placing actions. The goal for this task is to arrange the boxes
in the configuration tablem-white-green-blue. For the
pouring task (see Fig. 5) we consider a different set of
objects to be manipulated: a bottle bottle, a white cup
whiteC, and a red cup redC. The goal for this task is to place
the white cup on table middle and fill it with water, while
the bottle should be placed on table right and covered with
the red cup. For plan generation, we use the Fast Downward
planner [23]. Initial states are variable and defined according
to the purpose of each experiment.

Number of action contexts and demonstration requests:
We carry out 10 different runs for each of the tasks (stacking
and pouring). Each run consists of solving 50 different
planning problems that are presented to the system in se-
quence, where the initial state for each of them is defined
from a random initial configuration of objects. No schemata
or action contexts are initially provided. For each of the
experiments, we compute the accumulated number of action
contexts and the ratio of actions that triggered a demon-
stration request, calculated as the total number of requests
versus the length of the plan. For the generation of action
contexts in the stacking task, we do not consider the color
of the boxes to favour generalization. Fig. 3 and 4 present
the average and standard deviation of the 10 runs. We can
observe that most of the action contexts are generated during
the initial 20 scenarios, where the ratio of demonstration
drops below 10 % after this point. The system quickly
becomes fully autonomous, executing plans without the need
of further demonstrations. The total average number of ACs
generated for the pouring and stacking tasks were 66 and 48,
respectively. Table II shows two example plans generated for
stacking and pouring tasks, where we mention the intention
of each action in the context of the plan to provide an
intuition of motion dependencies. Snapshots of the plans
execution are shown in Fig. 5. An example execution of the
pouring task is shown the accompanying video. To shed
light on the specific processes that link ACs with schemata,
we present in Fig. 6 a concrete example of a schema
associated to the AC place top redC tablem - pick

side bottle tabler - pour water bottle cup. If
this schema is selected for execution, it is instantiated and
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Fig. 3. Accumulated number of ACs for the stacking (blue) and pouring
(red) tasks. The results present the average and standard deviation of 10
runs, each of them comprising 50 randomly generated initial states.

TABLE II
EXAMPLE PLANS FOR THE STACKING AND POURING TASKS.

Stacking Pouring
pk top whiteB blueB (pick2place) pk bottom redC bottle (pick2place)
pl top whiteB tabler (placeon) pl bottom redC tablel (placeon)
pk top blueB greenB (pick2place) pk top whiteC tablem (pick2rotate)
pl top blueB tablel (placeon) pl top whiteC tablem (placerotated)
pk top greenB tablem (pick2place) pk side bottle tabler (pick2pour)
pl top greenB blueB (placeon) pour water whiteC bottle (pour)
pk top whiteB tabler (pick2place) pl side bottle tabler (placeon)
pl top whiteB tablem (placeon) pk bottom redC tablel (pick2place)
pk top greenB blueB (pick2place) pl bottom redC bottle (placeon)
pl top greenB whiteB (placeon)
pk top blueB tablel (pick2place)
pl top blueB greenB (placeon)

executed segment by segment as discussed in Sec. III-C.
If the query returns an empty schema (the schema has
not been generated so far), the learning from demonstra-
tion mechanism described in Sec. III-B is triggered. After
demonstration, the learned schema with associated motion
primitives is stored in the database and the task execution
continues from the next AC. This interactive learning and
execution mechanism allows us to reuse existing schemata
in different tasks and to incrementally add new schemata
when needed for the task execution.

Computation time and scalability: To assess the scalability
of our approach to different complexity problems, we present
in Fig. 7 the computation time for different plan lengths
corresponding to all the plans generated in the experiments
of Fig. 3 and 4. We can see that the most demanding
planning problem, comprising 17 steps and corresponding to
the pouring task (red crosses), does not exceed a computation
time of 10ms. It is worth noticing that we have similar
computation times when planning with single actions. The
schema is a reactive system that generates and eventually
re-plan the motion trajectory at each time step. However, to
provide a reference of the computation effort required for
grounding a plan action, we measure the total computation
time for grounding an AC into a schema. Grounding the AC
into a schema requires to: query the schema from a database
(≈ 5.7ms independently of the schema), traverse the schema
tree to determine the motion primitive to execute (≈ 10ms
independently of the schema) , load the motion primitive,
determine the goal pose from the current object pose, and
generate the entire robot trajectory (≈ 10.6ms with DMP,
≈ 5.1ms with a linear dynamical system).
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for the stacking (blue) and pouring (red) tasks.
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Fig. 5. Snapshots of the executions of the box stacking and the pouring
tasks for the plans presented in Table II.
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Fig. 7. Computation time for the plans generated in the experiments of
Fig. 3 and 4 for the stacking (blue) and pouring (red) tasks.

Single actions vs. action contexts: To assess the validity
of our framework to select feasible motions compatible with
consecutive actions in the plan, we perform another set of
real-robot experiments where the schema to be executed is
selected only depending on the current action in the plan,
without considering what action was executed before and
what action comes next. We refer to these experiments as
Single Action (SA) experiments. The results of the SA
experiments are contrasted with those obtained using action
contexts (ACs). The experiments comprises 30 consecutive
pouring tasks with random initial configuration of objects.

TABLE III
RESULTS FOR THE POURING TASK USING SINGLE ACTIONS (SA) AND

ACTION CONTEXTS (AC).

Planning Total Total Success
Approach Demos Failures Rate

SA 25 15 0.5
AC 66 0 1

The results are presented in Table III. We compute the total
number of failed executions and the rate of successful plans,
i.e. presenting no execution failures. The SA approach pro-
duced 15 execution failures (see Fig. 8 for a failure example),
where 50% of the total plans were completed without failure.
The approach using ACs, in contrast, was able to execute all
the randomly generated tasks successfully, with no execution
failures, i.e. 100% success rate. As expected, the total
number of requested demonstration was higher in the AC
approach (66 requests) compared to the SA approach (25
requests). The AC (with three actions) yields more possible
combinations, which requires more human demonstrations
than the SA with a single action. However, the difference is
lower than an order of magnitude, and the number of requests
in both cases represent a small percentage of the total number
of actions executed or demonstrated in the 30 plans (350
actions). To provide a failure example in the SA case, Fig.
8 shows two example scenarios for the pouring task that
are presented sequentially to the robot. In scenario A (Fig.
8a), the system starts with no schema in the database and
requests demonstrations. After the demonstration, successful
executions were carried out using both the SA and AC
approaches. When the system is presented with scenario B
(Fig. 8b-c) the SA approach used the already learned action
for picking a bottle but fails in its execution, hitting the bottle
before grasping it (Fig. 8b). This is because the SA approach
is not able to identify the different motion dependencies
between the picking of the bottle and the previous and
posterior actions in scenario A and B. In contrast, the AC
approach successfully considers these motion dependencies
by defining the motion parameters for picking the bottle
according to what action was executed before and what
action comes next (Fig. 8c).

External perturbations: This test shows how the action
execution monitoring can be exploited to cope with external
perturbations. As a proof of concept, in Fig. 9 we show a
local perturbation in the task execution. While the robot is
approaching the red cup, this is moved away from its current
position (middle of Fig. 9). The monitoring system detects
this occurrence and the updated object pose is then used to
adapt the execution of the next segment without the need
of call of the task planner. Although preliminary, this result
shows an interesting feature of our system.

V. CONCLUSIONS AND FUTURE WORK

We presented a TAMP approach that efficiently generates
feasible motions for the execution of manipulation tasks.
Task planning is based on an object-centered description of
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Fig. 8. Snapshots of two example scenarios for the pouring task. (a) Both
AC and SA generate feasible plans. (b)–(c) In the same situation, the plan
generated with SA is unfeasible (b) while AC generates a feasible plan (c).

External perturbation

Fig. 9. Snapshots of the schema execution under an external perturbation
for the AC place side bottle tabler - pick bottom
redC tablel - place bottom redC bottle. The reach-
ing motion is adapted on-line without calling the planner.

geometric relations able to consistently represent changes
with actions in the objects configuration space. This per-
mits reasoning about feasible geometric changes already at
the task planning level. For plan execution, we devise an
approach that considers dependencies between consecutive
actions in a plan to generate feasible motions. The approach
is based on a new structure called Action Context, that
associates symbolic actions to grounding mechanisms de-
pending on the context of an action in a plan: what action
comes next and what action was executed before. Motion
parameters are stored in the leaves of a tree-based hier-
archical decomposition of symbolic actions that is learned
from demonstration. Our framework provides an appealing
low-complexity alternative to existing TAMP approaches.
However, it is only able to consider motion dependencies
between consecutive actions, which may produce planning
impasses in applications with longer horizon dependencies.
On the other hand, action contexts use a symbolic represen-
tation to select motion parameters, hindering generalization
over objects requiring the same manipulations but having
different labels. Future work will address these limitations
and extend the strategies to handle disturbances using the
proposed framework.
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