
3D-MiniNet: Learning a 2D Representation from Point Clouds
for Fast and Efficient 3D LIDAR Semantic Segmentation

Iñigo Alonso1, Luis Riazuelo1, Luis Montesano1,2, and Ana C. Murillo1

Abstract— LIDAR semantic segmentation is an essential task
that provides 3D semantic information about the environment
to robots. Fast and efficient semantic segmentation methods
are needed to match the strong computational and temporal
restrictions of many real-world robotic applications. This work
presents 3D-MiniNet, a novel approach for LIDAR semantic
segmentation that combines 3D and 2D learning layers. It first
learns a 2D representation from the raw points through a
novel projection which extracts local and global information
from the 3D data. This representation is fed to an efficient 2D
Fully Convolutional Neural Network (FCNN) that produces a
2D semantic segmentation. These 2D semantic labels are re-
projected back to the 3D space and enhanced through a post-
processing module. The main novelty in our strategy relies on
the projection learning module. Our detailed ablation study
shows how each component contributes to the final performance
of 3D-MiniNet. We validate our approach on well known
public benchmarks (SemanticKITTI and KITTI), where 3D-
MiniNet gets state-of-the-art results while being faster and more
parameter-efficient than previous methods.

I. INTRODUCTION

Autonomous robotic systems use sensors to perceive the
world around them. RGB cameras and LIDAR are very
common due to the essential data they provide. One of
the key building blocks of autonomous robots is semantic
segmentation. Semantic segmentation assigns a class label to
each LIDAR point or camera pixel. This detailed semantic
information is essential for decision making in real-world
dynamic scenarios. LIDAR semantic segmentation provides
very useful information to autonomous robots when perform-
ing tasks such as Simultaneous Localization And Mapping
(SLAM) [1], [2], autonomous driving [3] or inventory tasks
[4], especially for identifying dynamic objects. In these
scenarios, it is critical to have models that provide accurate
semantic information in a fast and efficient manner, which is
particularly challenging working with 3D LIDAR data. On
one hand, the commonly called point-based approaches [5]–
[7] tackle this problem directly executing 3D point-based
operations, which is computationally expensive to operate
at high frame rates. On the other hand, approaches that
project the 3D information into a 2D image (projection-
based approaches) are more efficient [3], [8]–[11] but do not
exploit the raw 3D information. Recent results on fast [3] and
parameter-efficient [12] semantic segmentation models are
facilitating the adoption of semantic segmentation in real-
world robotic applications [13], [14].

1 RoPeRt group, at DIIS - I3A, Universidad de Zaragoza, Spain.
{inigo, riazuelo, montesano, acm}@unizar.es

2 Bitbrain, Zaragoza, Spain

Fig. 1. 3D LIDAR semantic segmentation accuracy vs speed on Se-
manticKITTI test set [14]. Green circles depict point-based methods and red
squares are projection-based methods. Area of these shapes is proportional
to the method number of parameters. The proposed 3D-MiniNet outperforms
previous methods with less parameters and faster execution.

This work presents a novel fast and parameter-efficient
approach for 3D LIDAR semantic segmentation that con-
sists of three modules (as detailed in Sec. III). The main
contribution relies on our 3D-MiniNet module. 3D-MiniNet
runs the following two steps: (1) It learns a 2D representation
from the 3D point cloud (following previous works on 3D
object detection [15]–[17]); (2) It computes the segmentation
through a fast 2D fully convolutional neural network.

Our best configuration achieves state-of-the-art results in
well known public benchmarks (SemanticKITTI [14] and
KITTI dataset [18]) while being faster and more parameter
efficient that prior work. Figure 1 shows how 3D-MiniNet
achieves better precision-speed trade-off than previous meth-
ods. The main novelties with respect to existing approaches,
that facilitate these improvements, are:

• An extension of MiniNet-v2 for 3D LIDAR semantic
segmentation: 3D-MiniNet.

• Our novel projection module.
• A validation of 3D-MiniNet on the SemanticKITTI

benchmark [14] and KITTI dataset [18].
The proposed projection module learns a rich 2D rep-

resentation through different operations. It consists of four
submodules: a context feature extractor, a local feature
extractor, a spatial feature extractor and the feature fusion.
We provide a detailed ablation study on this module showing
how each proposed components contributes to improve the
final performance of 3D-MiniNet. Besides, we implemented
a fast version of the point neighbor search based on a sliding-
window on the spherical projection [19] in order to compute
it at an acceptable frame-rate. All the code and trained
models are available online 1.

1https://sites.google.com/a/unizar.es/
semanticseg/

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE

II. RELATED WORK

A. 2D Semantic Segmentation

Current 2D semantic segmentation state-of-the-art meth-
ods are deep learning solutions [20]–[23]. Semantic seg-
mentation architectures are evolved from convolutional neu-
ral networks (CNNs) architectures for classification tasks,
adding a decoder on top of the CNN. Fully Convolutional
Neural Networks for Semantic Segmentation (FCNN) [23]
carved the path for modern semantic segmentation archi-
tectures. The authors of this work propose to upsample
the learned features of classification CNNs using bilinear
interpolation up to the input resolution and compute the
cross-entropy loss per pixel. Another of the early approaches,
SegNet [24], proposes a symmetric encoder-decoder struc-
ture using the unpooling operation as upsampling layer.
More recent works improve these earlier segmentation ar-
chitectures by adding novel operations or modules proposed
initially within CNNs architectures for classification tasks.
FC-DenseNet [22] follows DenseNet work [25] using dense
modules. PSPNet [26] uses ResNet [27] as its encoder and
introduces the Pyramid Pooling Module incorporated at the
end of the CNN allowing to learn effective global contextual
priors. Deeplab-v3+ [20] is one of the top-performing archi-
tectures for segmentation. Its encoder is based on Xception
[28], which makes use of depthwise separable convolutions
[29] and atrous (dilated) convolutions [30].

With respect to efficiency, ENet [31] set up certain basis
which following works, such as ERFNet [32], ICNet [33],
have built upon. The main idea is to work at low resolutions,
i.e., quick downsampling, and to focus the computation on
the encoder having a very light decoder. MiniNetV2 [34]
uses a multi-dilation depthwise separable convolution, which
efficiently learns both local and global spatial relationships.
In this work, we take MiniNetV2 as our backbone and adapt
it to capture information from raw LIDAR points.

B. 3D Semantic Segmentation

There are three main groups of strategies to approach
this problem: point-based methods, 3D representations and
projection-based methods.

1) Point-based Methods: Point-based methods work di-
rectly on raw point clouds. The order-less structure of the
point clouds prevents standard CNNs to work on this data.
The pioneer approach and base of the following point-
based works is PointNet [6]. PointNet proposes to learn per-
point features through shared MLP (multi-layer perceptron)
followed by symmetrical pooling functions to be able to work
on unordered data. Lots of works have been later proposed
based on PointNet. Following with the point-wise MLP idea,
PoinNet++ [5] groups points in an hierarchical manner and
learns from larger local regions. The authors also propose
a multi-scale grouping for coping with the non-uniformity
nature of the data. In contrast, other approaches propose
different types of operations following the convolution idea.
Hua et al. [35] propose to bin neighboring points into kernel
cells for being able to perform point-wise convolutions.

Other works resort to graph networks to capture the under-
lying geometric structure of the point cloud. Loic et al. [36]
use a directed graph to capture the structure and context
information. For this, the authors represent the point cloud
as a set of interconnected superpoints.

2) 3D representations: There are different kinds of rep-
resentations of the raw point cloud data which have been
used for 3D semantic segmentation. SegCloud [37] makes
use of a volumetric or voxel representation, which is a
very common way for encoding and discretizing the 3D
space. This approach feeds the 3D voxels into a 3D-FCNN
[23]. Then, the authors introduce a deterministic trilinear
interpolation to map the coarse voxel predictions back to
the original point cloud and apply a CRF as a final step. The
main drawback of this voxel representation is that 3D-FCNN
has very slow execution times for real-time applications. Su
et al. [38] proposed SPLATNet, making use of another type
of representation: Permutohedral Lattice representation. This
approach interpolates the 3D point cloud to a permutohedral
sparse lattice and then bilateral convolutional layers are
applied to convolve on occupied parts of the representation.
LatticeNet [39] was later proposed improving SPLATNet
proposing its DeformSlice module for re-projecting the lat-
tice feature back to the point cloud.

3) Projection-based Methods: This type of approaches
rely on projections of the 3D data into a 2D space. For
example, TangentConv [7] proposes to project the neighbor-
ing points into a common tangent plane where they perform
convolutions. Another type of projection-based method is the
spherical representation. This strategy consists of projecting
the 3D points into a spherical projection and has been widely
used for LIDAR semantic segmentation. This representation
is a 2D projection that allows the application of 2D images
operations, which are very fast and work very well on recog-
nition tasks. SqueezeSeg [9] and its posterior improvement
SqueezeSegV2 [8], based on SqueezeNet architecture [40],
show that very efficient semantic segmentation can be done
through this projection. The more recent work from Milioto
et al. [3] combines the DarkNet architecture [41] with a
GPU based post-processing method for real-time semantic
segmentation.

Projection-based approaches tend to be faster than other
representations, but they lose the potential of learning 3D
features. LuNet [42] is a recent work which proposes to learn
local features using point-based operations before projecting
into the 2D space. Our novel projection module tackles with
this issue by including a context feature extractor based on
point-based operations. Besides, we build a faster and more
parameter-efficient architecture and a faster implementation
of LuNet’s neighbor search method.

III. 3D-MININET: LIDAR POINT CLOUD SEGMENTATION

Our novel approach for LIDAR semantic segmentation is
summarized in Fig. 2. It consists of three modules: (A) fast
3D point neighbor search, (B) 3D-MiniNet, which takes P
groups of N points and outputs the segmented point cloud

Fig. 2. Proposed approach overview. The M points from the input point
cloud (with C1 features) are split into P groups of N points with our fast 3D
point neighbor search. Each point has a C1 feature vector, which is extended
to C2 in this process with data relative to each group. The proposed 3D-
MiniNet takes the point groups and predicts one semantic label per point.
A post-processing method [3] is used to refine the final results.

and, (C) the KNN-based post-processing which refines the
final segmentation.

There are two main issues that typically prevent point-
based models to run at an acceptable frame-rate compared
to projection-based methods: 3D point neighbor search is a
required, but slow, operation and performing 3D operations
is slower than using 2D convolutions. In order to alleviate
these two issues, our approach includes a fast point neighbor
search proxy (subsection III-A), and a module to minimize
expensive point-based operations, which takes raw 3D points
and outputs a 2D representation to be processed with a 2D
CNN (subsection III-B.1).

A. Fast 3D Point Neighbor Search

We need to find the 3D neighbors because we want to learn
features that encode the relationship of each point with their
neighbors in order to learn information about the shape of the
point-cloud. In order to perform the 3D neighbor search more
efficiently, we first project the point cloud into a spherical
projection of shape W×H , mapping every 3D point (x, y, z)
into a 2D coordinate (u, v), i.e., R3 −→ R2:(

u
v

)
=

(
1
2

[
1− arctan(y, x)π−1

]
W[

1−
(
arcsin

(
zr−1

)
+ fup

)
f−1
]
H

)
, (1)

where f = fup + fdown is the vertical field-of-view of
the sensor and r is the depth of each point. We per-
form the projection of Eq. 1 following [3], where each
pixel encodes one 3D point with five features: C1 =
{x, y, z, depth, remission}.

We perform the point neighbor search in the spherical
projection space using a sliding-window approach. Similarly
to a convolutional layer, we get groups of pixels, i.e.,
projected points, by sliding a k×k window across the image.
The generated groups of points have no intersection, i.e.,
each point belongs only to one group. This step generates P

point groups of N points each (N = k2), where all points
from the spherical projection are used (P ×N =W ×H).

Before feeding the actual segmentation module, 3D-
MiniNet, with these point groups, the features of each point
are augmented. For each group we compute the relative
(r) feature values for each point. They are computed with
respect to the group mean for each C1 feature (similar to
previous works which compute features relative to a center
point [12], [19]). Besides, similar to [43], we compute the
3D euclidean distance of each point to the mean point.
Therefore, each point has now eleven features: C2 =
{x, xr, y, yr, z, zr, depth, depthr, remission, remissionr,
dEuc}.

B. 3D-MiniNet

3D-MiniNet consists of two modules, as represented in
Fig. 3: the proposed projection module, which takes the
raw point cloud and computes a 2D representation, and
our efficient backbone network based on MiniNetV2 [34]
to compute the semantic segmentation.

1) Projection Learning Module: The goal of this module
is to transform raw 3D points to a 2D representation that can
be used for efficient segmentation. The input of this module
if the output of the point neighbor search described in the
previous subsection. It is a set of P groups, where each group
contains N points with C2 features each, gathered through
the sliding-window search on the spherical projection as
explained in the previous subsection.

The following three kinds of features are extracted from
the input data (see left part of Fig. 3 for a visual description
of this proposed module) and fused in the final module step:

Local Feature Extractor: The first feature is a PointNet-
like local feature extraction (see projection learning module
(a) of Fig. 3). It runs four linear layers shared across the
groups followed by a BatchNorm [44] and LeakyRelu [45].
We follow PointPillars [15] implementation of these shared
linear layers using 1 × 1 convolutions across the tensor
resulting in very efficient computation when handling lots
of point groups.

Context Feature Extractor: The second feature extrac-
tion (projection learning module (b) of Fig. 3) learns context
information from the points.This is a very important module
because although context information can be learned through
the posterior CNN, point-based operations learn different
features than convolutions. Therefore, this module helps
learning a richer representation with information than might
not be learned through the CNN.

The input of this context feature extractor is the output
of the second linear layer of the local feature extractor
(giving the last linear layer as input would drop significantly
the frame-rate due to the high number of features). This
tensor is maxpooled (in order to complete the PointNet-
like operation which work on unordered points) and then,
our fast neighbor search is run to get point groups. In this
case, three different groupings (using our point neighbor
search) are performed with a 3 × 3 sliding window with
different dilation rates of 1, 2, 3 respectively. Dilation rates,

Fig. 3. 3D-MiniNet overview. It takes P groups of N points each and computes semantic segmentation of the M points of the point cloud where
P ×N = M . It consists of two main modules: our proposed learning module (on the left) which learns a 2D tensor which is fed to the second module,
an efficient FCNN backbone (on the right) which computes the 2D semantic segmentation. Each 3D point of the point cloud is given a semantic label
based on the 2D segmentation. Best viewed in color.

as in convolutional kernels [30], keep the number of grouped
points low while increasing the receptive field allowing a
faster context learning. We use zero-padding and a stride of 1
for keeping the same size. After every grouping we perform
a linear, BatchNorm and LeakyRelu. The outputs of these
two feature extractor modules are concatenated and applied
a maxpool operation over the N dimension. This maxpool
operation keeps the feature with higher response along the
neighbor dimension, being order-invariant with respect to the
neighbor dimension. The maxpool operation also makes the
learning robust to pixels with no point information (spherical
projection coordinates with no point projected).

Spatial Feature Extractor: The last feature extraction
operation is a convolutional layer of kernel 1×N (projection
learning module (c) of Fig. 3). Convolutions can extract
features of each point with respect to the neighbors when
there is an underlying spatial structure which is the case, as
the point groups are extracted from a 2D spherical projection.
In the experiment section, we take this feature extractor
as our baseline without the two others which is equivalent
of performing only standard convolutions on the spherical
projection.

Feature Fusion: Lastly, a feature fusion with self-
attention module is applied. It learns to reduce the feature
space into an specified number of features, learning which
features are more important. It consists of three stages: (1)
concatenation of the feature extraction outputs reshaping the
resulting tensor to (W/4 × H/4 × C7), (2) a self-attention
operation which multiplies the reshaped tensor by the output
of a pooling, 1× 1 convolution and sigmoid function which
has the same concatenated tensor as its input and, (3) a 1×1
convolutional layer followed by a BatchNorm and LeakyRelu
which acts as a bottleneck limiting the output to C6 features.

All implementation details, such as the number of features
of each layer, are specified in Sect. IV. The experiments
in Sect. V show how each part of this learning module
contributes to improve 3D-MiniNet’s performance.

2) 2D Segmentation Module (MiniNet Backbone): Once
the previous module has computed a W/4 × H/4 × C6

tensor, the 2D semantic segmentation is obtained running an
efficient CNN (see MiniNet backbone in Fig. 3 for a visual
description). Our module uses a FCNN instead of performing
more MLP operations because convolutional layers have
lower inference time when working on high dimensional
spaces. Our FCNN is based on MiniNetV2 architecture [34].
Our encoder performs L1 depthwise separable convolutions
and L2 multi-dilation depthwise separable convolutions. For
the decoder, we use bilinear interpolations as upsampling
layers. It performs L3 depthwise separable convolutions at
W/4 × H/4 resolution and L4 at W/2 × H/2 resolution.
Finally, a convolution is performed at W ×H resolution to
get the 2D semantic segmentation prediction.

Similarly to MiniNetV2, we also include a second convo-
lutional branch to extract fine-grained information, i.e., high-
resolution low-level features. The input of this second branch
is the spherical projection. The number of layers and features
at each layer is specified in Sect. IV-B.

As a final step, the predicted 2D semantic segmentation
labels are re-projected back into the 3D space (R2 −→ R3).
For the points projected into the spherical representation,
this reprojection is a straightforward step, as it just implies
assigning the semantic label predicted in the spherical pro-
jection. Nevertheless, the points that had not been projected
into the spherical projection (one 2D coordinate can have
more than one 3D point) have no semantic label. For these
points, the semantic label of its corresponding 2D coordinate
is assigned. As this issue may lead to miss-predictions, a
post-processing method is performed to refine the results.

C. Post-Processing

In order to cope with the miss-predictions of non-projected
3D points, we follow Milioto et al. [3] post-processing
method. All 3D points get a new semantic label based on K
Nearest Neighbors (KNN). The criteria for selecting the K
nearest points is not based on the relative euclidean distances

but on relative depth values. Besides, the search is narrowed
down based on 2D spherical coordinate distances. Milioto et
al. implementation is GPU-based and is able to run in 7ms
keeping the frame-rate high.

IV. EXPERIMENTAL SETUP

This section details the setup used in our experimental
evaluation.

A. Datasets

SemanticKITTI Benchmark: The SemanticKITTI
dataset [14] is a recent large-scale dataset that provides
dense point-wise annotations for the entire KITTI Odometry
Benchmark [18]. The dataset consists of over 43000 scans
from which over 21000 are available for training (sequences
00 to 10) and the rest (sequences 11 to 21) are used as test
set. The dataset distinguishes 22 different semantic classes
from which 19 classes are evaluated on the test set via the
official online platform of the benchmark. As this is the
current most relevant and largest dataset of single-scan 3D
LIDAR semantic segmentation, we perform our ablation
study and our more thorough evaluation on this dataset.

KITTI Benchmark: SqueezeSeg [9] work provided se-
mantic segmentation labels exported from the 3D object
detection challenge of the KITTI dataset [18]. It is a medium-
size dataset split into 8057 training scans and 2791 validation
scans.

B. Settings

a) 3D Point Neighbor Search Parameters: We set the
resolution of the spherical projection to 2048 × 64 for the
SemanticKITTI dataset and 512 × 64 for the KITTI (same
resolution than previous works to be able to make fair
comparisons). We set a 4 × 4 window size with a stride
of 4 and no zero-padding for our fast point neighbor search
leading to 8192 groups of 3D points for the SemanticKITTI
data and 2048 groups for the KITTI data. Our projection
module is fed with these groups and generates a learned
representation of resolution 512×16 for the SemanticKITTI
configuration and 128× 16 for the KITTI.

b) Network Parameters: The full architecture and all its
parameters are described in Fig. 3. We considered three dif-
ferent configurations for evaluating the proposed approach:
3D-MiniNet, 3D-MiniNet-small, 3D-MiniNet-tiny. The num-
ber of features (C3, C4, C5, C6) for the projection module of
the different 3D-MiniNet configurations are (24, 48, 96, 192)
features for 3D-MiniNet, (16, 32, 64, 128) for 3D-MiniNet-
small and (12, 24, 48, 96) for 3D-MiniNet-tiny. The number
of layers (L1, L2, L3, L4) of the FCNN backbone network
are (50, 30, 4, 2) features for 3D-MiniNet, (24, 20, 2, 1) for
3D-MiniNet-saml and (14, 10, 2, 1) for 3D-MiniNet-tiny. Nc

is the number of semantic classes of the dataset.
c) Post-processing Parameters: For the K Nearest

Neigbors post-process method [3], we set as 7 × 7 the
windows size of the neighbor search on the 2D segmentation
and we set K to 7.

TABLE I
ABLATION STUDY OF THE DIFFERENT PARTS OF THE PROJECTION

MODULE EVALUATED ON THE TEST SET OF SEMANTIKITTI.

Data Local Context Relative Params
Method Aug. Conv MLP Attention MLP features mIoU FPS (M)

X 44.4 73 0.93
X X 47.6 73 0.93
X X 48.7 69 0.93

3D-MiniNet X X X 49.5 66 0.96
Small X X X X 49.9 65 1.08

X X X X X 51.2 61 1.13
X X X X X X 51.8 61 1.13

d) Training protocol: We train the different 3D-
MiniNet configurations for 500 epochs with batch size of 3, 6
and 8 for 3D-MiniNet, 3D-MiniNet-small, and 3D-MiniNet-
tiny respectively (different due to memory constraints). We
use Stochastic Gradient Descent (SGD) optimizer with an
initial learning rate of 4 · 10−3 and a decay of 0.99 every
epoch. For the optimization, we use the cross-entropy loss
function, see eq. 2.

L = − 1

M

M∑
m=1

C∑
c=1

(
ft
fc

)iyc,m ln(ŷc,m), (2)

where M is the number of labeled points and C is the number
of classes. Yc,m is a binary indicator (0 or 1) of point m
belonging to a certain class c and ŷc,m is the CNN predicted
probability of point m belonging to a certain class c. This
probability is calculated by applying the soft-max function
to the networks’ output. To account for class imbalance,
we use the median frequency class balancing, as applied
in SegNet [24]. To smooth the resulting class weights, we
propose to apply a power operation, wc = (ftfc)

i, with fc
being the frequency of class c and ft the median of all
frequencies. We set i to 0.25.

e) Data augmentation: During the training, we ran-
domly rotate and shift the whole 3D point cloud. We ran-
domly invert the sign for X and Z values for all the point
cloud. We also drop some points. The rotation angle is a
Gaussian distribution with mean 0 and standard deviation
(std) of 40º. The shifts we perform are Gaussian distributions
with mean 0 and std of 0.35, 0.35 and 0.01 (meters) for the
X, Y, Z axis (being Z the height). The percentage of dropped
points is a uniform distribution between 0 and 10.

V. RESULTS

A. Ablation Study of the Projection Module

The projection module is the main novelty from our
approach. This subsection shows how each part helps to
improve the learned representation. For this experiment, we
use 3D-MiniNet-small configuration.

Table I shows the ablation study of our proposed module,
measuring the mIoU, speed and learning parameters needed
with each configuration. The first row and baseline is work-
ing on the spherical projection using a convolution as the
projection method, i.e., just a downsampling in that case.

As the projection used is neither rotation nor shift invari-
ant, performing this data augmentation helps to our network
generalization as first row shows. Second row shows the

TABLE II
RESULTS ON SINGLE-SCAN TEST SET IN SEMANTICKITTI [14]. POINT-BASED METHODS: ROWS 1-4. 3D REPRESENTATIONS: ROW 5.

PROJECTION-BASED METHODS: ROWS 6-11.

Methods Size m
Io

U

Fr
am

e-
ra

te
(F

PS
)

Pa
ra

m
s(

M
)

ro
ad

Io
U

si
de

w
al

k
Io

U

pa
rk

in
g

Io
U

ot
he

r-
gr

ou
nd

Io
U

bu
ild

in
g

Io
U

ca
r

Io
U

tr
uc

k
Io

U

bi
cy

cl
e

Io
U

m
ot

or
cy

cl
e

Io
U

ot
he

r-
ve

hi
cl

e
Io

U

ve
ge

ta
tio

n
Io

U

tr
un

k
Io

U

te
rr

ai
n

Io
U

pe
rs

on
Io

U

bi
cy

cl
is

t
Io

U

m
ot

or
cy

cl
is

t
Io

U

fe
nc

e
Io

U

po
le

Io
U

tr
af

fic
-s

ig
n

Io
U

PointNet [6]

50K pts

14.6 2 3 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SPG [36] 17.4 0.2 0.25 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8

PointNet++ [5] 20.1 0.1 6 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
RandLA-Net [46] 53.9 22 1.24 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7

SPLATNet [38] 50K pts 18.4 1 0.8 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0

SqueezeSeg [9]

64x2048 px

29.5 90 1 85.4 54.3 26.9 4.5 57.4 68.8 3.3 16.0 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.0 17.5 24.5
DBLiDARNet [11] 37.6 — 2.8 85.8 59.3 8.7 1.0 78.6 81.5 6.6 29.4 19.6 6.5 77.1 46.0 58.1 23.7 20.1 2.4 39.6 32.6 39.1
SqueezeSegV2 [8] 39.7 83 1 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3

TangentConv [7] 40.9 0.3 0.4 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
RangeNet21 [3] 47.4 25 25 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3 36.0 50.0
RangeNet53 [3] 49.9 13 50 91.7 74.0 65.1 28.2 82.9 85.3 25.8 22.7 33.6 22.2 77.3 50.0 64.6 36.8 31.4 4.7 54.8 39.1 52.3

RangeNet53-KNN [3] 52.2 12 50 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9

3D-MiniNet-tiny (Ours) 46.9 98 0.44 90.7 70.7 59.4 20.0 83.4 82.0 19.0 29.3 25.4 20.8 77.9 50.6 60.8 35.1 32.3 3.2 51.0 32.7 46.7
3D-MiniNet-small (Ours)

64x2048 px

51.8 61 1.13 91.5 72.3 61.7 25.1 83.9 83.4 25.4 35.6 25.4 25.1 80.3 53.9 64.3 43.4 42.3 20.7 53.0 36.4 50.3
3D-MiniNet (Ours) 53.0 36 3.97 91.6 74.0 64.1 25.9 85.8 85.2 28.3 37.9 39.3 28.8 80.3 54.5 65.9 43.8 40.3 14.4 57.0 37.9 51.5

3D-MiniNet-tiny-KNN (Ours) 49.0 55 0.44 90.7 71.0 59.5 19.7 86.4 86.6 19.2 31.6 27.8 21.3 80.0 55.4 61.4 38.1 35.0 3.0 53.7 40.5 51.0
3D-MiniNet-small-KNN (Ours) 54.4 40 1.13 91.5 72.7 61.8 24.6 87.1 88.1 25.6 39.3 38.0 25.6 82.5 59.7 65.0 47.2 46.2 22.4 56.1 45.8 54.9

3D-MiniNet-KNN (Ours) 55.8 28 3.97 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6
Scans per second have been measured using a Nvidia gtx 2080ti
— Not reported by the authors.

performance using only 1×N convolutions in the learning
layers with the 5-channel input (C1) used in RangeNet
[3] which we establish as our baseline, i.e, our spatial
feature extractor. The third row shows the performance if
we replace the 1×N convolution for point-based operations,
i.e, our local feature extractor. These results point that MLP
operations work better for 3D points but take more execution
time. The fourth row combines both the convolution and
local MLP operation. Combining convolutions and MLP
operations increases performance due to the different type
of features learned by each type of operation as explained in
Sect. III-B.1.

The attention module also increases the performance with
almost no extra computational effort. It reduces the feature
space into a specified number of features, learning which
features are more important. The sixth row shows the results
adding our context feature extractor. Context is also learned
later through the FCNN via convolutions but here, the
context feature extractor learns different context through with
MLP operations. Context information is often very useful in
semantic tasks, e.g., for distinguishing between a bicyclist,
a cyclist and a motorcyclist. This context information gives
a boost higher than the other feature extractors showing its
relevance. Finally, increasing the number of features of each
point with features relative to the point group (C2) also leads
to better performance without decreasing the frame-rate and
without adding any learning parameter.

B. Benchmarks results

This subsection presents quantitative and qualitative re-
sults of 3D-MiniNet and comparisons with other relevant
works.

a) Quantitative Analysis: Table II compares our
method with several point-based approaches (rows 1-4),
3D representation methods (row 5) and projection-based
approaches (rows 6-11) measuring the mIoU, the processing

TABLE III
RESULTS ON KITTI [18] VALIDATION SET.

Methods Size m
Io

U

Fr
am

e-
ra

te
(f

ps
)

Pa
ra

m
s(

M
)

ca
r

Io
U

pe
de

st
ri

an
Io

U

cy
cl

is
t

Io
U

SqueezeSeg [9]

64x512 px

37.2 227 1 64.6 21.8 25.1
PointSeg [10] 39.7 160 — 67.4 19.2 32.7

SqueezeSegv2 [8] 44.9 143 1 73.2 27.8 33.6
LuNet [19] 55.4 67* 23.4 72.7 46.9 46.5

DBLiDARNet [11] 56.0 — 2.8 75.1 47.4 45.4

3D-MiniNet-tiny (Ours) 45.5 245 0.44 69.6 37.5 29.5
3D-MiniNet-small (Ours) 64x512 px 50.6 161 1.13 74.4 40.7 36.7

3D-MiniNet (Ours) 58.0 92 3.97 75.5 49.6 48.9
Scans per second have been measured using a Nvidia gtx 2080ti
* Offline neighboring point search is not taken into account.
— Not reported by the authors.

speed (FPS) and the number of parameters required by each
method. As we can see, point-based methods for semantic
segmentation of LIDAR scans tend to be slower than projec-
tion ones without providing better performance. As LIDAR
sensors such as Velodyne usually work at 5-20 FPS, only
RandLA-Net and projection-based approaches are currently
able to process in real time the full amount of data made
available by the sensor.

Looking at the different configurations of 3D-MiniNet,
it gets state-of-the-art using fewer parameters and being
faster (3D-MiniNet-small-KNN) beating both RandLANet
(point-based method), SPLATNet (3D representation) and
RangeNet53-KNN (projection-based). Besides, 3D-MiniNet-
KNN configuration is able to get even better performance
although it needs more parameters than RandLANet. If
efficiency can be traded off for performance, smaller versions
of Mininet also obtain better performance metrics at higher
frame-rates. 3D-MiniNet-tiny is able to run at 98 fps and,
with only a 9% drop in mIoU (46.9% compared to the 29%
of SqueezeSeg version that runs at 90 fps).

The post-processing method applied [3] shows its effec-

Fig. 4. 3D-MiniNet LIDAR semantic segmentation predictions on the SemanticKITTI benchmark (test sequence 11). LIDAR point cloud are on top
where color represents depth. Predictions are on bottom where color represents semantic classes: cars in blue, road in purple, vegetation in green, fence
in orange, building in yellow and traffic sign in red. For the full video sequence, go to https://www.youtube.com/watch?v=5ozNkgFQmSM. Best viewed
in color.

tiveness improving the results the same way it improved
RangeNet. This step is crucial to correctly process points that
were not included in the spherical projection, as discussed
in more detail in Sect. III.

The scans of the KITTI dataset [18] have a lower res-
olution (64x512) as we can see in the evaluation reported
in Table III. 3D-MiniNet also gets state-of-the-art perfor-
mance on LIDAR semantic segmentation on this dataset.
Our approach gets considerably better performance than
SqueezeSeg versions (+10-20 mIoU). 3D-MiniNet also gets
better performance than LuNet and DBLiDARNet which
were the previous best methods on this dataset.

Note that in this case, we did not evaluate the KNN post-
processing since this dataset only provides 2D labels.

The experiments show that projection-based methods are
more suitable for the LIDAR semantic segmentation with
a good speed-performance trade-off. Besides, better results
are obtained when including point-based operations to extract
both context and local information from the 3D raw points
into the 2D projection.

b) Qualitative Analysis: Fig. 4 shows a few examples
of 3D-MiniNet inference on test data. The supplementary
video includes inference results on a full sequence2. As test
ground-truth is not provided for the test set (evaluation is
performed externally on the online platform), we can only
show visual results with no label comparison.

Note the high quality results on our method in relevant
classes such as cars, as well as in challenging classes such
as traffic signs. In the supplementary video we can also
appreciate some of the 3D-MiniNet failure cases. As it could
be expected, the biggest difficulties happen distinguishing
between classes with similar geometric shapes and structures
like building and fences.

2https://www.youtube.com/watch?v=5ozNkgFQmSM

VI. CONCLUSIONS

In this work, we propose 3D-MiniNet, a fast and efficient
approach for 3D LIDAR semantic segmentation. 3D-MiniNet
projects the 3D point cloud into a 2-Dimensional space and
then learns the semantic segmentation using a fully convolu-
tional neural network. Differently from common projection-
based approaches that perform a predefined projection, 3D-
MiniNet learns this projection from the raw 3D points,
learning both local and context information from point-based
operations, showing very promising and effective results.
Our ablation study shows how each part of the proposed
approach contributes to the learning of the representation.
We validate our approach on the SemanticKITTI and KITTI
public benchmarks. 3D-MiniNet gets state-of-the-art results
while being faster and more efficient than previous methods.

ACKNOWLEDGMENT

This project was partially funded by projects FEDER/
Ministerio de Ciencia, Innovación y Universidades/ Agen-
cia Estatal de Investigación/RTC-2017-6421-7, PGC2018-
098817-A-I00 and PID2019-105390RB-I00, Aragón regional
government (DGA T45 17R/FSE) and the Office of Naval
Research Global project ONRG-NICOP-N62909-19-1-2027.

REFERENCES

[1] R. Jian, W. Su, R. Li, S. Zhang, J. Wei, B. Li, and R. Huang,
“A semantic segmentation based lidar slam system towards dynamic
environments,” in International Conference on Intelligent Robotics and
Applications. Springer, 2019, pp. 582–590.

[2] Z. Zhao, W. Zhang, J. Gu, J. Yang, and K. Huang, “Lidar map-
ping optimization based on lightweight semantic segmentation,” IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 3, pp. 353–362, 2019.

[3] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++: Fast
and accurate lidar semantic segmentation,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019.

[4] S. W. Chen, G. V. Nardari, E. S. Lee, C. Qu, X. Liu, R. A. F. Romero,
and V. Kumar, “Sloam: Semantic lidar odometry and mapping for
forest inventory,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 612–619, 2020.

[5] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” in Advances
in neural information processing systems, 2017, pp. 5099–5108.

[6] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 652–660.

[7] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent con-
volutions for dense prediction in 3d,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[8] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “Squeezesegv2: Im-
proved model structure and unsupervised domain adaptation for road-
object segmentation from a lidar point cloud,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
4376–4382.

[9] B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3d lidar point cloud,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1887–1893.

[10] Y. Wang, T. Shi, P. Yun, L. Tai, and M. Liu, “Pointseg: Real-time
semantic segmentation based on 3d lidar point cloud,” arXiv preprint
arXiv:1807.06288, 2018.

[11] A. Dewan and W. Burgard, “Deeptemporalseg: Temporally con-
sistent semantic segmentation of 3d lidar scans,” arXiv preprint
arXiv:1906.06962, 2019.

[12] Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point
cloud convolutional neural networks using concentric shells statistics,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 1607–1616.

[13] X. Li, S. Du, G. Li, and H. Li, “Integrate point-cloud segmentation
with 3d lidar scan-matching for mobile robot localization and map-
ping,” Sensors, vol. 20, no. 1, p. 237, 2020.

[14] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “SemanticKITTI: A dataset for semantic scene under-
standing of lidar sequences,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019.

[15] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 697–12 705.

[16] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4490–4499.

[17] Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo,
J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for
3d object detection in lidar point clouds,” in Conference on Robot
Learning, 2020, pp. 923–932.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012.

[19] P. Biasutti, V. Lepetit, J.-F. Aujol, M. Brëdif, and A. Bugeau, “LU-Net:
An efficient network for 3d lidar point cloud semantic segmentation
based on end-to-end-learned 3d features and u-net,” in Proceedings of
the IEEE International Conference on Computer Vision Workshops,
2019.

[20] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” arXiv:1802.02611, 2018.

[21] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint
arXiv:1706.05587, 2017.

[22] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio,
“The one hundred layers tiramisu: Fully convolutional densenets for
semantic segmentation,” in CVPR Workshops. IEEE, 2017.

[23] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of IEEE Conference on
CVPR, 2015.

[24] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[25] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of IEEE CVPR,
2017.

[26] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Computer Vision and Pattern Recognition, 2017.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE CVPR, 2016, pp. 770–778.

[28] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” arXiv preprint, 2016.

[29] L. Sifre and S. Mallat, “Rigid-motion scattering for image classifica-
tion,” Ph.D. dissertation, Citeseer, 2014.

[30] F. Y. and V. K., “Multi-scale context aggregation by dilated convolu-
tions,” in International Conference on learning representations, 2016.

[31] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A
deep neural network architecture for real-time semantic segmentation,”
arXiv preprint arXiv:1606.02147, 2016.

[32] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation,”
IEEE Transactions on Intelligent Transportation Systems, 2018.

[33] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time
semantic segmentation on high-resolution images,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 405–
420.

[34] I. Alonso, L. Riazuelo, and A. C. Murillo, “Mininet: An efficient
semantic segmentation convnet for real-time robotic applications,”
IEEE Transactions on Robotics (T-RO), 2020.

[35] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional
neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 984–993.

[36] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
4558–4567.

[37] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, “Segcloud:
Semantic segmentation of 3d point clouds,” in 2017 International
Conference on 3D Vision (3DV). IEEE, 2017, pp. 537–547.

[38] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang,
and J. Kautz, “Splatnet: Sparse lattice networks for point cloud
processing,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2530–2539.

[39] R. A. Rosu, P. Schütt, J. Quenzel, and S. Behnke, “Latticenet: Fast
point cloud segmentation using permutohedral lattices,” arXiv preprint
arXiv:1912.05905, 2019.

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[41] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[42] P. Biasutti, V. Lepetit, J.-F. Aujol, M. Brédif, and A. Bugeau, “Lu-net:
An efficient network for 3d lidar point cloud semantic segmentation
based on end-to-end-learned 3d features and u-net,” in Proceedings of
the IEEE International Conference on Computer Vision Workshops,
2019, pp. 0–0.

[43] Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung, “Rotation
invariant convolutions for 3d point clouds deep learning,” in 2019
International Conference on 3D Vision (3DV). IEEE, 2019, pp. 204–
213.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[45] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings icml, vol. 30,
no. 1, 2013, p. 3.

[46] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 108–11 117.

