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Abstract— Extrinsic perturbation always exists in multiple
sensors. In this paper, we focus on the extrinsic uncertainty in
multi-LiDAR systems for 3D object detection. We first analyze
the influence of extrinsic perturbation on geometric tasks with
two basic examples. To minimize the detrimental effect of
extrinsic perturbation, we propagate an uncertainty prior on
each point of input point clouds, and use this information to
boost an approach for 3D geometric tasks. Then we extend our
findings to propose a multi-LiDAR 3D object detector called
MLOD. MLOD is a two-stage network where the multi-LiDAR
information is fused through various schemes in stage one,
and the extrinsic perturbation is handled in stage two. We
conduct extensive experiments on a real-world dataset, and
demonstrate both the accuracy and robustness improvement
of MLOD. The code, data and supplementary materials are
available at: https://ram-lab.com/file/site/mlod.

I. INTRODUCTION

3D object detection is a fundamental module in robotic
systems. As the front-end of a system, it enables vehicles to
recognize key objects such as cars and pedestrians, which
is indispensable for high-level decision making. Compared
with camera-based detectors, the LiDAR-based detectors
perform better in several challenging scenarios because of
their activeness as sensors and distance measurement ability
for surroundings. However, LiDARs commonly suffer from
data sparsity and a limited vertical field of view [1]. For
instance, LiDARs’ points distribute loosely, which induces a
mass of empty regions between two nearby scans. In this
paper, we consider a multi-LiDAR system, a setup with
excellent potential to solve 3D object detection. Compared
with single-LiDAR setups, multi-LiDAR systems enable a
vehicle to maximize its perceptual awareness of environ-
ments and obtain sufficient measurements. The decreasing
price of LiDARs also makes such systems accessible to many
modern self-driving cars [1]–[3].

However, two challenges affect the development of multi-
LiDAR object detection. One difficulty is multi-LiDAR fu-
sion. As described in [4], current data fusion methods all
have pros and cons. It requires us to perform extensive efforts
on possible fusion schemes in real tests for an excellent de-
tection algorithm. Another issue is that extrinsic perturbation
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(a) Multiple point clouds are merged with little extrinsic perturbation.

A B

(b) The details in the region A and B of the point cloud.

Fig. 1. (a) A point cloud example from the LYFT dataset [3]. It is merged
by transforming point clouds perceived by top (blue), front-left (green), and
front-right (red) LiDARs into the base frame. We simulate perturbation on
the rotation of 1◦ in yaw. (b) The details in the region A and B with a
zooming effect. Massive noisy points are induced by extrinsic perturbation,
while they should be sharp or flat in perturbation-free situations.

is inevitable for sensor fusion during long-term operation
because of factors such as vibration, temperature drift, and
calibration error [5]. Especially, wide baseline stereo cameras
or vehicle-mounted multi-LiDAR systems suffer even more
extrinsic deviations than the normal one. Even though online
calibration has been proposed to handle this issue [6], life-
long calibration is always challenging [7]. These methods
typically require environmental or motion constraints with
full observability. Otherwise, the resulting extrinsics may
become suboptimal or unreliable. As identified in both Fig. 1
and Section IV-B, extrinsic perturbation is detrimental to the
measurement accuracy even with a small change. But this
fact is often neglected by the research community.

To tackle the challenges, we propose a Multi-LiDAR
Object Detector (MLOD) to predict states of objects on
point clouds. We design a two-stage procedure to estimate
3D bounding boxes, and demonstrate two innovations in
MLOD. First, we explore three fusion schemes to exploit
multi-view point clouds in a stage-1 network for generating
object proposals. These schemes perform LiDAR fusion at
the input, feature, and output phases, respectively. Second,
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we develop a stage-2 network to handle extrinsic perturbation
and refine the proposals. The experimental results demon-
strate that MLOD outperforms single-LiDAR detectors up to
9.7AP in perturbation-free cases. When considering extrinsic
perturbation, MLOD consistently improves the performance
of its stage-1 counterpart. To the best of our knowledge, this
is the first work to systematically study the multi-LiDAR
object detection with consideration of extrinsic perturbation.
Overall, our work has the following contributions:

1) We analyze the influence of extrinsic perturbation on
multi-LiDAR-based geometric tasks, and also demon-
strate that the usage of input uncertainty prior improves
the robustness of an approach against such effect.

2) We propose a unified and effective two-stage approach
for multi-LiDAR 3D object detection, where the multi-
LiDAR information is fused in the first stage, and
extrinsic perturbation is handled in the second stage.

3) We exhaustively evaluate the proposed approach in
terms of accuracy and robustness under extrinsic per-
turbation on a real-world self-driving dataset.

II. RELATED WORK

We briefly review methods on LiDAR-based object detec-
tion and uncertainty estimation of deep neural networks.

A. 3D Object Detection on Point Clouds

The LiDAR-based object detectors are generally cate-
gorized into grid-based [8]–[10] and point-based methods
[11]–[13]. 3D-FCN [8] implemented 3D volumetric CNN
on voxelized point clouds. But it commonly suffers a high
computation cost due to dense convolution on sparse point
clouds. VoxelNet [9] was proposed as an end-to-end network
to learn features. However, operation on grids is inefficient
since LiDAR’s points are sparse. To cope with this drawback,
SECOND [10] utilized the spatially sparse convolution [14]
to replace the 3D dense convolution layers. In this paper, we
adopt SECOND as our basic proposal generator and propose
three schemes for multi LiDAR fusion in the first stage. Qi et
al. proposed PointNet [11] to directly learn features from raw
data with a symmetric function. And their follow-up work
presented a set-abstraction block to capture local features
[12]. PointRCNN [13] exploits PointNet to learn point-wise
features and segments foreground for autonomous driving. In
this paper, we extend PointNet to design the stage-2 network
of MLOD with an awareness of extrinsic perturbation.

Researchers also explored fusion methods that further
exploit images to improve the LiDAR-based approaches.
For example, MV3D [4] combined features from multiple
views, including a bird-eye view and front view, to conduct
classification and regression. Several methods [15], [16]
separate the process of detection into two stages. They first
projected region proposals generated by the camera-based
detectors into 3D space, and then used PointNets to segment
and to classify objects on point clouds. But these methods are
aimed at data fusion from cameras and LiDARs and assume
sensors to be well-calibrated. In contrast, our work focuses

TABLE I
NOMENCLATURE

Notation Explanation

{}b, {}li Frame of the base and the ith LiDAR.
Pli Raw point cloud captured by the ith LiDAR.
B Set of estimated 3D bounding boxes.
T Transformation matrix in the Lie group SE(3).
R Rotation matrix in the Lie group SO(3).
t Translation vector in R3.
Θ Measurement and extrinsic uncertainty prior.
Ξ Associated covariance of each point.
α Scaling parameter of Θ.

on multi-LiDAR fusion, and tries to minimize the negative
effect of extrinsic perturbation for 3D object detection.

B. Uncertainty Estimation in Object Detection

The problem of uncertainty estimation is essential to the
reliability of an algorithm, and has attracted much attention
in recent years. As the two main types of uncertainties in
deep neural networks: aleatoric and epistemic uncertainty,
they are explained in [17], [18]. In [18], the authors also
demonstrated the benefits of modeling uncertainties for vi-
sion tasks. As an extension, Feng et al. [19] proposed an
approach to capture uncertainties for 3D object detection.
Generally, the data noise is modeled as a unique Gaussian
variable in these works. However, the sources of data uncer-
tainties in multi-LiDAR systems are much more complicated.
In this paper, we take both the measurement noise and
extrinsic perturbation into account, and analyze their effect
on multi-LiDAR-based object detection. Furthermore, we
propagate the Gaussian uncertainty prior of both the extrin-
sics and measurement to model the input data uncertainty.
This additional cue is utilized to improve the robustness of
MLOD against extrinsic perturbation.

III. NOTATIONS AND PROBLEM STATEMENT

The nomenclature is shown in Tab. I. The transformation
from {}b to {}li is denoted by Tb

li . Our perception system
consists of one primary LiDAR which is denoted by l1 and
multiple auxiliary LiDARs. The primary LiDAR defines the
base frame and the auxiliary LiDAR provides an additional
field of view (FOV) and measurements to alleviate the
occlusion problem and the sparsity drawback of the primary
LiDAR. Extrinsics describe the relative transformation from
the base frame to frames of auxiliary LiDARs. With the ex-
trinsics, all measurements or features from different LiDARs
are transformed into the base frame for data fusion. LiDARs
are assumed to be synchronized that multiple point clouds
are perceived at the same time.

In this paper, we focus on 3D object detection with
a multi-LiDAR system. The extrinsic perturbation is also
considered, which indicates the small but unexpected change
on transformation from the base frame to other frames over
time. Our goal is to estimate a series of 3D bounding boxes
covering objects of predefined classes. Each bounding box
b ∈ B is parameterized as [c, x, y, z, w, l, h, γ], c is the class

10557



of a bounding box, [x, y, z] denotes a box’s bottom center,
[w, h, l] represent the sizes along the x–, y–, and z– axes
respectively, as well as γ for the rotation of the 3D bounding
box along the z– axis in the range of (0, π].

IV. PROPAGATING EXTRINSIC UNCERTAINTY ON POINTS

We begin with providing preliminaries about the un-
certainty representation and propagation. We then use an
example to demonstrate the negative effect on points caused
by extrinsic perturbation. Finally, we also conduct a plane
fitting experiment to show that the extrinsic covariance prior
can be utilized to make a fitting approach robust.

A. Preliminaries

We employ the method in [20] to represent the uncertainty.
For convenience, rotation and translation are used to indicate
a transformation. We first define a random variable for R3

with small perturbation according to

t = ρ + t̄, ρ ∼ N (0,P), (1)

where t̄ is a noise-free translation and ρ ∈ R3 is a zero-mean
Gaussian variable with covariance P. We can also define a
rotation for SO(3) as1

R = exp(φ∧)R̄, φ ∼ N (0,Φ), (2)

where R̄ is a noise-free rotation and φ ∈ R3 is a small zero-
mean Gaussian variable with the covariance Φ. With (2), we
can represent a noisy transformation by storing the mean as
[t̄, R̄] and using [ρ,φ] for perturbation on the vector space.
Similarly, a point with the perturbation in R3 is written as

p = ζ + p̄, ζ ∼ N (0,Z), (3)

where ζ is zero-mean Gaussian with the covariance Z. With
the above representations, we can pass the Gaussian repre-
sentation of a point through a noisy rotation and translation
to produce a mean and covariance for its new measure-
ment. Here, we can use [t̄bli , R̄

b
li ] to indicate the ground-

truth extrinsics of a multi-LiDAR system, and [ρ,φ, ζ] to
indicate both the extrinsic and measurement perturbation. By
transforming p ∈ Pi into {}b, we have

y , Rb
lip + tbli = exp(φ∧)R̄b

li(ζ + p̄) + (ρ + t̄bli)

≈
(
I + φ∧

)
R̄b

li(ζ + p̄) + (ρ + t̄bli),
(4)

where we have kept the first-order approximation of the
exponential map. If we multiply out the equation and retain
only those terms that are first-order in φ or ζ, we have

y ≈ h + Hθ, (5)

where
θ = [ρ,φ, ζ]

h = R̄b
li p̄ + t̄

H = [I − (R̄b
li p̄)∧ R̄b

li ],

(6)

1The ∧ operator turns a 3 × 1 vector into the corresponding skew
symmetric matrix in the Lie algebra so(3). The exponential map exp
associates an element of so(3) to a rotation in SO(3). The closed-form
expression for the matrix exponential can be found in [20].
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Fig. 2. Mean fitting error ex = ||xgt − xest|| of methods with weights
(use uncertainty prior) or without weights on two planar surface cases. The
weighted method does better, and the error does not increase along with α.

We embody the uncertainties of extrinsics and measurements
into θ that is subjected to a zero-mean Gaussian with 9× 9
covariance Θ = diag(P,Φ,Z). Linearly transformed by θ,
y is a Gaussian variable with mean and covariance as

µ , E[y] = h

Ξ , E
[
(y − µ)(y − µ)>

]
= HΘH>.

(7)

where we follow [21] to use the trace, i.e., tr(Ξ), as the
criterion to quantify the magnitude of a covariance.

B. Uncertainty Propagation Example

In this section, a simple example of uncertainty propaga-
tion on a point is presented, where we quantify the data noise
caused by both extrinsic and measurement perturbation. The
associated covariance is propagated by passing the Gaussian
uncertainty from extrinsics and measurements through a
transformation. We use the ground-truth extrinsics having
rotation with [10, 10, 10]◦ in roll, pitch, yaw and translation
with [1, 1, 1]m along the x–, y–, and z– axis respectively.
Let p = [10, 10, 10]>m be a landmark. Θ is treated as our
prior knowledge and considered as a constant matrix2

Θ = diag2

{
1

20
,

1

20
,

1

20
,

1

10
,

1

10
,

1

10
,

1

50
,

1

50
,

1

50

}
, (8)

where the first six diagonal entries can be multiplied by a
scaling parameter α, allowing us to parametrically increase
the extrinsic covariance in experiments. According to (7), we
have an approximate expression

Ξ ≈ α×

 2.36 −1.24 −1.20
−1.24 2.41 −1.18
−1.20 −1.18 2.49

 , (9)

where the new position has a high variance around 0.22m on
each axis even for a small input covariance (i.e., α = 0.02).
This accuracy is totally unacceptable for autonomous driving.

C. Plane Fitting Experiment

We denote Pm a merged point cloud which is obtained
by transforming P l1 and P l2 into {}b with ground-truth
extrinsics. We assume that there is a dominant plane in Pm,
and our task is to estimate the plane coefficients. They can

2The measurement noise is found in LiDAR datasheets. The extrinsic
perturbation typically has the variances around 5cm in translation and 5◦

in rotation. This is based on our studies on multi-LiDAR systems [1], [22].
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Stage-2: Box Refinement From Uncertain Points (Section V-C)
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Fig. 3. Overview of the proposed detector (MLOD) for multi-LiDAR 3D object detection. Red circles: the position where the fusion may be performed;
Blue cubes: proposals in stage one; Red cubes: refinements in stage two; Green cubes: ground truths. We used the score and parameter of a proposal
from the stage-1 network as the extra features. Global features are extracted by PointNet [11]. They are merged as the input for final classification and
regression. For simplicity, we consider three LiDARs as an example; however, MLOD is extensible to more.

be obtained by solving a linear system Ax = b from Pm,
where row elements of A are the point coordinates, and b
is set as an identity vector with least-squares methods.

Here, we show how the input uncertainty prior Θ can be
utilized to acquire better fitting results. We define W as a
diagonal matrix to weight the linear system. For a point pj ∈
Pm, we propagate its associated covariance Ξ using (7). The
corresponding entry (i.e., Wjj) is set as the inverse of tr(Ξ).
After that, the fitting problem is turned into a weighted least-
squares regression and the optimal results can be obtained
as x∗ = (A>WA)−1A>Wb.

An experiment is conducted on a toy example to compare
the performance of two fitting methods (i.e., with or without
weights). We use the ground-truth extrinsics and the prior
covariance in Section IV-B to sample perturbation with 100
trials. We also generate 10000 points according to a planar
surface which are subjected to zero-mean Gaussian noise
with a standard deviation of 0.02m to produce Pm. Pm is
randomly split into two equal parts to form P l1 and P l2 . At
each trial, we evaluate the plane fitting results of each method
by comparing them to the ground truth as ex = ||xgt−xest||.

The mean fitting error of each method on two different
cases over α ∈ [0, 0.1] is shown in Fig. 2. We see that
the weighted least-squares method does better in estimating
the plane coefficients, and the mean fitting error does not
increase along with α. It shows that the point-wise uncer-
tainty information can be utilized to improve the robustness
of algorithms in geometric tasks. But in practice, the value of
α should be carefully set by manual or adaptively obtained
from an online method. Otherwise, a few correct measure-
ments are discarded during operation.

V. METHODOLOGY

In this section, we extend our findings from the basic
geometric tasks to multi-LiDAR-based 3D object detection.
The overall structure of the proposed two-stage MLOD
is illustrated in Fig. 3. We adopt SECOND [10], which
is a sparse convolution improvement of VoxelNet [9], to
generate 3D proposals in the first stage. 3 It consists of three
components: a feature learning network (FLN) for feature
extraction; middle layers (ML) for feature embedding with
sparse convolution; and a region proposal network (RPN) for
box prediction and regression. Readers are referred to [9],
[10] for more details about the network structures. We first
present three species of 3D proposal generation with different
multi-LiDAR fusion schemes: Input Fusion, Feature Fusion
and Result Fusion. Then, we introduce the architecture of
our stage-2 network to tackle the extrinsic uncertainty and
refine the proposals.

A. Proposal Generation With Three Fusion Schemes

According to stages at which the information from mul-
tiple LiDARs is fused, we propose three general fusion
schemes, which we call Input Fusion, Feature Fusion, and
Result Fusion. These approaches are developed from SEC-
OND with several modifications.

1) Input Fusion: The fusion of point clouds is performed
at the input stage. We transform raw point clouds perceived

3We use SECOND V1.5 in our experiments: https://github.com/
traveller59/second.pytorch. Different from the original SEC-
OND [10], the FLN of SECOND V1.5 is simplified by computing the mean
value of points within each voxel, which consumes less memory.
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by all LiDARs into the base frame to obtain the fused point
cloud, and then feed it to the network as the input.

2) Feature Fusion: To enhance the feature interaction, the
LiDAR data is also fused in the feature level. The extracted
features from the FLN and ML are transformed into the base
frame, and then fused by adopting the maximum value as

Ffused = F l1 ⊕ (Tb
l2F l2)⊕ · · · ⊕ (Tb

lIF
lI ), (10)

where F li are the extracted features, ⊕ denotes the max
operator, and I is the number of LiDARs.

3) Result Fusion: The result fusion takes the box propos-
als and the associated points as inputs, and produces a set
of boxes with high scores. We transform all box proposals
into the base frame, and then filter them as

Bfused = Bl
1

⊕ (Tb
l2Bl

2

)⊕ · · · ⊕ (Tb
lIB

lI ), (11)

where ⊕ denotes the non-maximum suppression (NMS) on
3D intersection-over-Union (IoU). After transformation, each
object is associated with several candidate boxes, and these
boxes with low confidences are filtered by the NMS.

B. Box Refinement From Uncertain Points

Although the stage-1 fusion-based network generates
promising proposals, its capability in handling uncertain
data uncertainty is fragile. Therefore, we propose a stage-
2 module to improve the robustness of MLOD. A straight-
forward idea is to eliminate the highly uncertain points
according to their associated covariances. But this method is
sensitive to a pre-set threshold. Inspired by [13], it is more
promising that training a neural network to embed features
and refine the proposals with an awareness of uncertainty.

We thus use a deep neural network to deal with this prob-
lem. The network takes a series of points of each proposal (a
2m margin along x–, y–, and z– axes is expanded) generated
by the stage-1 network, and refines the stage-1 proposals.
In addition to three-dimensional coordinates, each point is
also embedded with its uncertain quantity. As defined in (7),
we use the trace, i.e., tr(Ξ), to quantify the uncertainties.
We employ PointNet [11] as the backbone to extract global
features. We also encode extra features, including the scores
and parameters of each proposal, to concatenate with the
global features. At the end of the network, fully connected
layers are used to provide classification scores and refinement
results with two heads. To reduce the variance of input, we
normalize the coordinates of each point of a proposal as

pn = Tp� s, (12)

where

T =


cos(γ) sin(γ) 0 −x
−sin(γ) cos(γ) 0 −y

0 0 1 −z
0 0 0 1


s =

[
1/l 1/w 1/h 1

]>
,

(13)

where T and s are defined in terms of the parameters of
a proposal b = [c, x, y, z, l, w, h, γ], � is the Hadamard

Fig. 4. Illustration of the MLOD results on the proposals and merged point
cloud given by the stage-1 network. The color of each point represents its
uncertainty quantity defined as the trace of the associated covariance. Blue to
pink color indicates low to high uncertainty. The estimated and ground-truth
bounding boxes are also marked with different colors: blue as the proposals
in stage one, red as refinements in stage two, and green as ground truths.

product, and both pn and p are represented in homogeneous
coordinates. The output of the classification head is a bi-
nary variable indicating the probability of objectiveness. We
regress residuals of the bounding box based on the proposal
instead of directly regressing the final 3D bounding box. The
regression target of the stage-2 network is

ui ,
[x− xp

lp
,
y − yp
wp

,
z − zp
hp

,
l − lp
lp

,

w − wp

wp
,
h− hp
hp

, sin(γ − γp), cos(γ − γp)
]
,

(14)

where ui ∈ R8 are regression outputs for the ith positive pro-
posal respectively. We adopt the classification and regression
loss which are defined in [23] as

Lcls =
∑
i

fcls(pi), Lreg =
∑
i

freg(ui,u
∗
i ), (15)

where pi represents the posterior probability of objectiveness,
Lcls is defined as the classification loss, fcls(·) denotes the
focal loss [24], Lreg is defined as the normalized regression
loss, and freg(·) denotes the smooth-L1 loss. Since we have
the observation that the regression outputs ui should not be
large when the uncertainty is small, we add a regularization
term to penalize large ui in the low uncertainty cases:

Luct =
∑
i

exp

(
1− f

[
MAX

j
tr(Ξj)

])
· ||u

′

i||2, (16)

where tr(Ξj) is the point-wise uncertainty of the jth point
within the ith proposal, MAX is the max operator, u

′

i is the
regressed residual without the last cosine term for the the ith

proposal, and f(·) clamps a value into the range [10−3, 0.5]
to stabilize training. Finally, we define the loss function for
training the stage-2 network as

L = Lreg + ηLcls + λLuct , (17)

where η and λ are hyper-parameters to balance the weight
of the classification loss and the uncertainty regularizer. We
use η = 2 and λ = 0.005 in our experiments.

Fig. 4 visualizes the refinement results of our stage-2
network, which shows that our method produces similar
results to the ground truths even if many points are uncertain.
More quantitative examples are provided in Section VI-C.
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VI. EXPERIMENT

In this section, we evaluate our proposed MLOD on LYFT
multi-LiDAR dataset [3] in terms of accuracy and robustness
under different levels of extrinsic perturbation. In particular,
we aim to answer the following questions:

1) Can a multi-LiDAR object detector perform better ac-
curacy than single-LiDAR methods?

2) Can MLOD improve the robustness of a multi-LiDAR
object detector under extrinsic perturbation?

A. Implementation Details
1) Dataset: The LYFT dataset [3] provides a large amount

of data collected in a variety of environments for the task
of 3D object detection. Three 40-beam and calibrated Hesai
LiDARs are mounted on the top, front-left and front-right
position of the vehicle platform. The top LiDAR is set as the
primary LiDAR, which is denoted by l1. The left and right
LiDARs are auxiliary LiDARs, which are denoted by l2 and
l3 respectively. This setting is according to LiDAR’s field
of views (FOV). We select all multi-LiDAR data samples
for our experiment. The data contain 4031 samples, 2500
of which are for training as well as validation and 1531 of
which are for testing. The testing scenes are different from
those in the training and validation sets.

2) Metric: Following the KITTI evaluation metrics [25],
we compute the average precision on 3D bounding boxes
(AP3D) to measure the detection accuracy. We compute the
AP3D for 360◦ around the vehicle instead of evaluating only
the 90◦ front view. According to the distance of objects,
we set three different evaluation difficulties: easy (< 20m),
moderate (< 30m), and hard (< 50m).

3) Extrinsic Perturbation Injection: We inject extrinsic
perturbation on the original LYFT dataset to generate another
set of data for robustness evaluation. We take Θ defined in
(8) and adjust α ∈ [0, 0.1] with a 0.02 interval to simulate
different levels of perturbation. To remove the effects from
outliers, we bound the sampled perturbation within the σ
position. Although the maximum value of α is small, but the
effect of input perturbation on points is obvious. The noisy
extrinsics are obtained by adding the sampled perturbation
to the ground-truth extrinsics according to (1) and (2).

4) Case Declaration: We declare all cases of our methods
which are tested in the following experiments as
• LiDAR-Top, LiDAR-Left, LiDAR-Right: single-LiDAR

objeect detectors based on SECOND with the input data
which are captured by the top LiDAR, front-left LiDAR
and front-right LiDAR, respectively.

• Input Fusion, Feature Fusion, Result Fusion: multi-
LiDAR objeect detetors with different fusion schemes,
which are introduced in Section V-A.

• MLOD-I, MLOD-F, MLOD-R: MLOD with Input Fu-
sion, Feature Fusion, Result Fusion as its stage-1 net-
work respectively, which are described in Section V-B.

• MLOD-I (OC), MLOD-F (OC), MLOD-R (OC): Vari-
ants of MLOD with an online calibration method to re-
duce extrinsic perturbation. This method is implemented
with a point-to-plane ICP approach [26].

TABLE II
AVERAGE PRECISION ON THE MULTI-LIDAR LYFT TEST SET

Case AP3D IoU > 0.7 AP3D IoU > 0.5
easy mod. hard easy mod. hard

LiDAR-Top 62.7 52.9 37.8 89.8 80.1 61.8
LiDAR-Left 41.1 37.0 27.5 62.6 53.9 43.1

LiDAR-Right 40.9 31.5 23.4 53.9 52.4 35.5

Input Fusion 71.9 61.8 45.0 89.4 87.9 61.9
MLOD-I 72.4 62.7 45.6 89.6 88.3 61.8

Feature Fusion 71.1 60.2 44.1 89.6 87.4 61.6
MLOD-F 72.0 61.8 44.9 89.7 88.2 61.6

Result Fusion 71.4 61.6 44.5 89.5 87.7 62.0
MLOD-R 72.1 62.3 45.2 89.6 88.0 61.7

5) Training of Stage-One Network: We follow [10] to
train the stage-1 network. During training, we conduct
dataset sampling as in [10] and an augmentation of random
flips on the y– axis as well as translation sampling within
[−0.5, 0.5]m, [−0.5, 0.5]m, [−0.3, 0.3]m on the x–, y–,
and z– axes respectively, as well as rotation around the
z– axis between [−5, 5]◦. In each epoch, the augmented
data accounts for 30% of the whole training data. In Result
Fusion and Feature Fusion, we directly take the calibrated
and merged point clouds from different LiDARs as input. In
Result Fusion, we calibrate all the proposal generators with
temperature scaling [27].

6) Training of Stage-Two Network: To train our stage-
2 network, we use all cases of the well-trained stage-1
networks to generate proposals. We use the training set
to create proposals and inject uncertainties by selecting
different α like the above section. In addition, we force
the ratio between uncertainty-free samples and uncertain
samples to be about 1:1.5 to stabilize the training process. A
proposal is considered to be positive if its maximum IoU with
ground-truth boxes is above 0.6, and is treated as negative
if its maximum 3D IoU is below 0.45. During training, we
conduct data augmentation of random flipping, scaling with
a scale factor sampled from [0.95, 1.05], translation along
each axis between [−0.1, 0.1]m and rotation around the z-
axis between [−3, 3]◦. We also randomly sample 1024 points
within the proposals to increase their diversity.

B. Results on the Multi-LiDAR LYFT Dataset

We evaluate both single-LiDAR and multi-LiDAR detec-
tors on the LYFT test set, as reported in Tab. II. In this
experiment, we do not consider any extrinsic perturbation
between LiDARs. LiDAR-Top performs the best among all
single-LiDAR detectors. This is because the top LiDAR
has a complete 360◦ horizontal field of view (FOV). The
left and right LiDARs, which are partially blocked by the
vehicle, only have a 225◦ horizontal FOV. With sufficient
measurements and decreasing occlusion areas, all multi-
LiDAR detectors outperform LiDAR-Top, and the accuracy
improvement gains up to 9.8AP. Tab. II also shows that
all MLOD variants perform better or comparable to their
one-stage counterparts. This proves that our stage-2 network
refines the stage-1 proposals in perturbation-free cases.
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TABLE III
MEAN AND VARIANCE OF ACCURACY (AP3D IOU > 0.7) UNDER DIFFERENT LEVEL OF THE EXTRINSIC PERTURBATION.

Cases α = 0 α = 0.02 α = 0.04 α = 0.1
easy mod. hard easy mod. hard easy mod. hard easy mod. hard

Top LiDAR 63.3 53.8 38.2 63.3 53.8 38.2 63.3 53.8 38.2 63.3 53.8 38.2

Input Fusion 71.2 62.3 45.4 64.7 ± 2.5 60.8 ± 0.4 44.4 ± 0.2 63.0 ± 0.5 53.9 ± 2.1 38.0 ± 0.2 60.9 ± 1.0 51.0 ± 0.6 36.1 ± 0.4
MLOD-I 71.2 62.8 46.1 66.3 ± 3.6 61.4 ± 0.4 44.8 ± 0.2 62.8 ± 0.4 56.3 ± 3.5 37.7 ± 0.2 61.6 ± 0.9 51.5 ± 0.6 35.8 ± 0.5

Input Fusion (OC) - - - 66.8 ± 4.0 61.2 ± 0.5 44.5 ± 0.2 63.4 ± 0.4 60.0 ± 0.5 42.8 ± 2.2 62.4 ± 0.6 52.3 ± 0.4 37.2 ± 0.2
MLOD-I (OC) - - - 67.6 ± 4.0 61.5 ± 0.5 44.9 ± 0.4 64.3 ± 2.5 60.4 ± 0.6 43.1 ± 2.5 62.9 ± 0.4 52.9 ± 0.3 36.8 ± 0.3

Feature Fusion 71.2 59.2 42.9 63.9 ± 2.5 59.2 ± 0.9 42.9 ± 0.9 62.9 ± 0.4 58.6 ± 2.5 41.1 ± 3.3 61.9 ± 0.6 51.1 ± 1.0 35.7 ± 0.7
MLOD-F 71.5 61.8 45.2 65.4 ± 3.3 60.9 ± 0.4 44.5 ± 0.2 63.7 ± 0.5 59.6 ± 2.0 42.1 ± 2.8 63.7 ± 0.5 53.9 ± 0.5 37.7 ± 0.4

Feature Fusion (OC) - - - 66.2 ± 3.7 59.5 ± 0.8 43.5 ± 0.9 63.8 ± 2.2 59.6 ± 0.7 43.6 ± 0.7 63.3 ± 2.4 54.3 ± 3.0 37.9 ± 2.0
MLOD-F (OC) - - - 67.7 ± 3.8 61.2 ± 0.4 44.7 ± 0.2 65.3 ± 3.2 60.4 ± 0.4 44.1 ± 0.2 64.9 ± 2.1 58.9 ± 2.9 38.2 ± 0.2

Result Fusion 70.4 62.1 44.0 64.5 ± 2.3 60.1 ± 0.4 43.4 ± 0.2 63.0 ± 0.5 55.5 ± 2.9 38.1 ± 0.2 61.1 ± 1.0 51.5 ± 0.5 36.8 ± 0.3
MLOD-R 70.7 62.4 45.1 65.7 ± 2.8 60.9 ± 0.4 44.2 ± 0.2 63.1 ± 0.5 59.3 ± 0.5 39.4 ± 2.5 62.6 ± 0.9 52.9 ± 0.5 37.0 ± 0.3

Result Fusion (OC) - - - 66.5 ± 3.7 60.4 ± 0.6 43.5 ± 0.2 64.0 ± 2.2 59.3 ± 0.4 42.0 ± 1.9 62.5 ± 0.6 52.5 ± 0.4 37.5 ± 0.2
MLOD-R (OC) - - - 66.8 ± 3.8 61.1 ± 0.5 44.3 ± 0.4 65.1 ± 3.2 59.9 ± 0.6 43.6 ± 0.4 63.3 ± 0.5 53.4 ± 0.3 37.5 ± 0.2

C. Robustness Under Extrinsic Perturbation

In this section, we evaluate the robustness of our proposed
methods under extrinsic perturbation. Three levels of pertur-
bation are performed: no perturbation (α = 0), moderate
perturbation (α = 0.02, α = 0.04) and high perturbation
(α = 0.1). An example is displayed in Fig. 6(a) (α = 0.04),
where massive noisy points (50cm misplacement) appear
at 35m away. This is a typical phenomenon of extrinsic
perturbation in multi-LiDAR systems. We randomly select
300 data samples from the test set with 10 trials to conduct
evaluations at each level.

In Tab. III, the detection results in terms of the means
and variances as AP3D(IoU > 0.7) are detailed. We see
that all variants of MLOD (MLOD-I, MLOD-F, MLOD-R)
perform better or comparable to their one-stage counterparts.
Online calibration baselines (Input Fusion (OC), Feature
Fusion (OC), Result Fusion (OC)) demonstrate better results
than those without online calibration. With the assistance
of MLOD, their performance is further enhanced. Feature
Fusion and its variants perform better than the others. We
explain that Feature Fusion fuses data in a high dimensional
embedding space, and each feature is related to an area of the
cognitive region. Regarding LiDAR-Top, MLOD’s variants
also perform better or comparable results. A qualitative result
is illustrated in Fig. 6, and more results are shown in the
supplementary materials.

We also conduct a sensitivity analysis of extrinsic uncer-
tainty with a fixed α as input in the supplementary material.
The same conclusion still holds. To further explore the
reason behind the performance of MLOD, we investigate the
characteristics of active points. These points are activated
by PointNet before the max-pooling layer (Fig. 5(a)). We
compute the difference between the input points and active
points on the proportion of uncertain points4 for each sample.
Fig. 5(b) plots a histogram of the proportional difference

4The proportion of the uncertain points is defined as |Pu|/|P|, where
Pu ∈ P is the set of uncertain points with the uncertain quantity > 0.05.
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Fig. 5. (a) Active points (Red dotted) form the global features after applying
the max-pooling symmetric function. (b) The proportional differences larger
than 0.04 (4%) occupy about 44.0%, and those less than −0.04 (−4%)
occupy about 8.5%. Less uncertain points exist in the active points.

overall input samples. It shows that the network deactivates
highly uncertain points, and explain why MLOD is robust.

VII. CONCLUSION

In this paper, we analyze the extrinsic perturbation effect
on multi-LiDAR-based 3D object detection. We propose a
two-stage network to both fuse the data from multiple Li-
DARs and handle extrinsic perturbation after data fusion. We
conduct extensive experiments on a real-world dataset and
discuss the results in different levels of extrinsic perturbation.
In the perturbation-free situation, we show the multi-LiDAR
fusion approaches obtain better accuracy than single-LiDAR
detectors. Under extrinsic perturbation, MLOD performs
great robustness with the assistance of the uncertainty prior.
A future direction concerns the combination with sensors
in various modalities, e.g., LiDAR-camera-radar setups, for
developing a more accurate object detector.
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(a) (b)
𝛼 = 0.04𝛼 = 0

Input 

Fusion

Result 
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MLOD-R

Feature 
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Fig. 6. Visualization of the fusion schemes results (For comparison, here we sample the extrinsic perturbation for all the (α = 0.04) cases at the σ
position according to Θ. (a) Bird’s-eye view of MLOD’s detection results when α = 0.04. The extrinsic perturbation is observed from where the red
arrows indicate. (b) A close-up view of results estimated by different fusion schemes within the red circle. Left to right: α = 0, α = 0.04. Input Fusion,
Feature Fusion and Result Fusion suffer from false positives or inaccurate boxes caused by extrinsic perturbation and inaccurate box location. Compared
with its counterpart (Result Fusion), MLOD-R eliminates the false positives and refines the 3D boxes.
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