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Abstract— A mobile robot needs to be aware of its envi-
ronment to interact with it safely. We propose a receding
horizon control scheme for mobile manipulators that tracks
task space reference trajectories. It uses visual information
to avoid obstacles and haptic sensing to control interaction
forces. Additional constraints for mechanical stability and joint
limits are met. The proposed method is faster than state of
the art sampling based planners, available as opensource and
can be implemented on a broad class of robots. We validate
the method both in simulation and through extensive hardware
experiments with a multitude of mobile manipulation platforms.
The resulting software package is released with this paper.

I. INTRODUCTION

Due to the aging workforce and more stringent safety
regulations, there is an increasing need for automation in
fields like building construction and industrial inspection
[1], [2]. While companies are starting to deploy robots
for monitoring and measuring [3], there are few reported
cases where commercial mobile robots are used to perform
manipulation tasks. Such robots have to be mobile since the
workspaces of fixed based manipulators are too restrictive.
There are solutions for discrete tasks such as drilling or
welding, where it is sufficient for a robot to move to a target
location and then perform the manipulation task [4], [5]. In
this work, we want to enable robots to perform continuous
processes such as cleaning, spray-painting or grinding that
exceed the workspace boundaries of a stationary robotic arm.
Construction sites and industrial plants are challenging en-
vironments since they are unstructured with both static and
dynamic obstacles. Avoiding obstacles is an essential require-
ment for the deployment of a robot in those environments. A
popular solution to motion planning with obstacle avoidance
is using sampling-based planners. They can provide globally
optimal solutions [6] but have high computational costs. Our
method only generates locally optimal motion plans, but it
is fast and reactive to changing or unknown environments.
The targeted applications can be grouped into two classes:
For tasks like spray-painting or visual inspection, the robot
does not need to touch the environment. In contrast, cleaning,
grinding, or troweling plaster requires the robot to be in
contact with its environment and control the interaction force.
Since the tools are heavy and the required interaction forces
can be high, the modern lightweight robots with torque-
controllable joints that are popular in the research community
are not strong enough to perform the tasks. Instead, we
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Fig. 1: Two mobile robots performing manipulation tasks.
Left: Swaco picking up a brick for the MBZIRC2020 robotics
competition.
Right: MabiMobile cleaning a whiteboard by controlling the
interaction force.

propose an admittance control approach that can be used
on any robotic manipulator, including industrial-sized arms
that can support the required payloads.
We present a model predictive control strategy (MPC) that
has an awareness of its environment and can plan whole-body
motion for a mobile manipulator while avoiding collisions.
Through task-space admittance control, it can track desired
interaction forces and torques.

A. Related Work

1) Sequential Linear Quadratic Model Predictive Control:
In this work, we use Sequential Linear Quadratic Model
Predictive Control (SLQ-MPC), a flavor of non-linear MPC.
The algorithm has initially been proposed in a discrete-time
formulation [7]. Later, a continuous-time formulation was
proposed along with the open-source implementation OCS2
that we use in this work [8]. The first work on task space
control of a mobile manipulator with SLQ used equality
constraints to enforce end-effector tracking [9]. Modeling
the tracking task as a quadratic cost instead of a constraint
greatly improves the robustness against disturbances [5].
In this work, we take inspiration from Grandia et al. and
introduce soft inequality constraints with Relaxed Barrier
Functions (RBF) to the MPC cost [10].

2) Signed Distance Fields for Collision Avoidance:
Signed distance fields are a popular choice in representing a
robot’s environment. They have successfully been employed
in trajectory optimization for collision avoidance [11], [12].
In those works, signed distance fields were created offline
from existing mesh models. With Voxblox, a framework
was presented that can generate Euclidian Signed Distance
Fields (ESDF) incrementally from depth sensor data [13].
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The new ESDF-based mapping framework FIESTA has been
presented recently and the authors report faster online map
generation compared to Voxblox[14]. In this work, we build
on Voxblox and show how we can shorten distance and
gradient query times by caching gradients for each voxel.
The same technique can also be used with FIESTA or other
ESDF mapping implementations.

3) Model Predictive Admittance Control: Controlling the
interaction wrench of contact by displacement of the robot’s
end-effector, admittance control, has been studied for many
years [15]. In recent years, different groups developed model
predictive admittance control strategies [16], [17]. Those
works showed promising results both in simulation and in
hardware experiments for fixed based robots. For mobile
robots, interaction force control results have been presented
using various techniques such as task-space impedance con-
trol [18] and dynamic model predictive control [19]. Those
approaches require torque-controllable actuators that are not
available in most high-payload robots.

B. Contributions

We propose a fast motion planning framework for mobile
manipulators that can run as a model predictive controller.
The framework has been tested extensively on different
mobile robots for a large variety of applications and has been
published as open-source software1.
To our best knowledge, this is the first demonstration of
collision avoidance in SLQ. We compare our method to
state of the art sampling based planners RRTX[20] and
BiFMT[21] and show that it converges faster and produces
shorter whole-body paths. We show that by caching gradients
of an ESDF, queries to the map are fast enough to use
them in an MPC. The caching is lightweight and runs along
with the online mapper. We furthermore show that by using
an admittance scheme, we can control interaction-forces
of a mobile robot without torque-controllable joints while
planning future motion and respecting joint and stability
constraints.

II. MODEL PREDICTIVE CONTROL

A model predictive control (MPC) module generates con-
trol inputs for the robot to follow an end-effector trajectory
while respecting several constraints. In the following sec-
tions, we describe the SLQ algorithm, the system model
used, the cost-function, and our soft constraints mechanism.

A. Sequential Linear Quadratic Model Predictive Control

The SLQ algorithm performs forward roll-outs of the
current control policy over a prediction horizon with the full
non-linear system dynamics. The system dynamics are then
linearized around the obtained state and input trajectories.
Quadratic approximations of the cost functions are com-
puted. With those approximations, we solve the algebraic
or differential Riccati equations to obtain the next affine
control policy. The affine policies consist of time-varying
state feedback laws and input feed-forward terms.

1https://github.com/leggedrobotics/perceptive_mpc

B. System Model

The type of robot we are targeting with our approach
consists of a mobile base with a manipulator with n degrees
of freedom (DOF). The base can turn in place but has a
non-holonomic constraint and cannot drive sideways. These
properties are typical for differential drive, skid steer, or
tracked robots. A kinematic model is used in the MPC.
Joint positions describe the state of the arm xarm ∈ ℜn.
In contrast to prior work [9], [5], the full base pose xbase ∈
SE(3) is used in the system model. A quaternion qbase
encodes the base orientation and a ℜ3 vector rbase its
position in a static world frame.
Using the full base pose instead of a reduced state
[x, y, φyaw] allows the robot to negotiate uneven terrain and
generalizes our work for any type of mobile base. The
arm is controlled with joint velocity references uarm =
[φ̇1, . . . , φ̇n]. The base’s wheel speeds are calculated from
the desired base twist, the forward velocity, and the turning
rate ubase = [v, φ̇base].
These considerations lead to the following system model:

x = [xbase,xarm]T (1)

u = [v, φ̇base, φ̇1, . . . , φ̇n]
T (2)

ẋ =

qbase � 0.5kφ̇base

qbase · [v, 0, 0]T
uarm

 (3)

"�" denotes the Hamilton quaternion product, "i, j, k" the
quaternion imaginary units and "·" a vector rotation by a
quaternion.

C. Cost Function

The cost function integrates the end-effector tracking error
Cee_tracking , the constraint barrier functions Bi and the
weighted control effort uTRu over the time horizon T :

J(x, x̂,u) =

∫ t0+T

τ=t0

L(x(τ), x̂(τ),u(τ))dτ (4)

L(x, x̂,u) =Cee_tracking +
∑

Bi + uTRu (5)

In the following sections we will describe how we formulate
cost terms for end-effector tracking, collision avoidance and
compliance to joint and task-space constraints.

1) Task space tracking: Deviations of the robot’s end-
effector pose ξee to a desired pose ξ̂ee are penalized. The
desired pose may be time-dependent and changes over the
controller’s time horizon. For the translational error epos,
we use the difference between the two position vectors. To
compute the rotational error, we use an orientation error
formulation on the orientation quaternions of the current and
the desired pose [22]:

eO(q, q̂) =qw · [q̂x q̂y q̂z]
T − q̂w · [qx qy qz]

T (6)

+ [q̂x q̂y q̂z]
T × [qx qy qz]

T

The robot’s end-effector pose is a function of the current
state. We use Robcogen [23] to compute the forward kine-
matics from the robot’s base to the end-effector and multiply



with the world to base transform from xbase.
The sum of squares of these error functions form the end-
effector tracking term of our cost function:

Cee_tracking(t,x) = ∥epos(t,x)∥22 + ∥eO(t,x)∥22 (7)

For the SLQ algorithm to converge to a stable control law,
the second derivative of the cost function with respect to
the state must be positive semi-definite. Since the robot’s
forward kinematics are generally not positive semi-definite,
we approximate the second derivatives of the cost term in
a Gauss-Newton fashion with C̈ee_tracking ≈ 2ėposė

T
pos +

2ėoė
T
o

D. Soft Constraints

While tracking the end-effector target, the generated mo-
tion plans must additionally respect constraints. The SLQ
algorithm has no notion of hard inequality constraints, but
we can create cost-functions that penalize violations of con-
straints zi = gi(x,u, t) ≥ 0 with Relaxed Barrier Functions
(RBF) [24]:

Bi(zi) =

{
−µln(zi) zi > δ

µβ(zi; δ) zi <= δ
(8)

β is the quadratic function for which B ∈ C2.The parameters
µ and δ can be used as tuning parameters for each individual
constraint but we achieved good results with µ = 5 · 10−3

and δ = 10−4 for all constraints in this work.
To ensure positive semi-definiteness of the overall cost-
function we approximate the second derivatives of the cost
terms with a first order approximation of g:

¨(Bi(g)) ≈ ġB̈i(g)ġ
T (9)

A set of linear constraints restricts the allowed joint positions
as well as the velocity commands for the robot’s base and
the arm. Additionally, we use the constraint mechanism for
collison avoidance and to ensure meachanical stability as
described in the following sections.

E. Collision Avoidance

We use the RBF soft constraint mechanism to avoid colli-
sions of the robot with obstacles. We define a set of collision
spheres to approximate the robot. At the center of those
spheres, we query the distance to the closest obstacle from
a Euclidean Signed Distance Field (ESDF). We generate the
ESDF online with the mapping framework Voxblox [13]. In
the standard implementation, Voxblox interpolates distances
of neighboring 8 voxel centers at query time. Jacobians are
then computed with the finite differences of the interpolated
values.
We modified the framework to cache gradients along with
the signed distances in each voxel. We can then evaluate the
distances at each point assuming a local linear model:

d(r) = dk + ḋk(r − rk) (10)

where k denotes the index of the voxel containing the query
point and r the cartesian coordinate of the query point.

The distance function is piece-wise differentiable. For contin-
uous gradients, we also investigated caching of second-order
derivatives and used a quadratic approximation to compute
d(x). The collision constraint functions are:

gi(x) = d(FKworld
i (x))− ri (11)

with the forward kinematics FKworld
i to the center of the

collision sphere i and ri the radius of the sphere.
We compute the forward kinematics for the entire robot along
the kinematic chain and reuse intermediate results between
different collision checkpoints. Adding more collision check-
points does therefore not introduce a significant overhead.

F. Task Space Admittance Control

Tracking a desired end-effector pose while maintaining a
desired contact wrench is not possible in general since both
objectives conflict. To harmonize both tasks, we propose a
task space admittance control scheme that enables the user
to balance the two objectives.
Let Ξ̂ = [ξ̂0, . . . , ξ̂m] with ξ̂i = [r̂i, q̂i] be a desired end-
effector path in task space. We displace the path by an
admittance term δξ = [δr, δq] with δr, δq ∈ ℜ3 that
depends on the current and past wrench tracking errors
δw = ŵ −w:

[δri, δqi]
T =Kpδw +Ki

∫
δwdt (12)

foreach ξ̂i in Ξ̂ : ξ̃i = ξ̂i � δξ

w = [fee, τee] is the measured end-effector wrench, ŵ the
desired wrench. The gain matrices Kp and Ki define the
properties of our admittance controller. A non-zero entry in
Kp causes a spring-like behavior in the respective spatial
direction. The integrator gains in Ki allow for stationary
force tracking. We introduce anti-windup limits to the
integrator to restrict the maximum position displacement
in the presence of non-zero integrator gains if the desired
force cannot be achieved (i.e., if there is no contact).
The augmented path Ξ̃ = [ξ̃0, . . . , ξ̃n] is sent to the whole-
body MPC module.

G. Mechanical Stability

Large external wrenches applied at the end-effector to
the environment can threaten the mechanical stability of the
robot. We add a stability constraint to the MPC problem to
prevent the robot from falling. If the Zero Moment Point
(ZMP) remains in the support polygon of the robot, it is
guranteed to be mechanically stable [25]. We compute the
location of the ZMP rZMP considering the torque induced
by gravity fg at the center of mass (COM) rCOM and the
planned interaction wrench at the end-effector (fEE , τEE).
Dynamic effects are neglected in this work since the planned
motion is relatively slow. By definition, the x and y compo-
nent of the sum of moments is 0 at the ZMP which gives us



following identity:

0
!
=n× (rCOG − rZMP )× fg (13)
− (rEE − rZMP )× fEE − τEE)

rZMP =
n× (rCOG × fg − rEE × fEE − τEE)

n · (fg − fEE)
(14)

n is the surface normal vector, all quantities are noted in
base frame, originated at the center of the support polygon.
We inscribe a circle of radius rsc into the support polygon
to enforce that the ZMP stays inside with an inequality
constraint:

gZMP (x) = r2sc − ∥rZMP ∥22 ≥ 0 (15)

Note that rCOG and rEE depend on the current state x.
In case, high interaction wrenches are commanded, the
constraint lets the robot adapt its configuration to operate
safely.

III. EXPERIMENTS

We evaluated the performance of our proposed method
in many experiments, both in simulation and on different
robotic platforms. The accompanying video2 shows footage
of those tests. In the following section, we first introduce
our evaluation robots. We then describe the experiments to
evaluate task-space trajectory tracking, collision avoidance,
and interaction force control.

A. Robotic Platforms

The two robots used for this work are shown in Figure
1. Both platforms use the same control strategy. While we
performed the lab experiments with MabiMobile, we took
Swaco to the MBZIRC 2020 robotics competition.

1) MabiMobile: MabiMobile is a mobile robot with a
differential drive base with supporting castor wheels and a
6-DOF manipulator (Mabi Speedy 12 by Mabi Robotics).
The robot uses an Intel Realsense T265 for localization.
A six-axis F/T sensor (SenseOne by BOTA Systems) is
mounted between the end-effector tool and the arm. Joint
velocities are sent to the manipulator with a rate of 250Hz.
The current joint positions as well as the measured wrench
from the sensor are transmitted to the onboard computer
at the same rate via an Ethercat bus system. All hardware
experiments were conducted on a single Intel NUC with a
dual core i7-5557U processor.
Various tools can be attached to the end-effector for different
applications. We use a spray gun to demonstrate end-effector
tracking, a Robotiq 2F gripper to open a industrial cabinet
and a springloaded sponge tool to wipe a whiteboard.
Along with the tool, there is a Intel Realsense D435i depth
camera attached to the end-effector for online mapping.

2https://youtu.be/cTXytsWyFxE

TABLE I: Linear and rotational task-space tracking errors
while following 6 reference paths of 1.5m length in a
hardware experiment.

µpos[m] σpos[m] µrot[◦] σrot[◦]
0.0156 0.0035 2.3981 0.5039
0.0184 0.0111 2.3668 0.5848
0.0150 0.0036 2.4146 0.5038
0.0155 0.0031 2.4924 0.5349
0.0208 0.0042 3.1252 0.7177
0.0170 0.0039 2.7039 0.5628

2) Swaco: Swaco consists of a skid-steer base and a 7-
DOF Kinova Gen-3 manipulator. The robot is equipped with
a LIDAR, two depth cameras, an IMU, and an RTK GPS
receiver. During the MBZIRC 2020 competition, we used this
robot with the presented control toolbox to build a brick wall
and extinguish fires.

B. MPC Implementation

Unless stated otherwise, the experiments were conducted
with R = I8. We implemented the MPC control module with
the OCS2 toolbox3 and used its SLQ solver [8] to compute
optimal solutions with a rate of 20Hz over a time horizon
of T = 2 s. The necessary derivatives and Hessians were
computed with CppAD Code Gen4.
In contrast to our previous work, we do not follow the
optimal whole-body trajectories with a separate tracking con-
troller. Instead, we evaluate the affine policies with the latest
state estimate at a rate of 250Hz and send the computed
control inputs to the motor controllers.
The whole-body MPC tracks task space trajectories. If the
target application does not require a specific timing, we
augment the reference paths with timestamps such that a
maximum linear and angular velocity is not exceeded.

C. Trajectory Tracking

We mounted a paintbrush to the end-effector and sprayed a
pattern onto a whiteboard to showcase a continuous manipu-
lation task. To solely evaluate the controller performance and
disregard the problem of global localization, we command
the spraying path relative to the initial end-effector pose.
We measured the accuracy of the position and orientation
tracking on 6 reference trajectories of 1.5m length. Table I
shows the mean positional and rotational deviations and their
standard deviations of 200 recorded end-effector poses from
the reference trajectory.

D. Collision Avoidance

We first evaluate the performance of the caching extension
to Voxblox and compare them to the default implementation
as a baseline. Afterwards, we demonstrate in a gazebo
simulation experiment that given the same task, different
behavior emerges when planning with an without collision
constraints. Finally, we show in a hardware experiment, that

3https://bitbucket.org/leggedrobotics/ocs2
4https://github.com/joaoleal/CppADCodeGen



(a) Robot reaching underneith the table in
experiment A to B with the SLQ method.

(b) Experiment A to C: The visualized
path shows the planned end-effector poses
of the whole-body motion plan.

(c) Experiment B to C: The light blue line
shows the RRTX end-effector path that the
SLQ-MPC tracks.

Fig. 2: Collision avoidance in ESDF maps: The robot tracks a desired end-effector path between a start and a goal poses
(A,B,C). Collision checks are performed at 12 points on the manipulator, depicted with red spheres.

Fig. 3: Collision avoidance hardware experiment: The robot reaches underneath the table. The base first moves back such
that the arm does not collide with the top of the table.

the whole pipeline runs in real-time and how collisions with
an obstacle are avoided.

1) Voxblox Caching Benchmark: For the following ex-
periments, we generated a ESDF from a gazebo world. The
ESDF contains about 106 voxels with a side length of 5 cm.
Computing the gradients for each voxel took 575ms in total.
Caching the hessians as well took 2887ms. Note that in
an online scenario, we would typically not recompute all
gradients and hessians when the ESDF changes but only
update the affected region.
We measured querying times of distances and gradients with
the Voxblox standard interpolation methods and our caching
methods. Table II shows the results for 1,000,000 queries
each. Querying distances and gradients is significantly faster
using the local linear or quadratic models based on the
cached values rather than employing the interpolation scheme
of the default Voxblox implementation. Even though the
query time of the linear and the quadratic model are very
similar, we opted for the linear models to get distance
and gradients for collision avoidance. There was no visi-
ble improvement in the smoothness of the generated MPC
trajectories when using the cached hessians as well.

2) Simulation Experiment: We compare the proposed
method to two standard approaches in path planning. Our
simulation environment contains a table and we define three
end-effector poses A, B, and C. The benchmark task is to
plan a collision free whole-body trajectory between those
poses. Collision checks are performed on 12 points of the

TABLE II: Comparison of the query times between the de-
fault Voxblox implementation and our method with linear and
quadratic models based on cached gradients and hessians. We
report durations for 106 queries each. For all three query
types, our methos is significantly faster than the default
implementation.

Method T [ms]
Distance Interpolation (default) 491
Distance, Linear Model (our method) 58
Distance Interpolation, Gradient at voxel center (default) 1047
Distance and Gradient, Linear Model (our method) 71
Distance and Gradient Interpolation (default) 3559
Distance and Gradient, Quadratic Model 68

arm. We interpolate linearly between the start and goal pose
for an end-effector reference path as the input to the SLQ
whole-body planner. Alternatively, we plan a collision free
end-effector path with a RRTX planner in ℜ3 and use this
path as an input to our method. We refer to this method as
SLQ_RRTX_EE. The end-effector orientation remains to be
interpolated between start and goal pose. A planning horizon
of 1 s is sufficient to find a near optimal reference path for our
test scenarios. The SLQ planning horizon is set to 8 s which
is sufficient to plan the entire trajectory for each benchmark
task.
The two methods we compare our work to are the sam-
pling based planners RRTX[20] and BiFMT [21]. For both
planners, we define a SE(2) × R6 state space and employ



uniformly distributed sampling within the robots joint limits
and bounded base workspace [−2.5m, 2.5m]2. The sampling
time for RRTX is set to 200 s. We count a plan as successful
if the final pose does not deviate from the goal pose by 0.5m
and 0.5 rad. The BiFMT requires a valid goal configuration
to perform the bidirectional search. We provide collision free
start and goal configurations for each goal pose A, B, and
C. The number of samples to be drawn is fixed and set to
10000. All other parameters are set to default as specified in
the OMPL[26] version 1.4.2. The optimization criterion for
both planners is a minimal path length in the configuration
space. We use the same metric to compare the results of our
planner with the baseline.
For each combination for planner and task, 10 experiments
were conducted. Table III reports the averaged results. The
SLQ method is successful in all trials for 2 tasks. It outper-
forms the baseline solutions both by yielding in shorter paths
and with a faster computation time. The per-iteration time
is short enough to run the planner as a model predictive
controller. The task B to C can not be solved with the
SLQ method, since the obstacle avoidance would require
a large deviation from the end-effector reference path. The
SLQ_RRTX_EE method can solve all posed tasks and yields
slightly shorter paths and significantly faster convergence
compared to the plain SLQ method. RRTX does not perform
well on the tasks because randomly sampling valid states in
the goal region is difficult in the high dimensional config-
uration space. BiFMT works better since the goal state is
already fixed and it merely needs to find valid intermediate
states.

3) Robot experiment: We repeated the A to B experiment
on hardware. The robot receives a command to reach under-
neath a table and has to adapt its posture to not collide with
the table. Figure 3 shows the motion sequence during the
experiment.
Voxblox processes incoming point-clouds from the depth
camera at a rate of 1Hz updates the ESDF. We cache
gradients at the same rate. Since the map is smaller than
in simulation, caching times are neglectable. In contrast to
the simulation experiment, we commanded a 6-Dof end-
effector pose trajectory. The emerging behavior is similar
to the one observed in simulation. Once the obstacles are
close enough, such that a collision would occur within the
planning horizon, the robot moves back with the mobile base
and stretches our the base to avoid a collision of its forearm
with the edge of the table.

E. Task-Space Admittance Control

The admittance control scheme requires the controller to
quickly react to changes of the measured interaction force.
The update rate of the MPC is therefore increased to 100Hz.

1) Unlocking a door: For an integration test, we com-
manded the robot to open the door of an industrial cabinet.
It first reaches for the handle by tracking a task space
trajectory and then turns the door handle with the admittance
control strategy. The experiment is featured in the video.
Admittance gains of Kp = 10−3I3, Ki = 10−2I3 and anti-

Fig. 4: The robot exerting forces with its end-effector . The
desired interaction force increases in 10Nm increments. A
wide range of forces can be tracked with high accuracy.

windup limits of 3N were chosen to control forces in all
directions. For the torques, we chose Kp = 10−2I3, Ki =
10−1I3 and anti-windup limits of 1Nm. The strategy for
turning the handle was to command an end-effector path that
roughly describes the desired motion. Due to uncertainties
in the handle location, the grasping pose and the robot’s
state estimate, the path could not be executed by just using
position control. The desired wrench was set to 0. The P-
gains would cause a steady-state error in wrench tracking
and render a spring-like behavior between the handle and the
current pose reference. The I-gains damp the system. Low
integrator limits prevent a stationary exact wrench tracking
which would harm the pose tracking objective.
The admittance controller and some foam we attached to the
handle provided the necessary compliance to turn the handle.
Without the foam, we observed that the controller quickly
went unstable. Because the combined system of robot and
door is still very stiff, we had to command slow reference
motion and set the high control input weights R = 103I.

2) Continuous Interaction Force Control: For the follow-
ing experiments, we use a compliant end-effector tool. It
allows for lower input weights of R = 101I which makes
the controller more reactive.
The robot exerts force onto a white-board. While not chang-
ing the end-effector position reference, we increased the
desired force in 10N steps starting with 5N. Figure 4
shows the measured interaction force perpendicular to the
whiteboard over time. After overshooting on changes in
the force reference, the former is being tracked with high
accuracy. In the time interval [39 s, 49 s] the mean measured
force was 54.995N with a standard deviation of 0.369N.
Similar accuracies can be measured for the other force
references.
In another series of experiments, we command an end-
effector pose reference to move 1.5m along the whiteboard,
move 20 cm up and move 1.5m while exerting a constant
interaction-force of 30N. Figure 5 shows the recorded forces
over time, along with the end-effector position in world-
frame. After an initial peak in force when getting in contact



TABLE III: Comparison of our method (SLQ and SLQ with an RRTX end effector plan) against the baseline solutions RRTX
and BiFMT. We report average results from 10 experiments each. For SLQ and SLQ_RRTX_EE, we report the computation
time till convergence and additionally the time per iteration that is relevant for running the planner in a receding horizon
fashion.

Experiment Algorithm Success Rate Path Length[AU ] Clearance [m] Computation Time: [s] Iterations
AB RRTX 0.1 8.273 0.169 200 -
AB BiFMT 1 6.240 0.142 19.403 -
AB SLQ 1 3.561 0.056 1.376 (0.074) 18.7
AB SLQ_RRTX_EE 1 3.326 0.069 0.396 (0.035) + 1.0 11
AC RRTX 0.5 10.394 0.158 200 -
AC BiFMT 1 6.016 0.209 16.925 -
AC SLQ 1 5.383 0.058 1.018 (0.056) 18.1
AC SLQ_RRTX_EE 1 4.819 0.0524 0.4009 (0.027) + 1.0 14.7
BC RRTX 0.6 10.138 0.16 200 -
BC BiFMT 1 7.390 0.187 23.106 -
BC SLQ 0 1.478 -0.001 0.838 (0.064) 13
BC SLQ_RRTX_EE 1 4.0134 0.098 0.100 (0.014) + 1.0 7

Fig. 5: Continuous end-effector motion along a wall, while
maintaining a constant interaction force. The upper plot
shows the interaction force in z direction over time. The
lower plot shows the tool’s vertical and horizontal position
on the wall. After overshooting during contact establishment,
the desired force is tracked reliably. At t = 40 s, there is a
small perturbation due to play in the end-effector tool from
which the controller quickly recovers.

with the wall, the robot tracks the reference force reliably.
The mean force measured from t = 5 s on is 29.91N and
the standard deviation 0.42N. A small disturbance is caused
by an undesired flipping of the sponge around t = 40 s.
Recordings of this experiment are included in the video.

F. Mechanical Stability

We assess the effectiveness of the ZMP constraint in a
simulated grasping experiment. After an initial rotation of
the end-effector by 90 deg, the robot has to reach 1m to
the front, grasp an object of 100 kg and retreat 1m. The
MPC is informed about the additional mass by increasing
the reference force fEE to 1000N in the direction of gravity
at the grasping time.
In a base-line experiment without the ZMP constraint, we
observe that the robot stretches out the arm when approach-
ing the target and then falls after grasping the object. With
the constraint active, we conducted a series of experiments
in which we subsequently increase the planning horizon

Fig. 6: Distance of the ZMP from the center of the support
polygon. At t = 8.5 s, the robot grasps a heavy object.
Without the stabiliy constraint, the ZMP moves outside the
support polygon and the robot falls. The larger the prediction
horizon of the MPC, the better it can prepare for the grasp
by shifting its COM. For time horizons larger than 1.5 s, the
constraint is satified and the robot does not fall.

from 0.5 s in 0.5 s increments to 3.5 s. The support circle
radius is set to 30 cm for the soft constraint. We count an
experiment as successful, if the ZMP does not leave a circle
of radius 31 cm. Figure 6 shows the distance of the ZMP to
the center of the support polygon over time for the different
experiments. The stability constraint causes the robot to
move to a configuration where the COM balances out the
large external force at the end-effector. A time horizon of
2 s or more gives adequate time to prepare for the expected
external force and the robot remains in balance. For shorter
time horizons, velocity limits prevent the robot from shifting
into a safe configuration prior to the grasping moment and
the robot falls.

IV. CONCLUSIONS

We presented a perceptive model predictive control strat-
egy for mobile robots. End-effector task-space trajectories
can be tracked while respecting joint and stability constraints.
In multiple hardware experiments, we showed how this



Fig. 7: First results in robotic plastering. The robot applies
plaster on the wall with a spraying nozzle.

enables mobile robots to execute tasks that exceed the
workspace boundaries of fixed based systems.
Querying cached distances and gradients from a euclidean

signed distance field proved to be an efficient method of in-
troducing awareness of the robot’s surrounding to a receding
horizon controller. We achieve an order of magnitude speed-
up at query time compared to the state of the art solution.
This allows us to plan around obstacles as shown in the
hardware experiment, while preserving the advantages of a
reactive controller.
The admittance control module enables precise interaction
force control with a position-controlled manipulator on a
mobile base. To our best knowledge, this is the first demon-
stration of receding horizon admittance control on a mobile
robot. We want to use those capabilities for construction
robotics tasks such as plastering. Figure 7 shows the first
successful results for spraying plaster. A mobile robot will
trowel the plaster with the presented method. Future work
could model the contact of the compliant end-effector tool
and add a spring compression state to the model predictive
controller.
The open-source toolbox allows for fast integration of the
presented control strategies into other robotic platforms. This
simplifies the deployment of mobile manipulators in different
application domains.
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