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Abstract— Semantic segmentation is key in autonomous driv-
ing. Using deep visual learning architectures is not trivial in
this context, because of the challenges in creating suitable
large scale annotated datasets. This issue has been traditionally
circumvented through the use of synthetic datasets, that have
become a popular resource in this field. They have been released
with the need to develop semantic segmentation algorithms able
to close the visual domain shift between the training and test
data. Although exacerbated by the use of artificial data, the
problem is extremely relevant in this field even when training
on real data. Indeed, weather conditions, viewpoint changes
and variations in the city appearances can vary considerably
from car to car, and even at test time for a single, specific
vehicle. How to deal with domain adaptation in semantic
segmentation, and how to leverage effectively several different
data distributions (source domains) are important research
questions in this field. To support work in this direction,
this paper contributes a new large scale, synthetic dataset for
semantic segmentation with more than 100 different source
visual domains. The dataset has been created to explicitly
address the challenges of domain shift between training and
test data in various weather and view point conditions, in
seven different city types. Extensive benchmark experiments
assess the dataset, showcasing open challenges for the current
state of the art. The dataset will be available at: https:
//idda-dataset.github.io/home/.

I. INTRODUCTION

With the latest advancements in Deep Learning, we are
starting to see a glimpse of what the future of the automotive
industry might look like: self-driving cars that increase travel
safety, reducing, if not nullifying, accidents. To achieve this
ambitious goal, cars need to be aware of the environment
that surrounds them in order to take the most appropriate
action in each different situation.

Even though object detection/recognition based ap-
proaches [1] are very precise and reliable in some cases,
they are not enough to accomplish such objective. A more
profound comprehension of the scene is necessary if we want
fine-graned decisions capabilities, e.g. deciding to go against
a fence instead of a wall after a maneuver done to avoid a
vehicle or a person.

Semantic Segmentation (SemSeg) [2] is a technology that,
by classifying each individual pixel of the scene instead
of just recognizing the main actors (such as vehicles and
pedestrians), can enable driving systems to reach a better
understanding of the whole view. Given the broad variety
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Fig. 1. The IDDA dataset. An example with an RGB image and its
corresponding semantic and depth maps.

of driving conditions encountered in the real world, it is of
paramount importance for these SemSeg algorithms to be
able to generalize well and also cope with the inevitable
domain shifts. On one side, this implies developing more
effective domain adaptation (DA) techniques [3] that are able
to cope with such a diversity of unpredictable scenarios. On
the other, this requires datasets with a large amount of labeled
data from a diverse set of conditions to support the training
and evaluation of such techniques.

However, obtaining real labeled data in large quantities
is far from trivial. Firstly, it is both arduous and costly to
deploy multiple vehicles to collect images from a multitude
of weather, lighting and environmental conditions.

Secondly, the task of manually classifying each image
is excessively time-consuming, with a duration that can
range from 60 to 90 minutes per image, as it was for the
CamVid [4], [5] and Cityscapes [6] datasets respectively.
Lastly, the accuracy of the manually produced labels might
be inconsistent throughout the dataset.

All these reasons, together with the level of fidelity
reached by 3D graphical engines, have fostered the creation
and adoption of synthetic datasets for SemSeg [7], [8]. Fur-
thermore, automatically producing the labels directly from
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TABLE I
SUMMARY OF THE MOST POPULAR DATASET FOR SEMANTIC SEGMENTATION

Semantic Segmentation Data Variety

Dataset Year Size Depth Resolution
(pixels) FoV #Classes Annotation

Time (min)
#Annotated
Pixels (109)

#Weather
Conditions #Envs #Viewpoints #Selectable

Domains
#images
(avg*scene)

Real-World Dataset

CamVid 2008 701 No 920×720 - 32 60 0.62 1 1 1 1 -

KITTI 2012 400 Yes 1392×512 - 33 - 0.07 1 1 1 1 -

Cityscapes 2016 5k fine
20k coarse No 2048×1024 90° 33 90

7
9.43
26.0 - 50 1 50 160

Mapillary Vistas 2017 25k No ≥ 1920×1080 - 66 94 - - - - 1 -

BDD100K 2018 10k No 1280×720 - 40 - - 6 4 1 1 -

ApolloScape 2018 144k Yes 3384×2170 - 25 - - - 1 1 3 29k

A2D2 2019 41k No 1920×1280 120° 38 - - - 3 6 (different horizontal position) 23 1.7k

Synthetic Dataset

Virtual KITTI 2016 21260 Yes 1242×375 29° 14 - - 5 5 4 (different horizontal rotation) 50 426

Synthia-Rand
Synthia-Seqs 2016 13,400

200k Yes 960×720 100° 13 Instant 147.5 -
10 4 8 (different horizontal position) 1

51
-
8k

GTA V 2016 25k No 1914×1052 - 19 7 50.15 - 1 - 1 -

IDDA 2020 1M Yes 1920×1080 90° 24 Instant 2087.70 3 7 5 (different camera heights) 105 16k

the objects in the 3D engine allows to have perfect labeling
and to easily add new classes. The downside of this approach
is that models trained solely on virtual datasets have the
tendency to perform very poorly in real case scenarios,
suffering from the domain shift, even though ways to tackle
these issues are being developed in the form of domain
adaptation and generalization.

In our work we propose “IDDA” (ItalDesign DAtaset),
a large synthetic dataset counting over one million labeled
images as the sum of more than a hundred different scenarios
over three axes of variability: 5 viewpoints, 7 towns and
3 weather conditions. The variety it offers allows for a
deeper analysis and benchmarking of the performances of
the current and future state-of-the-art SemSeg architectures,
with a strong focus on DA tasks. For these reasons we
believe that our dataset can bring a valuable contribution
to the research community. The dataset, the experimental
setups and all the algorithms used in this paper will be
made publicly available through the dedicated webpage. The
webpage will be periodically updated with new results and
benchmark settings, with the explicit intention to make IDDA
the reference resource for studying domain adaptive SemSeg
in the automotive scenario.

To summarize, the main contributions of this paper are:

• the creation of the largest synthetic dataset for semantic
segmentation currently available, featuring more than
1M images, more than 100 different combinations of
scenarios, and fine pixel-wise semantic annotations and
depth maps. The scenarios are well-divided using the
three variability factors: weather condition, location and
camera height.

• the evaluation of the performances of the current state-
of-the-art SemSeg models with their DA variants, as-
sessing how useful the dataset proves to be for bench-
marking purposes, especially for a single-source DA
task. We demonstrate how our dataset could potentially
be employed to evaluate other tasks, such as multi-
source DA or domain generalization.

II. RELATED WORK

The rapidly growing interest in the application of SemSeg
to autonomous driving has led to the release of several
datasets targeting this application (see Tab. I). Early datasets,
such as CamVid [4], [5] and KITTI [9], while containing
more than 30 classes of labeled objects, consisted of less
than 1k semantically annotated images in low resolution and
with little variability. The release of Cityscapes [6], with 5k
finely annotated images and 20k coarsely annotated ones,
led to the first benchmark to test SemSeg for autonomous
driving.

The success of Cityscapes was later followed by the
release of larger datasets from academic research (BDD100K
[10]), image providers (Mapillary Vistas [11]) and auto-
motive industry (Apolloscape [12], A2D2 [13]). Despite
the availability of multiple datasets, none of these has yet
provided a good benchmark to evaluate how well a SemSeg
network performs when tested on a different domain. Some
datasets, such as CamVid, KITTI or Apolloscape, simply
lack variability since they contain images taken from a single
city or point of view. Others, such as Mapillary Vistas and
BDD100K, that offer scene diversity but lack a way to easily
pick scenarios from different domains, or Virtual KITTI [14],
that provides few images per scenario, make it hard to use
them to evaluate DA approaches.

The problem of collecting and labeling large quantities
of images with a rich diversity of conditions has led to
the creation of datasets based on 3D games engines such
as SYNTHIA [8] and GTA V [7]. Using data from game
engines also allows to get finely annotated images without
the cost of manual labeling. Unfortunately, even these two
datasets have limitations for what concerns their use to eval-
uate DA. GTA V does not currently offer the possibility of
picking scenes from different domains whereas SYNTHIA-
Seqs only contains low resolution images and few labels.

In comparison to these prior datasets IDDA is designed
to provide a benchmark to test not only the generalization
capabilities of SemSeg architectures, but also to assess how



Fig. 2. Samples for any instance of variety provided by the IDDA dataset. On the row the 5 viewpoints (Audi, Mustang, Jeep, Volkswagen T2 and Bus),
on the column the 7 environments (from Town1 to Town7). Images iterate over the 3 weather conditions (Clear Noon, Clear Sunset and Hard Rain Noon).

well they adapt to a domain shift. Our large-scale dataset
consists of more than 1 FHD million images and it offers
multiple domains easily and separately selectable. Together
with each RGB image the dataset contains also its respective
depth map and its high-quality semantic annotation for a total
of 24 semantic classes, as shown in Fig. 1.

III. DATA CREATION

A. The virtual simulator

The simulator used for the generation of the dataset
is CARLA [15] (version 0.8.4 and 0.9.6), an open-source
project developed to support prototyping, training, and val-
idation of autonomous driving systems. The motivation be-
hind the choice of this simulator is the high degree of
customization that it offers: the developer can set the number
of pedestrians and vehicles, the environment conditions, the
map and the speed of the simulation. Moreover, CARLA
uses Unreal Engine 4 which is the current state-of-the-art in
computer graphics. From a practical perspective, CARLA
is based on a client-server architecture, where the client
controls a chosen individual agent (player) while the server
simulates the world and the remaining agents. This split
allowed us to focus on implementing a custom made data-
collection client without rewriting the server.

B. Data-Collection Client

Our client can start new simulations (episodes), defining
each time the parameters and the meta-parameters. The
number of frames captured by the player in each episode
is limited by the client depending on the size of the town:
the smaller the town the fewer the images (i.e. the shorter the
episodes). Furthermore, to create different traffic scenarios,
each episode is initialized with a random number of vehicles
and pedestrians in the range of [20, 150] and [0, 100],
respectively. Lastly, players are spawned in new locations
and in each episode the distributions of the vehicle models

and colors keep changing. These choices were made to limit
the occurrence of deadlocks and, thus, the times in which
the ego vehicle is stationary for any reason. Overall, these
factors ensure that the collected data is rich and diverse.

The client also specifies the sensors equipped on the player
vehicle. Out of all the sensors available in CARLA, for the
creation of the dataset we used an RGB camera, a semantic
segmentation sensor and a depth sensor, all with a field-of-
view (FoV) of 90 degrees. The semantic segmentation sensor
produces instantly pixel-wise labeled images directly from
the blueprints of the objects in the Unreal Engine. The depth
sensor provides images that codify depth in the 3 channels of
the RGB color space, from the least to the most significant
bytes: R > G > B.

The sensors are mounted coincidentally on the player’s
windshield, roughly at the height of the rear-view mirror.
Since we used 5 different player vehicle models to collect the
data (two sport cars, a jeep, a minivan and a bus), the camera
height ranges between 1.2 and 2.5 meters. Additionally, the
portion of the image occupied by the player’s hood varies
depending on the model of the vehicle, ranging from 11.08%
to 13.99% when the hood is visible (sedans and jeep) and
equaling 0% in the other cases.

All sensors are synchronized to capture a frame every 3
seconds, leading to episodes lasting from 3 to 4 minutes each
(simulation time).

At the moment of capture, six frames are simulta-
neously stored: one RGB, three depth (raw, grayscale,
and log-grayscale), two semantic (raw and colored using
the Cityscapes color palette). For the RGB camera, post-
processing effects such as bloom, lens flare and motion blur
are applied in order to increase the realism of the images.

IV. THE DATASET

IDDA (ItalDesign DAtaset) consists of 1,006,800 frames
taken from the virtual world simulator CARLA. The creation



Fig. 3. The tSNE representation of the 105 different IDDA’s scenarios.
Inside the circles are the domains tested in Sec. V-A.

of the dataset lasted about two weeks on two workstations,
each equipped with a single NVIDIA Quadro P5000 GPU
with 16GB of memory. In terms of quantity of frames, IDDA
is 2 orders of magnitude larger than GTAV [7] and SYN-
THIA [8] and 5 order of magnitude larger than semantically
annotated images in KITTI [9]. Most importantly, IDDA
features many scenarios spanning different cities, weather
conditions and viewpoints, so as to support the development
and evaluation of single or multi-source DA techniques
applied to SemSeg.

A. Data Diversity

The 105 scenarios composing IDDA (examples in Fig. 2)
are obtained by varying three aspects of the simulation.

Towns. The frames of the dataset are collected across
seven different towns. Town1 (T01) and Town2 (T02) are
characterized respectively by 2.9 km and 1.4 km of drivable
roads with buildings, bridges, vegetation, terrain, traffic signs
and various kinds of infrastructures. Town3 (T03), Town4
(T04), Town5 (T05) and Town6 (T06) are characterized
by a complex urban scene with multi-lane roads, tunnels,
roundabouts, freeways and connection ramps. Lastly, Town7
(T07) stands out from the rest because it depicts a bucolic
countryside with narrow roads, fewer traffic lights and lots
of non-signalized crossings. We believe that this entirely
different domain is one important novelty provided by our
dataset with regards to the autonomous driving task. All the
seven cities are populated by vehicles and pedestrians.

Weather Conditions. We considered three weather set-
tings that differ significantly from each other: Clear Noon
(CN), characterized by bright daylight, Clear Sunset (CS),
with the sun low above the horizon and pink/orange hues,
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Fig. 4. Number of high-quality annotated pixels (y-axis) per class (x-axis).

and Hard Rain Noon (HRN), with a cloudy sky, intense rain
and puddles that cause reflections on the floor.

Viewpoints. The third parameter that is varied to create
the scenarios is the player vehicle. For each vehicle we
positioned the sensor system approximately at the height of
the rear-view mirror. We used five player vehicles that differ
significantly in their height and shape, i.e, an Audi TT (A),
a Ford Mustang (M), a Jeep Wrangler (J), a Volkswagen T2
(V) and a Bus (B). This choice guarantees not only that the
resulting images have distinct perspectives, but also that the
hood of the player vehicle, if visible1, is dissimilar in both
shape and color. To the best of our knowledge, the inclusion
of images not only from the perspective of cars but also
jeeps, vans and buses is a a unique feature of IDDA and it
adds a whole new dimension of variability.

We use tSNE [16] to visually examine and evaluate the
diversity of all the 105 available scenarios. To do so, we
train a ResNet101 [17] from scratch, using 1000 samples
from each scenario, with the sole task of classifying the
domain of origin for each frame. Then, for each scenario, we
compute its mean feature vector using 500 samples randomly
taken from its validation set. Finally, we apply PCA, take the
first 50 principal components and project them into a more
intelligible 2D embedding. Fig. 3 presents a drawing of this
embedding that intuitively shows the inherent domain shift
that exists among the different scenarios. There is a strict
correlation between the gap observed in the distribution of
the domains in Fig. 3 and the results in terms of mIoU.
Even if at a different scale, the similarity with Fig. 5, in
which tSNE is computed only for handpicked sub-domains,
is clearly discernible. In the experiments section we will
demonstrate that this shift is strictly related to the results.

B. Semantic Segmentation

One of our goals in the creation of IDDA was to build
a competitive dataset in terms of the range of recognizable
items within a scene. In particular, we wanted to increase the
default number of semantic classes provided by the simulator
and get it as close as possible to the ones in Cityscapes or
in GTA V. In order to achieve this result we made changes
in the 3D maps themselves and we modified and rebuilt the
source code of the simulator so that each static and dynamic
element would be identified and tagged the moment before
being spawned inside the virtual world. This strategy allowed
us to increase the number of tags provided by the simulator

1The hood is not visible in the case of the Bus and the Volkswagen T2.



from the original 13 to a total number of 24 semantic classes.
The distribution of classes in the IDDA dataset is analyzed
in Fig. 4. It is clearly distinguishable that the predominant
classes are building, road, vehicle, vegetation, terrain and
sky. Other useful statistics are synthesized in the Tab. I.

V. EXPERIMENTS

We demonstrate the main features and potential applica-
tions of IDDA with two experiments. In the first one we want
to verify that the scenarios available in IDDA are an effective
tool to validate and benchmark how well SemSeg methods
can adapt to domain shifts in driving applications. To do so,
we selected several state-of-the-art networks, both with and
without DA, and we looked at the performance degradation
when the train and test sets are taken from different scenarios.
With the second experiment we use the scenarios available
in IDDA to investigate how different data distributions in
the synthetic source domain affect the performance of a
network on a real target domain. For this purpose we use
the same networks from the first experiment but test them
on Cityscapes, BDD100K, Mapillary Vistas and A2D2.

Evaluated methods. For the experiments we use eight
state-of-the-art SemSeg architectures. Four of these networks
do not implement DA, i.e. PSPNet [18], that introduces a
Pyramid Scene Parsing module, PSANet [19], that proposes
a point-wise spatial attention network to gather information
from all the positions in the feature maps and DeepLab V3+
[20], that implements the Atrous Spatial Pyramid Pooling
module. The fourth SemSeg architecture included in our
experiments is DeepLab V2 [21] with a ResNet-101 [17]
as backbone, because this is the main building block for all
the chosen DA methods.

The remaining four architectures are some of the best
performing unsupervised DA models: ADVENT [22], DISE
[23], CLAN [24], and DADA [25]. Each approach achieves
its goal in a different way with respect to the others: both
ADVENT and DADA use an entropy minimization technique
with the help of an adversarial task, but the latter also
takes advantage of depth information, DISE unravels images
into domain-invariant structure and domain-specific texture
representations, allowing for label transferring, and CLAN
takes into account the local semantic consistency when
pursuing the global alignment of the distributions, reducing
the negative transfer side effect, that is the misalignment of
features that were already aligned well prior to the mapping.

Experimental setup. For each network we used the hyper-
parameters reported in its original paper, so as to obtain a fair
evaluation of the performances. For all the DA architectures
the official implementation provided by the authors is used,
whereas for the SemSeg-only part of the experiments re-
implementations in PyTorch are used.

To better compare with Cityscapes, since it is the main real
dataset for benchmarking SemSeg for autonomous driving,
we excluded from our experiments those classes that were
either ambiguous (dynamic, static, other) or not present in
the reference dataset (road line). We ended up considering
the 16 labels in Fig. 4.

TABLE II
SCENARIOS DISTANCES

Case

Distance Function Viewpoint Change Weather Change City Change

Euclidean 2.7604 5.6555 6.4551

Cosine 0.2590 1.2633 1.0586

Bhattacharyya 0.0149 0.0337 0.0426

Fig. 5. The tSNE representation of the 5 chosen scenarios to assess IDDA.

To quantify the distance between source and target domain
(similar to 3.1 in [26]) we extract, using ResNet-101 [17]
pretrained on ImageNet, the features of the first 500 samples
of each domain and we reduce the dimensionality (using
PCA) taking the first 50 principal components. Then we
proceed in two directions: in one case we compute the mean-
feature vector for each domain and we measure the Euclidean
and the Cosine distances, in the other case we compute the
feature-wise Bhattacharyya distance.

Lastly, in all the experiments the performance is measured
using the mean Intersection over Union (mIoU) metric.

A. Assessing IDDA

We test the ability of the selected networks to adapt to a
new domain by considering three cases that cover the three
variability factors:

• the first, tests the viewpoint change (from A as source to
J as target), fixing background and weather (T01, CS);

• the second, tests the weather shifting (from CS as source
to HRN as target), fixing viewpoint and background (J,
T01)

• the third, considers two scenarios that take place in
different environments (T01 as source and T07 as
target), fixing viewpoint and weather (A, HRN);

We used the method detailed in the section V to measure
numerically the distance and the difficulty of the three cases
(see Tab. II). As a visual confirmation, we use tSNE to
project the features extracted with the ResNet-101 into a
more comprehensible 2D space (see Fig. 5).

The results of the experiments are reported in Tab. III.
As expected from the distance computation, the shift across
cities, made even more challenging by the rainy condition,
produces a higher degradation in performance than the other
two experiments. In the town shift the SemSeg networks
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TABLE III
ASSESSING IDDA EXPERIMENT RESULTS

Semantic Segmentation Networks Scenarios (% mIoU)

Viewpoint Change Weather Change City Change

Source:
Target:

T01 CS A
T01 CS J

T01 CS J
T01 HRN J

T01 HRN A
T07 HRN A

w/o DA

DeepLab V2 62.60 40.24 21.65

DeepLab V3+ 64.93 33.93 14.27

PSPNet 67.32 29.65 14.64

PSANet 66.88 33.60 15.52

DeepLab V2 (source=target) 79.13 78.31 78.02

w/ DA

DADA 66.42 55.87 36.48

ADVENT 68.43 61.13 39.30

CLAN 70.30 65.52 41.18

DISE 73.64 71.91 46.71

struggle to correctly classify the scene and their accuracy
drops as low as 14%. In this case DA produces a considerable
boost with an averaged accuracy of 40%. This trend is
repeated within the shift across weathers but, since the gap
among source and target domain is smaller, the resulting
average mIoU is of 34%. In this case DA performs quite well,
giving as outcome an averaged 63%. Lastly, the viewpoint
change proves to be the best performing set of experiments,
so the addition of DA increases the average accuracy by
only 4%. Among all of the DA networks, DISE proves to be
the most capable while the depth information exploited by
DADA does not seem to improve the performance.

Fig. 6 illustrates some qualitative results of our experi-
ments. Looking at the output produced we can highlight two
interesting problems that seem to affect the SemSeg networks
and their generalization capability. Considering the viewpoint
change, all the SemSeg models without DA struggle to clas-
sify well the portion of the image occupied by the hood of

the vehicle, improperly classifying it as a building. Moreover,
when changing the scenario and moving to a countryside
scene with vegetation in place of roadside and sidewalks
(“city change” case), we observe that, during training, all
the networks (with the only exception of DeepLab V2)
learned and memorized the pattern “building-sidewalk-road”
of the source scenario. Therefore, when moving to the target
environment they are not able to adapt and tend to incorrectly
classify the terrain as sidewalk.

The diversity of our dataset and the possibility to simulate
various kind of real scenario has made it possible to gain this
kind of insight. Furthermore, we have demonstrated the lim-
itations of the actual state-of-the-art SemSeg networks and
how IDDA could be a powerful tool to validate the adaptation
performances to a domain shift in driving applications.

B. Synthetic vs. real scenarios
In the second experiment we test how well the networks

trained on a synthetic dataset can adapt to a real one. In
particular, we consider two cases, each using a source domain
obtained from a combination of several scenarios in IDDA:

• the first, called “best case”, is a mixture of samples with
similar environmental conditions to the target domains,
counting a total of 29,952 elements sampled in a strat-
ified fashion and taken only from urban environments
(T01-T06), with a car-like point-of-view (A or M) and
clear weather conditions at noon (CN);

• the second, called “worst case”, has a higher visual dis-
crepancy w.r.t. the target samples and it counts 40,128
samples taken from the previously excluded countryside
town (T07), with a hooded and a non-hooded point of
views (J and B) and rainy conditions at noon (HRN).

Tab. IV and Fig. 7 show numerically and visually the
distance among the dataset distributions. When evaluating



TABLE IV
DISTANCES BETWEEN IDDA AND REAL DATASETS

Distance
Function

Dataset

Cityscapes BDD100K Mapillary A2D2

Best
Case

Euclidean 7.4419 7.6177 5.4493 6.3874

Cosine 1.3582 1.6209 1.2924 1.0589

Bhattacharyya 0.0552 0.0502 0.0106 0.0447

Worst
Case

Euclidean 8.2360 7.7618 4.9548 7.0150

Cosine 1.5465 1.5526 0.9147 1.1849

Bhattacharyya 0.0498 0.0381 0.0267 0.0387

Fig. 7. The tSNE representation of the distributions of synthetic and real
datasets.

the performance on the target datasets, we ignored all labels
not included in Fig. 4 and labeled all four-wheeled vehicles
as our semantic class “vehicle”. For A2D2 we considered
only 13 labels due to its labeling inconsistencies with IDDA,
e.g. the complete absence of class “rider” and “wall” and
the union of “vegetation” with “terrain”. Results are in Tab.
V. With the SemSeg-only architectures we can measure
a drop in performance of 30.97% on average in the best
case (not considering the A2D2 experiments since a fair
comparison in terms of mIoU cannot be done due to the
different evaluation setup). As it can be seen in Fig. 8c
(best case), the network struggles to disambiguate between
building, road and sidewalk, though it does an acceptable
job at recognizing pedestrians. Among the DA approaches,
DISE proves to be the most effective. Nonetheless, the gap
with the baseline is still remarkable and the improvements
introduced by DA are not enough to guarantee acceptable
performance. Interestingly, it seems that the additional depth
information exploited by DADA is helpful only in Mapillary
Vistas.

As expected, in the worst case the domain shift is much
more severe, with a maximum drop of 46.08% when tested
on Cityscapes. In this case, the SemSeg-only network fails
to even identify the road, confusing it with the “terrain” (see
Fig. 8c, worst case). This can be imputable to the relevant
textural differences of source and target domains. The impact
of DA is visually high, yet numerically we observe how
even the best performing architecture does not get close
to the baseline. We also note that in both Cityscapes and

TABLE V
SYNTHETIC VS REAL EXPERIMENT RESULTS

*CONSIDERING ONLY 13 LABELS

Source Networks Target

Cityscapes BDD100K Mapillary Vistas A2D2*

Same as target
(baseline) DeepLab V2 62.89 52.71 67.63 65.43

Best case

DeepLab V2 32.66 24.18 36.09 32.10

DADA 33.13 29.58 37.29 38.57

ADVENT 35.32 33.18 36.97 42.56

CLAN 39.26 33.47 39.42 44.31

DISE 42.07 40.09 41.70 46.73

Worst case

DeepLab V2 16.81 17.48 27.09 29.80

DADA 23.68 23.45 32.57 36.18

ADVENT 23.83 27.04 30.26 38.57

CLAN 25.75 30.70 30.88 42.71

DISE 31.25 31.37 33.72 45.49

BDD100K the best performing DA (DISE) almost doubles
the performances of the SemSeg-only architecture, but has a
much lower increase of performance in the case of Mapillary.
This suggests that the higher the performance of the SemSeg-
only networks, the lower the impact of DA. Overall the gap
remains of 28.96% on average, showing once again how DA
techniques still have to work to achieve adequate results.

Looking at the A2D2 results, the SemSeg-only architecture
shows a drop in performance close to 30% both in the Best
and Worst cases. The domain shift in the Worst case is a little
less severe than Cityscapes and BDD100K, and more similar
to Mapillary. This can be imputed to an higher presence of
roads out of town, decreasing the difference among A2D2
and the Worst case distribution.

VI. CONCLUSION

This paper presents IDDA, a synthetic database explic-
itly designed for supporting research in domain adaptive
semantic segmentation for autonomous driving. With 105
different domains, it is the largest existing dataset supporting
this research. As shown in the experiment section, it lends
itself well to the benchmark of wide range of domain
adaptation study cases, due to the domain gap that exists
both among scenarios inside IDDA and with respect to a
real dataset. Furthermore, the constant development of the
simulator allows for a further expansion of the currently
available scenarios, for instance by adding a night view, new
environments or sensor types (such as LIDAR).
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Adversarial entropy minimization for domain adaptation in semantic
segmentation,” in CVPR, 2019.

[23] W.-L. Chang, H.-P. Wang, W.-H. Peng, and W.-C. Chiu, “All about
structure: Adapting structural information across domains for boosting
semantic segmentation,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

[24] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look
at domain shift: Category-level adversaries for semantics consistent
domain adaptation,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[25] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Pérez, “Dada: Depth-
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