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Abstract— Programming cooperative tasks for autonomous
swarm robotic systems has always been challenging. In this
paper, we introduce a concept ‘Actor’, as a virtualization for
robot platforms. Every robot platform in the swarm robotic
system carries out the task and interacts with others as
an Actor. We designed an Actor-based framework for the
management of autonomous swarm robotic systems including
modules and interfaces for the Actor, the collective Actor,
and task management. The Actor-based framework enables
task developers to explicitly model cooperative tasks without
intricacies about the detailed robotic algorithms or the specific
robot brands, and eases the burden on robotic algorithm
developers by providing common functionalities. The proposed
framework is implemented in C++ and validated quantitatively
and qualitatively with a swarm of thirty drones by simulations
and a swarm of ten drones by in-field tests.

I. INTRODUCTION

Swarm robotic systems, where each individual equipped
with a variety of sensors and executors, can cooperate
delicately to complete complicated tasks. Many applications,
such as target searching [1], disaster rescuing [2], and geo-
graphic mapping [3], benefit from the use of swarm robotic
systems. In comparison with a single robot system, swarm
robotic systems have advantages in collective intelligence,
fault-tolerance capability, and high efficiency. Sensors with
limited precision or range can be compensated by data fusion
with swarm robotic systems. The task of individuals can be
continued by other redundancy nodes in the swarm robotic
system in the case of failure upon interference or hostile
interruption. The efficiency of swarm robotic systems with
good scalability can be improved by increasing the size of
the system.

The swarm robotic system is a typical example of the
‘System of systems’. Developing software for such a com-
plex system is inherently complicated. To unlock the ad-
vanced features of swarm robotic systems in applications,
programming is challenging work. Unfortunately, available
tools for manipulating a swarm robotic system are rare.
Projects that use swarm robotic systems were solved case by
case, lacking the flexibility for application users to modify
the task. In fact, task developers for swarm robotic systems
only concern about collective behaviors of the system and
generally give orders to the whole system instead of specific
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robot platforms. Therefore intricacies of underlying robotic
algorithms and inter-robot communications should be hidden
as much as possible for task developers.

In this paper, we introduce the concept ‘Actor’, which is
the virtualization of robot platforms. The Actor encapsulates
robotic hardware resources and a group of algorithm plugins
that make use of these resources to manipulate robot behav-
iors. A robot platform carries out the task and interacts with
others as an Actor. The Actor helps in decoupling the task
from platforms in the swarm robotic system. Our research
exploits features of swarm robotic systems by developing
an Actor-based framework. The proposed framework aims
to enable task developers to explicitly model the task and
manipulate the system without intricacies about the detailed
robotic algorithms or the specific robot brands, and ease the
burden on algorithm developers by providing functionalities
such as autonomous member joining/leaving detection, reor-
ganization, conflict resolving, etc.

Our contribution can be summarized as below:
• We introduce a concept of Actor, to represent the high-

level virtualization for robot platforms. Each designed
Actor maintains a data structure, is bounded to different
plug-in groups, and is a basic unit for the management
of collective behaviors.

• We propose a mechanism for collective Actor manage-
ment. Robot platforms in a swarm robotic system are
organized effectively. Primitives for cooperative tasks
such as Actor-level synchronization are derived natu-
rally.

• We propose a domain-specific language (DSL) for
composing Actor-based tasks. Task developers can be
relieved from unnecessary details of manipulating indi-
vidual robots, and focus on complex swarm robotic task
coordination strategies.

• We implement the proposed framework in C++, and
validate it quantitatively and qualitatively by both sim-
ulations and in-field tests.

II. RELATED WORK

Robots nowadays have been introduced in many industrial
and service applications. Designing a flexible programming
model to develop robot algorithms and applications would
greatly boost the development of robotics. Robot program-
ming methods have attracted great interest in the last decade.
A wide range of tools and libraries were developed, such
as Miro [4], OROCOS [5], RSCA [6], RT-middleware [7],
Orca [8], ROS [9], etc. Among these tools and libraries, the
representative work is ROS (Robot Operating System) and its
successor ROS2. ROS adopts a modular and loosely-coupled
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Fig. 1: The architecture overview of the Actor-based framework.

communication interface, and a light-weighted framework
to support the reuse of robot drivers and algorithms. ROS2
incorporates a distributed communication middleware DDS
[10] to get rid of the centralized node required by ROS.
Recently, a robot operating system named ‘micROS’ [11],
[12] was introduced for collective and cooperative robot
systems based on ROS. A distributed architecture for the
whole system and a layered architecture for individual nodes
were proposed in ‘micROS’.

Swarm robotic behaviors can be programmed in two
different ways, namely the top-down and bottom-up methods.
With the top-down method, a task developer is responsible
for composing tasks and a centralized node is implemented
to interpret the program and dispatch sub-tasks to the swarm
robotic system. NVL [13] implemented a task orchestration
language for composing multi-vehicle tasks. NVL enabled
the dynamic selection of unmanned vehicles and the alloca-
tion of cooperative tasks, but its extensibility is limited. Dol-
phin [14] implemented a similar task orchestration language
which provided more primitives for firing tasks. It enabled
the extensibility to new robots with a flexible tool-chain.
Voltron [15], which was implemented for mobile sensor
networks, supported centralized control with code and data
replications. Besides, there were other similar programming
models that handled the coordination complexity with a
central node, including Kama [16], Tecola [17] etc.

With the bottom-up method, applications are programmed
from the robots’ own point of view and a decentralized
method is usually adopted. Individuals in the swarm robotic
system can cooperate with each other based on gathered
information and make decisions on their own. COROS
[18] implemented a software architecture for building new
distributed robotic applications on top of ROS. ALLIANCE-
ROS [19] combined ALLIANCE with ROS. It aims at
achieving distributed swarm robot cooperation and improv-
ing the software reusability. Buzz [20] is a domain-specific
language implemented for programming applications with
heterogeneous swarm robot systems. GSDF [21] is similar to
Buzz but implemented in C++ language, therefore it is more
compatible with available robotic libraries and tools, such as
ROS and DDS. ROSBuzz [22] combined Buzz with ROS. In
the bottom-up methods, collective behaviors emerge from the
programmed individuals’ behaviors. Therefore, it is difficult
to handle tasks on-demand and reprogramming is required
to cope with task modifications.

The Actor-based framework in this paper was initiated in
the micROS [11] development. In the Actor-based frame-
work, the DSL for task programming is designed for the
bottom-up approach. One significant feature of the Actor-
based framework, that distinguishes it from the above-
mentioned bottom-up methods, is the introduction of the new
control unit ‘Actor’, which makes a task-level reprogram-
ming on-the-fly doable. Individuals in the swarm robotic
system can switch to different Actors according to their
own observation and judgment, or synchronize with others
followed by a collective behavior concurrently.

III. ARCHITECTURE OVERVIEW

Our Actor-based framework is designed to enable a task
developer at the ground station to compose and fire co-
operative tasks to an autonomous swarm robotic system.
Fig. 1 illustrates the architecture of the Actor-based frame-
work. The target hardware system is a heterogeneous swarm
robotic system with tens of unmanned autonomous robot
platforms, which communicate based on the wireless ad
hoc network (WANET). All robot platforms are deployed
with the proposed framework and a repository of Actor
plugins beforehand. A daemon process for the Actor-based
framework is launched on each platform after power-up. An
opensource communication middleware FastRTPS is used
for the implementation of the framework and the unreliable
working mode is chosen for the wireless network.

To start a cooperative task with the autonomous swarm
robotic system, a task script is broadcast from the ground
station. When all platforms get the task script, the task
commander can fire a start command. Every platform will
start their initial Actors as described in the task script, and
then the whole cooperative task is started. After that, if the
ground station has intermittent or loss of communication
with the swarm robotic system, the Actor-based framework
would manage the cooperative task autonomously and handle
exceptions.

IV. DETAILS OF THE ACTOR-BASED
FRAMEWORK

Our proposed framework provides a robust self-
organization mechanism for swarm robotic systems and
makes it convenient for users to achieve one-to-many au-
tonomous vehicles manipulation.
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A. Actor–The control unit for the framework
The designed Actor is the virtualization of robot capa-

bilities, and is the core of the proposed framework. The
framework manages the whole robot swarm based on the
Actor. In other words, the Actor is the basic unit for the
management of swarm behaviors in our proposed framework.

1. Actor Control Block (ACB).
For each Actor, the Actor scheduler maintains a data

structure, which is called Actor Control Block (ACB) in our
software framework. The ACB encapsulates basic attributes
and operations for Actors, where basic Actor attributes in-
clude the name, identification (ID), status, priority, software
resources, hardware resources, permission, task, the relation
with other Actors in the swarm, and the statistic information
at runtime, and basic Actor operations include start, stop,
pause, activate, and switch.

We divide the swarm robotic behaviors into four cate-
gories: swarm observation, swarm orientation, swarm deci-
sion and swarm action (OODA), then design the correspond-
ing observation bus, orientation bus, decision bus, and action
bus. Algorithm developers can design different plug-ins that
mounted on different buses according to their functions. As
the basic control unit, Actors are bounded to different plug-in
groups, thus having different algorithms and capabilities.

2. Some basic Actor operations.
Based on the proposed Actor mechanism, we further

design several basic operations for Actors. Fig. 2 gives the
basic Actor operations and their corresponding Actor state
changes. The basic operations are defined as follows:

Actor start operation: Load the corresponding plug-in
groups, complete the binding of Actors to corresponding
robotic platforms, sensors and other hardware, and complete
resource allocation and algorithm loading.

Actor stop operation: Unlink the binding of Actors to
corresponding robotic platforms, sensors and other hardware,
terminate and unload the corresponding plug-in groups.

Actor pause operation: Achieve secure suspension and
data protection of the corresponding plug-in groups, and
make the Actor enter the sleeping (blocking) state from the
running state.

Actor activate operation: Awake the sleeping Actor’s plug-
in groups, make the Actor enter the running state from the
sleeping (blocking) state, and wait for the scheduling of the
proposed Actor-based architecture.

Actor switch operation: Perform the pause operation of
current Actor, load new plug-in groups, and complete the
binding of Actors to new robotic platforms, sensors and other
hardware.

3. The advantage of the Actor mechanism.
The proposed Actor achieves the conversion from infras-

tructure resources to robotic capabilities. A single robot plat-
form may have resources that can support multiple Actors,
so it can also run multiple Actors. Different Actors occupy
different resources, adopt different algorithms, and ultimately
demonstrate different abilities. The Actor-based framework
enables robotic platforms autonomously switch and execute
Actors according to dynamic changes of the environment
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Fig. 2: Basic Actor operations and the corresponding Actor
state changes.

and the swarm state, thereby achieving adaptive scheduling
of swarm robotic behaviors.

B. Collective Actor
Our framework provides a collective Actor mechanism to

organize Actors in the swarm robotic system. The collective
Actor mechanism in background maintains the organization
information of the swarm, resolves the conflict of inter-
est in the organization, and provides primitives for high-
level coordination of collective behaviors. The mechanism
also features in tolerance and supports the swarm robotic
system to re-organize autonomously up against platforms’
crash, communication interruption and other failure situa-
tions. Based on the introduction of the Actor organization
mechanism, we achieve collective Actor management in the
following three aspects.

1. Actor organization maintenance
Actor organization maintenance is fundamental to other

collective management issues. In the Actor-based framework,
each platform in the swarm periodically broadcasts a heart-
beat message that includes a unique platform ID and a flag.
The flag indicates whether the platform is the current Master
node. Member joining/leaving events are generated based
on the heartbeat reception. We have designed an interface
for incorporating various heartbeat processing algorithms.
If the number of heartbeat messages of a platform reaches
over M within Tjoin seconds, it is considered joining; and
if no heartbeat message was detected in Tleave seconds, it is
considered leaving. The maximum expiration time for Tleave
and Tjoin can be configured by the user or calculated by
heuristic methods, e.g. the accrual failure detector [23].

2. Master election and control message delivery
The Actor-based framework adopts a centralized-

decentralized-combined scheme for the management of
collective Actors. A Master is always elected among
the platforms using a distributed method. The Master is
responsible for organizing Actors and arbitrating when
conflicts or competitions arise in the swarm robotic system.
For example, two platforms compete to become Actor A,
however, only one Actor A is required in the swarm. In this
case, the Master will be responsible for the final decision.

The Master handles requests from all Actors in the swarm
and publishes messages to manage collective robot behav-
iors. Based on the communication middleware FastRTPS, we
further implement reliable communication at the application
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layer. The Master maintains several publishing queues to
buffer control messages, and each queue publishes messages
to one Actor. A message at the head of the queue will
be retransmitted until receiving a reply message from the
destination. Similarly, other Actors also maintain a publish-
ing queue individually, allowing the buffering of control
messages to the Master. To avoid network congestion, a
linear regression scheme is adopted by increasing the delay
time for retransmission linearly.

The master node in the swarm could encounter failure in
challenging environments. In this situation, a new Master
will be selected in a distributed manner when other nodes
find the missing of the Master’s heartbeat. In the proposed
Actor-based framework, the platform with the minimum
platform ID will be directly appointed as the Master when
platforms join/leave the swarm, followed by a handshake
process between the Master and other members. There are
many distributed consensus algorithms such as Paxos [24],
that can generally be used for the Master election. However,
these algorithms are at relatively high communication cost,
thus the election would be divergent and may not be finished
timely when the communication is unstable.

3. Actor coordination
The collective Actor implements synchronization primi-

tives for the workflow control of swarm robotic systems. An
Actor-level synchronization barrier enables multiple Actors
to wait until all Actors have reached a particular point of
execution before any Actor continues. The synchronization
barrier is recognized as a typical primitive for coopera-
tive tasks with a swarm robotic system. All basic Actor
operations, including activate, pause, stop and switch, can
be synchronized. The Actor-level synchronization barrier is
achieved naturally in such a way that the Master gathers
barrier requests from all selected Actors and sends responses
immediately after a sufficient number of requests are re-
ceived. In addition, additional data can be attached in the
request and response messages to support synchronization
gather and scatter primitives. For example, given a sequence
of integers from 1 to N, with N indicates the number
of Actors in the synchronization group, the Master can
distribute this sequence among all Actors, one for each in the
group. The above primitives are the basics for implementing
collective behaviors at the task level.

Additionally, the collective Actor provides a mechanism
to respond Actor join/leave event proactively. For the leader-
follower formation algorithm, the collective Actor provides a
mechanism to autonomously resolve unusual situations, such
as multiple-leaders or leader lost due to platform failures.

C. The interaction language for human and swarm robots
In order to provide convenience for both professional and

non-professional users to compose swarm robotic tasks, we
design and develop a novel domain-specific language for the
interaction between human and swarm robots. As shown in
Fig. 3, with the introduction of our interaction language,
the task developers for robot swarms do not need to pay
much attention to programming details and can focus more
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...
<actor name="Actor1">

<transition name="event_1" barrierKey="1" sysNum="3" >
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</transition>
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</actor>
...

</_TaskConfig>

Fig. 3: A simple illustration of the developed domain-specific
language. The task commander or swarm members can
participate in the behavior management of swarm robotic
systems directly through the ‘Event’ message. The ‘Event’-
based Actor transition (also called Actor state machine) is
programmed with our designed DSL in the task script.

  

1. <_Task>   
2.     <_P_Name>TaskA</_P_Name>   
3.     <_P_TaskPrio>10</_P_TaskPrio>   
4.     <_ActorsConfig> <!—Actors configuration module --> 
5.         <!-- …… -->   
6.     </_ActorsConfig>   
7.     <_TaskConfig> <!—Task configuration module --> 
8.         <!-- …… -->   
9.     </_TaskConfig>   
10.     <_PlatformActorConfig> <!—Actors initialization module --> 
11.         <!-- …… -->   
12.     </_PlatformActorConfig>   
13. </_Task> 

Fig. 4: The structure of the task script. The script is
written in XML, and it mainly consists of three parts: 1)
<_ActorsConfig> which configures the Actor information
including Actor name, Actor ID, Actor priority, plug-in
information, etc; 2) <_TaskConfig> which configures the
Actor transition information (namely ‘Event’ module); 3)
<_PlatformActorConfig> which configures the initial Actor
information for platforms in the swarm.

on specific swarm tasks. Each platform in the swarm runs the
proposed architecture and loads the same task script. In this
way, all platforms can automatically manage the behaviors
according to the task script. The interaction language is
mainly designed for task developers.

The task script is described using our developed lan-
guage and is actually an Actor state machine. As shown
in Fig. 4, it is written in XML, and the user can use it to
configure the detailed Actor information for robot swarms
(<_ActorsConfig>), the Actor transition information for the
task (<_TaskConfig>), and the initial Actor information for
platforms (<_PlatformActorConfig>).

1. Actor configuration in the task script
The ‘Actor’ configuration is mainly used to configure the

Actor information which includes Actor name, Actor priority,
plug-ins required by the Actor. Task developers can design
the configuration of necessary Actors in robot swarms and
choose corresponding plug-ins for them. By loading different
plug-ins, different Actors will be given different capabilities.
In general, one Actor will have one or more plug-ins that
belong to different buses (observation bus, orientation bus,
decision bus and action bus). Fig. 5 gives an example for
the configuration of Actor A and Actor B. Actor A will load
plugin_a1 and plugin_a2 which belong to observe_bus, and
plugin_a3 and plugin_a4 which belong to act_bus. Actor B
will load plugin_b1 and plugin_b2 which belong to act_bus.
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1. <_ActorsConfig>   
2.     <Actor>   
3.         <_P_Name>A</_P_Name>   
4.         <_P_Prio>0</_P_Prio>   
5.         <OODAConfig>   
6.             <Bus>   
7.                 <_P_Name>observe_bus</_P_Name>     
8.                 <Plugin>   
9.                     <_P_Name>plugin_a1</_P_Name>   
10.                     <_P_Name>plugin_a2</_P_Name>   
11.                 </Plugin>   
12.             </Bus>   
13.             <Bus>   
14.                 <_P_Name>act_bus</_P_Name>     
15.                 <Plugin>   
16.                     <_P_Name>plugin_a3</_P_Name>   
17.                     <_P_Name>plugin_a4</_P_Name>   
18.                 </Plugin>  
19.             </Bus>   
20.         </OODAConfig>   
21.     </Actor>   
22.     <Actor>   
23.         <_P_Name>B</_P_Name>   
24.         <_P_Prio>0</_P_Prio>   
25.         <OODAConfig>   
26.             <Bus>   
27.                 <_P_Name>act_bus</_P_Name>     
28.                 <Plugin>   
29.                     <_P_Name>plugin_b1</_P_Name>   
30.                     <_P_Name>plugin_b2</_P_Name>   
31.                 </Plugin>   
32.             </Bus>   
33.         </OODAConfig>   
34.     </Actor>   
35. </_ActorsConfig>   

Fig. 5: An example of the Actor information configuration
(<_ActorsConfig> module) in the task script.

  

1. <actor name="A">    
2.     <transition name="AtoB_event" sysNum="10" timeout="60">  
3.         <successor actor="B" /> <!-- switch to Actor B -->  
4.         <timeoutBranch> <!-- timeoutBranch not compulsory --> 
5.             <successor actor="C" /> <!-- switch to Actor C --> 
6.         </timeoutBranch>   
7.     </transition>   
8.     <param name="TargetPoint" value="200 200 20"/> 
9.     <transition name="AtoD_event">    
10.         <successor actor="D" />  <!-- switch to Actor D --> 
11.     </transition>   
12.     <transition name="pause_event">   
13.         <successor actor="NULL" />  <!-- pause Actor A  -->  
14.     </transition>   
15. </actor> 

 
Fig. 6: An example of the ‘Event’ processing module for
Actor transition description in the task script.

2. Event-based Actor transition
The task configuration mainly consists of several ‘Event’

processing description modules. The conditions of the Actor
transition are described and set in the ‘Event’ processing
description modules. In other words, the ‘Event’ module is
designed for the Actor transition in the interaction language.
In this way, task implementation is achieved through the trig-
ger of event messages based on our Actor-based framework.
The configuration for ‘Event’ module includes name, sysNum
(the number of triggered Actors), timeout, param (Actor
parameters), barrierKey, etc. Fig. 6 shows an example of an
‘Event’-based module for the description of Actor transition.

sysNum is the number of Actors required to transition
when receiving the corresponding ‘Event’ message. timeout
is the time limit for the synchronized transition. In the
example in Fig. 6, when receiving the AtoB_event message,
the task engine for the Actor-based framework will arrange
10 robots to switch from Actor A to Actor B. The task engine
will wait for 60 seconds for robot swarms to negotiate and
respond with candidates for the transition. If a robot cannot
get the response successfully in 60 seconds, the task engine
for the Actor-based framework will go into timeoutBranch
and force the robot to switch from Actor A to Actor C. param
is a set of key-value pairs. In the case shown in Fig. 6, we

  

1. <actor name="A">   
2.     <transition name="AtoBC_branch_event" barrierKey="4"  
3. sysNum="10"> 
4.         <branch cnt="2">   
5.             <successor actor="B" />   
6.         </branch>   
7.         <branch cnt="8">   
8.             <successor actor="C" />   
9.         </branch>   
10.     </transition>   
11. </actor>   
12. <actor name="B">   
13.     <transition name="finish_event" barrierKey="5" sysNum="2"> 
14.         <branch cnt="2">   
15.             <successor actor="A" />   
16.         </branch>   
17.     </transition>   
18. </actor>   
19. <actor name="C">   
20.     <transition name="finish_event" barrierKey="5" sysNum="8"> 
21.         <branch cnt="8">   
22.             <successor actor="A" />   
23.         </branch>   
24.     </transition>   
25. </actor>   

Fig. 7: An example of the ‘Event’ processing module. It
shows the usage of barrierKey in branching and aggregation
for collective Actors in the task script.

set the parameter TargetPoint to ‘200 200 20’ for Actor D.
3. Barrier mechanism for swarm behavior consistency
Our task orchestration language provides a barrier mech-

anism that the swarm will wait until there are a sufficient
number of Actors ready to switch their state (Actor transi-
tion). The user can achieve this by configuring barrierKey.
barrierKey is a state synchronization key. It is a global syn-
chronization identifier of swarm robotic systems. It supports
the simultaneous transitions of different Actors. The value
range is 1-63. The barrierKey can be set according to the de-
mand. When the same barrierKey is set for multiple ‘Event’
messages, the task engine will wait at the synchronization
point until all corresponding event messages are generated
and a sufficient number of Actors are ready to switch.
This synchronization mechanism enables the consistency of
swarm behaviors. As shown in Fig. 7, we set the same
barrierKey in finish_event module for both Actor A and Actor
B. When receiving the finish_event, 2 Actor Bs and 8 Actor
Cs will switch to 10 Actor As at the same time according to
the setting of barrierKey (both are set to 5).

4. Branching and aggregation of collective Actors
We also provide the branching and aggregation opera-

tions for robot swarms in our designed interactive language.
The branching mechanism supports the robot swarms to
be split into multiple robot sub-swarms to perform differ-
ent sub-tasks. The aggregation mechanism supports the re-
aggregation of multiple robot sub-swarms to be one robot
swarm after finishing sub-tasks in order to continue the task.
When the robot swarm is divided into multiple sub-swarms,
the proposed collective Actor organization and management
mechanism will perform Actor sub-swarm management ac-
cording to the status of each member in the sub-group to
coordinate different collective tasks. Fig. 7 gives an example
of how to set branching and aggregation in task scripts. As
shown in the figure, barrierkey is used both in branching and
aggregation. When receiving AtoBC_branch_event message,
the swarm (10 Actor As) will branch into two sub-swarms
(2 Actor Bs and 8 Actor Cs, separately). When receiving
finish_event message which sets the same barrierkey, the
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Fig. 8: Platforms used for the experimental evaluation. (a)
The customized module for hardware-in-loop simulation. (b)
The quadrotor drones used in the in-field experiments. (c)
The fixed-wing UAV model used in the simulation.

sub-swarm will aggregate into one swarm.
5. External commands from users or ground station to

manipulate robot swarms
During task execution, based on the observation and per-

ception by swarm members (position, power, status, etc.) and
the external environment (objects, obstacle, weather, etc.),
the Actor can make corresponding decisions and generate
corresponding event messages. Then the robots in the swarm
will behave either individually or collectively through Actor
transition according to the task script.

Besides the autonomous Event message generating by the
robot swarm, we also provide the external control interface
for human-swarm interaction at runtime. The task comman-
der can send ‘Event’ messages to the robot swarm from the
ground station, thereby achieving external manipulation of
the robot swarm. The ‘Event’ messages from the ground
station are interpreted as an urgent intervention from the task
commander, thus being given a higher priority of processing
than that from the robot swarm. After receiving the ‘Event’
message, the robot swarm will execute immediately, follow-
ing operations assigned for Actors such as forced transition,
forced starting, forced stopping, data backup, etc.

V. EXPERIMENTAL EVALUATION

The Actor-based framework is running on micROS. We
test it on both ARM-based machines and X86-based ma-
chines. Quantitative evaluation is firstly performed to prove
the efficiency of our proposed Actor-based framework in
swarm organization and management. Then, 30 fixed-wing
UAVs in the Gazebo simulation environment are adopted
to demonstrate the ability of the framework. Finally, 10
quadrotor drones are used for conducting the experimental
evaluation in the field.

A. Quantitative evaluation of the framework
We firstly perform the quantitative evaluation of the frame-

work based on the customized module. The customized
module is shown in Fig. 8 (a). It consists of an ODROID-
XU4, a 1W miniature OEM 2.4GHz Ethernet/Serial/WIFI
Router (PX2) produced by MicroHard, and a 915MHz com-
munication module. The ODROID-XU4 includes an ARMv7
CPU with 8 cores and 2GB memory. We test the overload of
the framework with the case that two Actors alternate with
each other at a frequency of 1 Hz. The test is repeated ten
times. As shown in table I, the CPU and memory overload
of the framework on ODROID-XU4 are 0.25% and 1.30%
respectively. The mean Actor switching time is 104ms.

TABLE I: The overload of the Actor-based framework run-
ning on ODROID-XU4 and TX2.

Platform CPU Usage Memory Usage Actor Switching
Time (ms)

ODROID-XU4 0.25% 1.30% 104
TX2 1.11% 0.40% 105

Fig. 9: The computational simulation with 30 fixed-wing
UAVs. All UAVs are equipped with our proposed framework.

Then we use the customized drones (as shown in Fig.
8 (b)) which are equipped with NVIDIA Jetson TX2, a
915MHz communication module and a 5.8GHz communi-
cation module to test the framework. The NVIDIA Jetson
TX2 module integrates a 256 core NVIDIA Pascal GPU, an
ARMv8 Multi-Processor CPU Complex (including a dual-
core NVIDIA Denver 2 and a quad-core ARM Cortex-A57),
and a DRAM with 8GB memory. As shown in table I, for
running our Actor-based framework, the CPU and memory
overloads are 1.11% and 0.40% respectively. The mean Actor
switching time is 105ms.

We evaluate the performance for collective Actor manage-
ment in three scenarios, including collective Actor switching
with the barrier, collective Actor branching with the barrier,
and new Master election.

Firstly, for the collective Actor switching case, the de-
tailed communication cost is given in Table II(a). For the
collective Actor switching operation, Actors in the swarm
need to interact with each other to confirm the consistency
of Actor state transition. The experimental results show that
the communication duration extends as the number of Actors
in the swarm increases. In addition, we study statistically the
total number of inlet and outlet packages for different nodes.
The network traffic of the Master node is much higher than
that of non-Master nodes. We repeat each test ten times to
reduce the impact of the communication environment. Table
II(a) also shows that the number of Actor plugins has little
impact on the communication duration and network traffic.

Secondly, for the collective Actor branching case, the
detailed communication cost is given in Table II(b). In
the experiment, two Actors are randomly selected from the
swarm to perform the branching operation. As shown in the
table, the interaction duration for completing a branching
operation also increases with the increment of the swarm
size. Since only two Actors are selected for the synchronized
transition, the duration is much shorter compared with that of
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TABLE II: The quantitative evaluation of the collective Actor transition with our designed Actor-based framework. The
framework runs on TX2, deployed with the case (a) that all Actors in the swarm switch synchronously on the barrier
mechanism, and the case (b) that two Actors are randomly selected from the swarm to perform the branching operation. For
all the data in the table, we repeat the experiment ten times and take an average. The package is about 158.6 Bytes/pkg.

Swarm Size (a) Actor Switching(one plugin / five plugins) (b) Actor Branching(one plugin / five plugins)

transition time(ms) network traffic(pkg/s)
(Master)

network traffic(pkg/s)
(non-Master) transition time(ms) network traffic(pkg/s)

(Master)
network traffic
(non-Master)

5 352 / 449 48 / 54 35 / 37 206 / 230 48 / 52 34 / 35
10 516 / 488 156 / 182 73 / 68 268 / 239 198 / 189 67 / 70
15 546 / 558 435 / 415 114 / 120 279 / 277 441 / 427 103 / 109
20 588 / 649 575 / 798 168 / 149 418 / 278 770 / 626 144 / 128
25 1246 / 1127 1156 / 1008 178 / 195 429 / 443 1216 / 1160 179 / 170
30 1332 / 1326 1635 / 1509 220 / 194 529 / 458 1629 / 1704 209 / 197

TABLE III: The time for a new Master to be elected from the
swarm after the origin Master fails. We repeat the experiment
ten times and take an average.

Swarm Size
10 20 30

Election Time (ms) 382 414 909

Task	Start

Merging_event

AtoB_event

EtoA_event

Task	End

BtoBC_Branching_event

DtoE_event

Actor	A
(30	aircraft)

Actor	B
(30	aircraft)

Actor	B
(15	aircraft)

Actor	C
(15	aircraft)

Actor	D
(30	aircraft)

Actor	E
(30	aircraft)

Actor	A
(30	aircraft)

Fig. 10: The Actor state machine for the simulation experi-
ments with our framework.

the case in Table II(a). The Master node also suffers from a
heavier burden on network traffic than that with non-Master
nodes.

Thirdly, in order to test the robustness of our proposed
framework, we measure the time required to re-elect a new
Master node. In the test, we kill the daemon process on the
Master node and measure the recovering time when a new
Master is elected from the swarm. As shown in Table III,
the election time increases with the increment of the swarm
size, and the duration ranges from 382ms to 909ms.

B. Qualitative evaluation based on computational simula-
tion

We also evaluate our proposed framework through compu-
tational simulation. We used 30 fixed-wing UAVs in Gazebo
to test the framework. Note that the Actor-based framework
is compatible with ROS, so we can use Gazebo directly to
set up the simulation environment. Fig. 8(c) shows the model
of the fixed-wing UAV in the simulation.

As shown in Fig. 9, the task commander can easily achieve
one-to-many fixed-wing UAV manipulation. 30 fixed-wing
UAVs in the swarm all start with Actor A in the beginning,

Task	Start

gohome_event

ready_event

Task	End

target_detected_event

Actor	"Standby"
(10	drones)

Actor	"Ingress"
(10	drones)

Actor	"Range"
(9	drones)

Actor	"Track"
(1	drone)

Actor	"Return"
(10	aircraft)

Actor	"Range"
(10	drones)

arriving_event

Fig. 11: The Actor state machine for the in-field experiments
with our framework.

and the swarm keeps one arrow formation for a long-
distance flight. After a while, when receiving the AtoB_event
message, all UAVs switch from Actor A to Actor B, and the
swarm switches to two arrow formation. Then, the swarm
receives a BtoBC_branching_event message and performs
the branching operation. 15 UAVs switch from Actor Bs to
Actor Cs (linear shape formation). Afterward, the swarm (15
Actor Bs and 15 Actor Cs) switches to Actor Ds which keeps
six arrow formations. Following that, all UAVs switch from
Actor Ds to Actor Es, and keeps herringbone formation. In
the end, the swarm switches to Actor A again to return. The
Actor state machine for this task is shown in Fig. 10.

C. Qualitative evaluation based on in-field swarm test
We also achieve the search-and-track task with a swarm

of 10 quadrotor drones, which are deployed with the Actor-
based framework. When the quadrotor drones are ready at
their take-off positions, we broadcast the task script to the
swarm from the ground station. After all swarm members
confirm the reception of task scripts, a start command is fired
from the ground station. The swarm starts up running the
Actor state machine, as is shown in Fig. 11. Then the swarm
carries out the complex task autonomously, and intervention
from the ground station is no longer necessary except for the
recycling of the swarm.

Snapshots of the in-field experiment are shown in Fig.
12. 10 drones all start with Actor Standby, taking off to
the specified altitude. When an Actor Standby arrives at the
target altitude, it autonomously send a ready_event message.
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Fig. 12: Snapshots of the in-field experiment with a swarm
of 10 quadrotor drones. The drones in all snapshots are
highlighted with circles around them. (a) Task deployment;
(b) Actor Ingress; (c) Actor Track.

The framework would confirm that all Actor Standby are
ready, and then simultaneously enable the switching to Actor
Ingress, with which 10 drones fly toward the target searching
area in an arrow formation. Similarly, when an Actor Ingress
arrives at the target area, the Actor publishes an arriv-
ing_event message. 10 drones synchronously switch from
Actor Ingress to Actor Range. Actor Range is responsible
for seeking out the target, e.g. a jeep in this experiment.
A target_detected_event message is published by the Actor
Range once it detects the target. According to the task script,
one of Actor Ranges is then chosen to switch to Actor
Track, and begins to follow the target. Finally, we fire a
go_home_event message from the ground station. All drones
switch to Actor Return, and return to the landing area.

VI. CONCLUSIONS AND FUTURE WORK

We present an Actor-based framework for the program-
ming of autonomous swarm robotic systems. The introduc-
tion of the control unit ‘Actor’ helps decouple the high-
level task programming with specific robot platforms. With
the proposed framework, the swarm robotic system can au-
tonomously handle unusual situations, such as node failures,
network disturbances, etc., and continue the deployed task.
The framework is quantitatively and qualitatively validated
to prove its efficiency. In the future, we plan to build up an
Actor factory that incorporates Actors and the corresponding
sets of plugins for typical industrial and academic scenarios.
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