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Abstract— There is a high cost associated to the time and
expertise required to program complex robot applications with
high variability. This is one of the main barriers that inhibit
the entry of robotic automation in small and medium-sized
enterprises. To tackle the high level of task uncertainty associ-
ated with changing conditions of the environment, we propose a
framework that leverages a combination between learning from
demonstration (LfD) and constraint-based task specification
and control. This synergy enables our framework to use LfD
to generalize reactive approach motions (RAMo) towards not
only a single pose but towards an allowable manifold defined
with respect to the object to interact with. As a result, the robot
executes the task by following a feasible approach motion gen-
eralized from the learned information. This approach motion is
generated based on an initial representation of the environment,
and it can be reactively adapted in function of current updates
of the environment using sensor information. The proposed
framework enables the system to deal with applications that
involve a high level of uncertainty, increasing the flexibility and
robustness, compared to traditional sense-plan-act paradigms.

I. INTRODUCTION

One of the main challenges of implementing robots in real-
world applications is the need for intelligent algorithms that
interpret multi-sensor information, thereby enabling robot
systems to adapt to dynamic environments. These systems
should exhibit the necessary predictability, robustness, and
flexibility to deal with geometric uncertainty associated with
the robot, task, and environment.

In view of increasing system predictability, in [1], we
introduced a combination of the constraint-based method-
ology expression-graph based Task Specification Language
(eTaSL) [2] and a Learning from Demonstration ap-
proach based on Probabilistic Principal Component Analysis
(PPCA) [3]. This synergy enables us to use PPCA to generate
trajectories defined by a linear combination of learned basis
functions weighted by a set of Degrees Of Freedom (DOF),
while leveraging the definition of eTaSL feature variables to
specify these and other DOF associated with the task.

In this paper, we present Reactive Approach Motions
(RAMo) that further extend the trajectory generation in [1]
from specifying a static target pose toward a dynamic target
pose defined on a modeled manifold that can be bounded. A
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Fig. 1. Snapshots of a human–robot collaborative bin picking application.
a) A robot is commanded to align with an augmented surface of the red
sphere. During the approach motion, the generated trajectory is reactively
adapted to avoid collisions with the bin and the clutter. b) A human is able
to move the end effector by interacting with proximity sensors. Collisions
with the wall and the clutter are continuously avoided while maintaining
alignment with the augmented surface of the red sphere.

robot programmer can intuitively define this manifold based
on inherent task information such as symmetries related
to the tool and the work piece. In addition, we increase
the flexibility against dynamic obstacles in the environment
by enabling local deformations of trajectory segments for
instance to enable a tool to circumvent obstacles in different
ways.

Hence, as the main contribution of this paper, we extend
[1] towards the generation of RAMo, tightly integrating:

1) generation of reactively adaptable trajectories that pre-
serve information provided by human demonstrations
while still enabling deformations defined by controlled
DOF that affect trajectory segments in their local neigh-
borhood.

2) reactive adaptation of the trajectory goal pose within
an allowable manifold defined in function of DOF that
can be intuitively specified, bounded and constrained
to preferable values. This manifold is specified using
a modular approach where geometric features of the
tool, the work piece, and the trajectory are specified
separately, while enabling their automatic composition.

The proposed approach increases the flexibility and robust-
ness, enabling the system to deal with applications that
involve a high level of uncertainty associated with avoidance
of dynamic obstacles.

The framework was evaluated in two use cases that in-
volved the generation and control of RAMo to grasp objects
onto which manifolds were defined for the allowable target
grasp poses: a simulation use case with dynamic obstacles;
and an experiment involving human-robot collaborative bin-
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picking in which the environment was sensed by an indus-
trial sensor while the human was perceived with proximity
sensors as in [4] (see Fig 1).

II. RELATED WORK

Representations to describe geometrical relations between
rigid bodies have been addressed in literature since the early
days of robotic research. In [5] the authors proposed math-
ematical derivations to describe spatial relations between
rigid bodies in a goal state. The aforementioned approach
inspired the instantaneous Task Specification using Con-
straints (iTaSC) [6] which extends the Task Frame Formalism
[7] towards the definition of geometric body relations as a
function of feature frames (virtual frames). This approach
enables a systematic constraint-based task specification that
deals with complex sensor-based robot behaviors in pres-
ence of uncertainties. In [2] the concept of feature frames
was further extended towards the specification of the robot
controller as a function of feature variables, which are used
as auxiliary variables that enable the specification of DOF
of the robot task. This paper exploits the concept of feature
variables to intuitively define allowable goal-pose manifolds
as parametric relationships between rigid bodies, thereby
enabling the definition of RAMo that take into account sensor
input as well as robot and environmental constraints.

In view of the search for feasible and stable grasping
poses, several methodologies have leveraged the use of
manifolds to represent grasping search regions. This is the
case in [8], in which the authors used an exhaustive search
for a unique stable grasping pose from a predefined set of
possibilities. The lack of reactivity to adapt the grasping pose
on-line typically limits the robustness of the system against
uncertainties. To deal with this, more advanced systems have
used a continuous search for the grasping pose. For instance,
the positioning mobile with respect to fixed frame (PMF)
method [9] introduced allowable manifolds that restrict,
totally or partially, motion between two rigid bodies by spec-
ifying relations between geometric entities. This approach
was further extended in [10] and [11] by also considering
relations where the rotation and translation cannot be sepa-
rated, as well as the composition with additional inequality
constraints such as collision avoidance and/or joint limit
constraints. Other approaches in literature have leveraged
the use of available constraint-based frameworks. This is the
case in [12], in which the authors proposed a systematic
composition of constraints using eTaSL [2] that takes into
account expressions between geometric entities, as well as
the runtime monitoring of these constraints. Similarly, in [13]
grasping envelopes were defined based on the specification
of geometric constraints that are hierarchically solved using
the constraint-based framework stack-of-tasks (SoT) [14]. Al-
though these methods consider the definition of dynamic goal
poses constrained to modeled manifolds, they do not address
the generation of reactive approach trajectories that consider
context information from the environment. Moreover, in our
view, our approach simplifies the commissioning of the task

by decomposing the manifold definition in DOF associated
with the tool and with the workpiece.

Other methods focused more on the generalization of
trajectories that can reactively adapt to changing conditions
of the environment while preserving smooth dynamics. For
instance, in [15], the authors developed a method to select
the appropriate coupling terms of a dynamic movement
primitive DMP [16] based on a neural network trained
with synthetic collision-free trajectories and a minimal rep-
resentation of the obstacles to dynamically avoid collision
in different start-to-goal scenarios. This method nominally
generates linear motions and adapts them relying only on
a point cloud representation of the environment. Context
information of the environment can be added by leveraging
LfD, thereby alleviating problems associated with incorrect
information from the vision system. For instance, in [17],
authors shaped a reactive Lyapunov controller towards an
attractor using demonstrations encoded by Gaussian Mixture
Models (GMMs). Similarly, in [18], the authors proposed a
reinforcement learning algorithm to improve upon demon-
strated trajectories when solutions to new situations need to
be found, such as for generating collision-free trajectories
in dynamic environments. In contrast to these approaches,
in this paper, we do not define a unique goal pose for the
trajectory, but we specify a dynamic goal pose that is lying
on an intuitively modeled manifold.

Few methodologies have addressed the trajectory genera-
tion towards goal poses defined on allowable manifolds. For
instance, in [19], the authors proposed to generate trajectories
that are not constrained to a unique goal pose, but to a
Task Space Region [20]. In [21], the authors proposed a
more reactive approach by leveraging Riemannian geometry
to formulate dynamical systems. In contrast to the methods
above, our approach leverages the intuitive definition of
the task using DOF that can be monitored and controlled.
As a result, our system obtains increased predictability and
explainability while facilitating the task specification.

III. REACTIVELY ADAPTABLE TRAJECTORIES

In this section, we introduce adaptable trajectories
f(s,χf traj) parameterized in function of DOF correspond-
ing to the normalized path coordinate 0 ≤ s ≤ 1, and to a
set of variables χf traj that enable reactive adaptation of the
trajectory. These DOF are embedded as feature variables in
the control problem in section V. The trajectory is defined
by a position profile fp(s,χf traj) that encodes information
generalized from demonstrations, and an orientation profile
fψ(s) which is modeled.

A. Position profile

Position paths are generated and reactively adapted within
an allowable space encoded from demonstrations, thereby
increasing the predictability of our system. We increase
flexibility by defining a set of compact basis functions that
enable local deformations in the neighborhood of trajectory
segments, thus endowing the system with capabilities to
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Fig. 2. Learned model to approach to the bin: a) an operator performs a set
of demonstrations to encode the desired position path shape, in this case,
entering the bin with a vertical approach; b) graphical representation of the
variability encoded in each of the basis functions of the motion model in
(1).

Fig. 3. 2D representation of local trajectory deformations. A task frame
located in the tool Γtf(q) moves along fp to reach the surface of an
object located at pobj. Collision between the tool and a bin are avoided by
deforming a local section of the path f lm using a piecewise function defined
by a set of bell-shaped functions a(s). The amplitudes of the basis functions
χfN,j

are computed by constraining distances dj , measured between the
environment and tool protective hulls distributed along f lm, to be larger
than a threshold.

circumvent dynamic obstacles not considered in the demon-
strations.

The PPCA algorithm is used to formulate a model defined
by a linear combination of basis functions learned from N
human demonstrations. This model enables generation of
trajectories and their reactive adaptation in a predictable way.
As described in [1] and [22], it describes a linear space
corresponding to the following probabilistic latent model for
the position profiles with D = 3 signals and their variability:

f lm(s,χflv) =W (s)χflv + b(s), (1)

where W (s) ∈ RD×M contains M basis functions extracted
from the set of demonstrations, b(s) ∈ RD corresponds to
the mean trajectory of the demonstrations, and χflv ∈ RM
contains the latent variables of the model, which are directly
embedded as feature variables in the control problem in
section V. A graphical representation of the probability
distribution of a learned motion model is depicted in Fig 2.
The figure shows that in this model a larger variability is
present along the x-axis, followed by the y-axis, and finally
the z-axis.

Local deformations from f lm(s,χflv) are enabled using
a piecewise function defined along the trajectory with H
bell-shaped (h = 1, ...,H) basis functions a(s). To this
end, these basis functions are defined as continuously dif-
ferentiable and compact functions, i.e., each individual basis
function only induces deformations in its neighborhood,

having no influence outside. These functions can be defined
using truncated Gaussians, b-splines or any polynomial that
satisfies the mentioned properties. As an example, in this
paper we choose polynomials of order 4, parameterized
by s-interval widths wh = {w1, · · · ,wH} and s-interval
centers ch = {c1, . . . , cH}; then, we project the polyno-
mials in the normal N̂f and the bi-normal B̂f direction
of f lm(s,χflv) modulated by their corresponding amplitude
χfN =

[
χfN ,1 . . . χfN ,H

]T
and χfB =

[
χfB ,1 . . . χfB ,H

]T
as follows:

f bf(s,χfN ,χfB )=

H∑
h=1

a(s)(χfN ,hN̂f + χfB ,hB̂f ) (2)

a(s)=

{
16s4h−32s3h+16s2h if ch− wh

2 ≤s≤ch+
wh

2

0 otherwise
(3)

with sh =
s− (ch − wh

2 )

wh
. (4)

The amplitudes χfN and χfB are DOF embedded as feature
variables in the control problem in section V.

To find the tangential T̂f , normal N̂f and bi-normal B̂f
direction, instead of using of the Frenet-Serret formulas in
which the normal component is not well-defined for straight
lines, these directions are defined as follows:

T̂f =
df lm

ds

||df lm

ds ||
, N̂f =

d̂aux×T̂f
||d̂aux×T̂f ||

, B̂f = T̂f×N̂f , (5)

where the auxiliary direction d̂aux is chosen such that N̂f is
more likely to be well defined along the entire trajectory, i.e.,
d̂aux corresponds to the direction less likely to be parallel
to the generated trajectory tangent. Thereby, this direction
is chosen by decomposing the tangent vector space of the
demonstrations using PCA, ordering the principal values
in a descending way, and then, choosing the eigenvector
corresponding to the last principal value.

Finally, the position profile fp(s,χf traj) is assembled as
follows:

f p(s,χf traj)=f lm(s,χflv)+f bf(s,χfN ,χfB ), (6)

where χf traj =
[
χTflv χTfN χTfB

]T
. Fig. 3 depicts a

graphical representation of this reactive trajectory.

B. Orientation profile

To reduce the number of demonstrations, as in [1], a
reactively adaptable orientation profile fψ(s) is modeled as
a linear interpolation using the axis-angle representation in
function of s. This profile spans from a known initial ori-
entation at the beginning of the profile fψ(s)|s=0 towards a
variable target orientation at the end of the profile fψ(s)|s=1.

IV. ALLOWABLE MANIFOLDS

The goal pose ΓG(χf am) = {pG,RG} of the generated
trajectory is defined within an allowable manifold (hence
subscript am), specified in function of a set of DOF in which
a tool is allowed to move with respect to an object. These
DOF are embedded in the control problem in section V and
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can be separated into a subset for the surface and another one
for the tool (χf am = [χf surf

T ,χf tool
T ]T ). This separation

will be exploited to allow generalization to any combination
of surface and tool.

A. DOF related to the surface

The surface of an object, or a section of it, can be modeled
with a continuously differentiable function g(u, v) : R2 →
R3 expressed in frame {obj}, where u and v are the gen-
eralized coordinates related to the chosen parametrization.
In order to determine the goal pose, we first define an
intermediate frame whose origin is located at the surface
g(u, v) and one of its axes is always aligned with the normal
direction (see Fig. 4).

In order to give the controller the freedom to adapt the
origin of this frame within the surface, the generalized
coordinates are embedded as feature variables in the control
problem described in section V, i.e. χf surf

= [u, v]. Thus,
an orientation objR⊥(u, v) = [x̂⊥ ŷ⊥ ẑ⊥] (superscript
indicating that the axes are expressed in {obj}) whose axis
ẑ⊥ remains always normal to the surface must be defined.
This axis can be found with (7) and the remaining axes can
be chosen arbitrarily. A good option is to choose the axes
with (8), where objR0 = [x̂0 ŷ0 ẑ0] is the initial orientation
of the task frame pose, i.e. Γ|t=0 (see Fig 4).

ẑ⊥=−
dg/du×dg/dv
||dg/du×dg/dv||

, (7)

x̂⊥=[x̂0 − (x̂0 · ẑ⊥)ẑ⊥] and ŷ⊥= ẑ⊥×x̂⊥ (8)

B. DOF related to the tool

Additional DOF can be added according to the properties
of the tool and to the specific application. An example,
illustrated in Fig. 5, shows how additional translational and
rotational DOF are defined in some of the axes of the task
frame {tf} (i.e. x̂tf , ŷtf and ẑtf ) for a 2-finger gripper and
a suction cup. Based on these DOF we create position and
rotation sets, Φ and Θ respectively, whose elements are
function of the DOF (see Fig. 5). The orientation sets are
composed by elementary rotation matrices R̂ that perform
a rotation around one of the axes of {tf} according to the
related DOF. The vector that contains all the DOF related to
the tool is referred to as χf tool.

C. Allowable manifold expression

We then find the expression of the allowable manifold in
terms of a position (9) and an orientation (10)

pG(χf am) = pobj +Robj g(u, v) +
∑
ϕ∈Φ

ϕ (9)

RG(χf am) = Robj
objR⊥(

∏
R̂∈Θ

R̂) (10)

where pobj and Robj are the position and orientation of
the object, expressed in the world frame. In other words,
the goal position (9) is found by transforming g(u, v) to the
world frame (first two terms) and then giving it translational
freedom in some of the axes of the tool (last term). On the

Fig. 4. Graphical representation of a tool approaching towards a surface that
models the geometry of an object. Two DOF of the allowable manifold are
associated to the surface while additional DOF are associated to symmetries
in the tool. The task frame pose Γ(q) is commanded to evolve along a
reactive trajectory f(s,χf ) from an initial pose of the task frame Γ(q)|t=0
towards a goal pose ΓG(χf am

). The additional DOF related to the tool are
not depicted for ease of understanding.

Fig. 5. Example of possible allowable DOF for selected tools, which are
depicted with black arrows. χf tool

= [ϕx ϕz θx] for the gripper and
χf tool

= [θz ] for the suction cup. The task frame {tf} should be chosen
depending on the application, since it will be constrained to reach the
allowable manifold at the end of the trajectory (i.e. it can be located with
some variation along the ẑtf direction).

other hand, the goal orientation (10) is found by multiplying
the elements of the rotation set, which gives rotational
freedom, and then transforming it to the world frame.

In order to completely define the allowable manifold,
inequality constraints are then specified to bound each DOF
involved in the definition of the manifold. Some of the
bounds depend on the shape properties of both object and
tool (e.g. ϕx should be bounded according to the maximum
aperture of the gripper and the size of the object). Some
others (e.g., u and v) depend on the dimensions of the object.
For instance, for a cylindrical surface expressed in cylindrical
coordinates, we should bound the coordinate corresponding
to the height of the cylinder. It is important to notice that the
order of the multiplication in (10) affects the bounding values
for orientation, and thus it is recommended to choose the task
frame alongside the corresponding Euler angle convention,
conveniently.

V. SPECIFICATION OF THE REACTIVE CONTROL

In this section, we highlight the most relevant aspects from
eTaSL [2], and subsequently introduce the control laws that
enable the specification of RAMo. However, it is worth to
mention that RAMo is not dependent on eTaSL framework
per se, but on its implementation of feature variables that
allow to define task-related DOF (i.e. other constraint-based
frameworks could also be used instead).
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The robot control is expressed by means of eTaSL soft-
constraints, which are defined as a function of joint position
variables q, time variable t, and feature variables χf . The
latter allow the specification of DOF associated with the task,
which can be monitored, controlled, and/or bounded. eTaSL
formulates the robot behavior as an optimization problem as
follows:

minimize
x

xTHx (11a)

subject to LA ≤ Ax ≤ UA (11b)

where the argument x is a vector
[
q̇T χ̇Tf εT

]T
that

contains: the time derivative of the robot joints q̇, the time
derivative of the feature variables χ̇f , and slack variables ε
for each soft-constraint. The weights w in the diagonal of
H enable the system to deal with conflicting constraints.
LA and UA are lower and upper bounds of the constraints
described by matrix A, respectively. As explained in [1],
constraints in (11b) can be formulated using a velocity-
resolved controller to command a task expression e(q,χf , t)
to evolve towards zero with (12), following a first order
system with time constant k−1, or to command a task
expression g(q,χf , t) to follow a desired velocity v with
(13). This formulation is defined as follows:

J

[
q̇
χ̇f

]
= −ke− ∂e

∂t
+ ε, (12)

J

[
q̇
χ̇f

]
= v − ∂g

∂t
+ ε, (13)

where the task function Jacobians J map the time derivatives
of states q and χf into the time derivatives of the task
variables e. Besides equality constraints, eTaSL also enables
the specification of inequality constraints in (12) and (13).

The formulation of the optimization problem (11a) and
(11b) allows the specification and composition of the fol-
lowing robot behaviors. The number of feature variables in-
volved in (11a) is given by the cardinality of the sets defined
in sections III and IV, i.e.

∣∣∣{s,χf lm,χfN,χfB,χf am

}∣∣∣ =
1 +M + 2H + 2 + |χf tool

|.

A. Constraints Related to the Allowable Manifolds

Constraint 1. Manifold boundaries: Inequality constraints
are used to specify upper and lower bounds for the desired
feature variables in χf am. The use of the feature variables
enables an intuitive specification of these manifold bound-
aries. The constraint can be applied with (12) directly on each
feature variable or over a mathematical expression ei(χf i

),
where χf i

⊆ χf am
. For instance, if the top of a cylinder

is desired to be reached, the feature variables related to the
equation of the plane must be constrained with the expression

e1 := u2 + v2 ≤ R2, (14)

where R is the radius of the cylinder.

Constraint 2. Preferable Values: Additional soft constraints
can be added to introduce preferable values Vpref for some
of the feature variables involved in the definition of the

manifold. These constraints are specified with a low weight
to allow deviations in case a possible collision is detected.
If specified, the corresponding DoFs will return to this
preferable value once the obstacle moves away.

e2 := χf i
− Vpref, χf i

⊆ χf am
(15)

B. Constraints Related to the Trajectory Generation

Constraint 3. Generation of the nominal trajectory: A
trajectory is generated by commanding its end pose
f(s,χf traj)|s=1 to coincide with ΓG(χam) defined within
the manifold. This relation is specified using (12) with

e3 := f(s,χf traj)|s=1 − pG(χam) (16)

This results in the generation of trajectories towards
ΓG(χam) that can reactively adapt within the combined
spaces defined by the demonstrations and the allowable
manifold.

Constraint 4. Deformations along local sections of the
trajectory: In a collision-free motion, the desired behavior
corresponds to the tool moving along the path generated by
constraint 3, hence, the feature variables χfN and χfB are
commanded to be zero with a soft constraint (12).

e4 :=
[
χTfN χTfB

]T
(17)

However, in case an obstacle is perceived along the path,
constraint 17 is violated by increasing the amplitudes in
χfN and χfB that correspond to the basis functions in
the neighborhood of the obstacle (see Fig. 3). As a result,
this constraint enables the system to deform f(s,χf traj) to
circumvent obstacles.

Constraint 5. Reactive advancement along the trajectory:
A reactive evolution along the generated trajectory is com-
manded by specifying the path coordinate s as feature
variable and constraining its time derivative ṡ to follow a
trapezoidal velocity profile vs defined by a maximum veloc-
ity vmax and acceleration vmax [1], [4]. This is formulated
using a constraint (13) with

g5 := s and v = vs (18)

This results in a reactive behavior that enables the end
effector to hold its position or to be driven backwards along
the path by performing the appropriate interaction, e.g. by a
moving obstacle.

Constraint 6. Follow motion signals: The robot motion
is generated by commanding Γ(q) = {p(q),R(q)} to
coincide with the current instance of the generated trajectory
f(s,χf traj). To this end, the generated trajectory is mapped
to a position vector pf (s,χf traj) and an orientation matrix
Rf (s,χf traj), and a constraint (12) is applied with:

e6,p := p(q)− pf (s,χf traj) (19)

e6,R := δ(q, s,χf traj) (20)

where δ(q, s,χf traj) corresponds to the axis-angle represen-
tation of R(q)Rf (s,χf traj)

−1.
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C. Constraints Related to the Environment

Constraint 7. Point-distance-based collision avoidance: A
collision avoidance behavior is specified by computing dis-
tances dj . As depicted in Fig. 3, this distance is measured
from a point cloud representation of the environment towards
protective hulls [23] located at the tool (subscript tool)and at
H instances of f(s,χf traj) (subscript traj). This computa-
tion is expedited by representing the point cloud information
with k-d trees, representing the protective hull as a set of
spheres, and computing the distance dj between each sphere
and the closest point. Then, dj is commanded to maintain
its value above a threshold dth by defining a constraint (12)
with

e7tool := dj − dth ≥ 0 (21)
e7traj := dj − dth ≥ 0 (22)

Therefore, this constraint can act directly upon the motion
of Γ(q) by deviating its progress velocity from the specified
velocity vs, or upon f(s,χf traj) by deforming sections of
it even outside of the current neighborhood of Γ(q). As
a result, the generated trajectory can adapt to circumvent
obstacles before the tool reaches their neighborhood.

D. Additional constraints

Constraint 8. Joint limits and proximity-based collision
avoidance: Inequality constraints are used to specify bounds
on each robot joint position and velocity. Additionally, simi-
larly as in [4], a collision avoidance behavior is composed by
defining reactive velocities as a function of proximity signals
sensed by an artificial skin [24].

VI. VALIDATION USE CASES

The proposed framework was tested in one simulated
and one real use case that involved grasping objects with
different geometries. In each use case it was assumed that the
following is known: (i) the robot platform and its kinematic
model (including the tool), (ii) the transformation between
the vision system and the robot, and (iii) the surface model
of the objects to pick.

Five demonstrations towards different approach positions
N = 5 are performed in both use cases to learn the position
path using kinesthetic teaching. Fig. 2 shows that variability
in position can be captured using only four basis functions,
therefore, we choose M = 4. Moreover, five basis functions
are chosen to enable local deformations along the trajectory
H = 5.

During execution, the information about the pose, the
dimensions of the target objects (i.e. g(u, v)), and a point
cloud representation of the environment were provided by a
vision system (they were known for the simulated use case).

A. Grasping of objects with gripper

In this use case the task of the robot consists of grasping
a target object with the gripper shown in Fig. 5. Demon-
strations were performed in a real setup to encode a motion
model that ensures that the tool always approaches linearly

along a vector normal to the object surface, such that
the gripper does not collide with it. This use case was
performed in a simulated environment so that it facilitates
the visualization of the trajectory reactively adapting to avoid
obstacles. Instead of using a point cloud as in the next use
case, we used a virtual spherical obstacle whose position is
controlled with a joystick.

Fig. 6 illustrates the response of the generated trajectory
when a virtual dynamic obstacle interferes with it. The H
instances of f(s,χf traj) are displayed to illustrate how the
generated trajectory adapts so that it avoids the obstacle,
while the goal pose adapts within the allowable manifold.

Signals related to two trials of the use case are shown in
Fig. 7. A trial in which a dynamic obstacle causes deviations
in the trajectory (as in Fig. 6) is compared to a baseline trial
in which the obstacle stays still and out of range. When
at least one of the collision distances (refer to Constraint
7) is below the defined threshold, the control parameters
deviate as follows: (i) ṡ decreases when the protective hull
of the tool is about to collide with the obstacle, (ii) ptf
deviates from f lm(s,χf lm

) due to the local deformations
(see (6)), (iii) the orientation remains almost constant,
but slightly deviates because the target orientation adapts
within the allowable manifold, (iv) χfN and χfB increase
the value of the corresponding basis functions amplitudes,
thereby enabling the system to avoid collisions, (v) the latent
variables χflm

of the first three principal components of the
learned motion model slightly deviate due to the change in
the target position within the allowable manifold. Notice that
χflm

, corresponding to the last principal component, has large
deviations when the obstacle moves away. However, notice
from Fig. 2 that this component has a negligible influence
in this particular learned model and thus only three basis
functions could have been used instead.

TABLE I. Constraint Parameters.

Param. Value

1 k1 2 s−1

w1 50

2 k2 1 s−1

w2 0.1

3 k3 8 s−1

w3 20

4 k4 2.5 s−1

w4 5

Param. Value

5 k5 0
w5 0.5

6 k6 1 s−1

w6 10

7tool
k7tool 1 s−1

w7tool 50

7traj
k7traj 8 s−1

w7traj 10

In Table I, the values of the weights w and control gains
k for each i-th constraints (see section V are reported.
These values were tuned using intuitive heuristics, based on
the relative importance of the constraints and their desired
reactiveness. Constraint 2, for example, has a relatively low
importance (low weight), since it represents a preferable
value that the goal pose will reach whenever there is no
obstacle. In contrast, the weights for constraint 1 and 7tool are
high, because these constraints are not allowed to be violated.
Regarding the tuning of the control gains ki, constraint 6 and
7tool have low values in order to avoid abrupt movements of
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Fig. 6. Snapshots for dynamic obstacle avoidance in simulation. The blue
cylinder represents the object to be grasped, the orange spheres depict
the protective hull related to the gripper, the yellow grippers represent the
location of the H instances of f(s,χf traj

), and the red sphere is a dynamic
obstacle controlled by a joystick.

distance to
each sphere

minimum 
distance

threshold

distance to
each sphere

minimum 
distance

threshold

roll

pitch

yaw

a) b)
i ii iii iv v

Fig. 7. Control signals related to the grasping of objects with gripper use-
case: a) Signals with dynamic obstacle (see Fig. 6) and b) signals without
obstacle. The perturbations of the signals, caused due to the obstruction by
the obstacle during a part of the trajectory, can be observed. Instances in
roman numbers correspond to the snapshots in Fig. 6.

the robot, while the gains related to the trajectory generation
are higher to enable faster adaptation.

B. Bin-picking use case

In the second use case, RAMo were used to generate
collision-free trajectories that move a tool with a suction cup
(see Fig. 5) to pick objects from a cluttered tall bin. Further
reactivity is enabled in the system to adapt the generated
trajectories in case a human is perceived using proximity
sensors as in [4].

The learned motion model in Fig. 2 was demonstrated in
such a way that the tool always approaches vertically to the
bin, in order to avoid collisions with the walls. Considering
the used tool, the total number of feature variables involved
in this application was eighteen.

Fig. 1.a shows a tool moving to grasp a sphere in a
cluttered environment close to the bin walls. The adaptation
of the generated trajectory f(s,χf traj

) allows the robot
to align the suction cup with the spherical surface while
avoiding collisions with the environment. The definition of
the allowable manifold gives additional flexibility to the

Fig. 8. Snapshots of the point-cloud visualization representing the bin-
picking experiment in Fig, 1. A full trajectory generated by the learned
model in Fig. 2 is reactively adapted to command its end pose
f(s,χf traj

)|s=1 to align with the red sphere. Distances between tool
representations (yellow cylinders) and the point-cloud representation of the
environment are continuously checked, thereby, enabling the system to avoid
collisions.

system by enabling the ΓG(χf am
) to adapt to avoid collisions

(see Fig. 8).
Fig. 1.b shows an operator actively interacting with the

robot by approaching his hand towards proximity sensors
embedded in an artificial robot skin. Distances between
the protective hulls and a point cloud representation of the
environment as well as the proximity were continuously
checked. During this interaction, the suction cup maintained
its alignment with an augmented spherical surface g(u, v)
while avoiding collisions with the environment. The aug-
mented surface was used in this experiments to show the
flexibility along the allowable manifold.

VII. DISCUSSION AND CONCLUSION

This paper extends the synergy between LfD and a
constraint-based approach by enabling the generation of
RAMo towards specified allowable manifolds. In contrast to
pure trajectory planners that only rely on the sensed infor-
mation, the use of LfD enables our system to mitigate sensor
limitations that cause poor visibility, e.g. poor representation
of the bin walls due to specular surfaces or occlusions.

The achieved reactiveness enables the robot system to
reach the goal while avoiding dynamic obstacles and interact-
ing with humans in cluttered environments. The integration
of an artificial skin and a vision system allowed us to exploit
the aforementioned capabilities in a safe way for the humans.

In contrast to the state of the art, our approach allows a
more intuitive definition of the allowable manifolds, which
is performed by selecting position and orientation DOF that
depend on the object surface and the tool. The two DOF
related to the object surface are used to give freedom at the
position level, while maintaining the axis of the tool normal
to the surface. On the other hand, the geometric properties
of the tool can be exploited by the robot task programmer
to add more flexibility to the robot skill, at the expense of
increasing the number of optimization variables.

The explicit selection of the task variables to learn and
the ones to model, expedite the deployment of bin-picking
applications. In comparison to pure model-based approaches,
this is achieved because the human can easily abstract
and demonstrate the context-dependent motion information
relevant to achieve the task. On the other hand, in comparison
to end-to-end learning methods, this is achieved due to a
drastic reduction in the required number of demonstrations.
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The orientation component of the approach motion as
well as the evolution profile are modeled. These assumptions
reduce the variability that need to be learned, therefore,
reducing the number of required demonstrations. The number
of independent parameters in PPCA grows linearly with the
number of learned signals D as opposed to methods based
on Gaussian distributions, in which this number increases
quadratically (as in [18]). As a result, the curse of dimen-
sionality can be mitigated, encouraging further research to
extend PPCA to encode orientation, while maintaining the
number of demonstrations N relatively small.

Regarding the definition of the allowable manifold, care
must be taken since the representation of g(u, v) could intro-
duce some singularities. In addition, the arbitrary selection
of x̂⊥ in (8) can induce a singularity if û∅ is parallel to the
normal axis ẑ⊥.

In case the target objects have a complex geometry, our
framework can still be applied by defining the allowable
manifold with just DOF related to the tool (provided a goal
pose). For example, if a suction cup is mounted, which
does not need to be perfectly normal to the surface due to
its compliance, infeasible picking poses can be avoided by
adapting its orientation.

Future applications of our framework could benefit from
a higher level vision-based algorithm which can fit a surface
model for the detected object. This could be based on a
generic function which can be fitted offline to the point cloud
(e.g. a Gaussian Mixture Model), or fitting the most similar
shape primitive to it. However, this is out of the scope of
our research and we encourage it as future work.

As a conclusion, the proposed method generates RAMo
not only preserving information from demonstrations but also
reactively adapting to changes in the environment. This reac-
tiveness is achieved by adding freedom in terms of variables
related to the task specification. This adds extra flexibility to
the system by enabling deviations of the generated trajectory
at three different levels: (i) deviations in the whole position
trajectory that satisfy the information encoded by our LfD
method; (ii) deviations that are localized at a region of
the position trajectory, which extend the flexibility of the
learned model; and (iii) deviations in the goal pose within an
allowable manifold, which is particularly useful for changes
in the environment occurring near the object.

In our view, the specification of robot behaviors by mon-
itoring and controlling the task DOF increases the system’s
predictability and explainability. These aspects are essential
to improve the safety and robustness in real robot applica-
tions while enabling adaptability to dynamic environments.
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learning with constraint-based task specification and control,” IEEE
Robot. and Autom. Lett., vol. 4, no. 2, pp. 1892–1899, April 2019.
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