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Abstract— This paper introduces a sensory augmentation
technique enabling a contact robot to understand its human
user’s control in real-time and integrate their reference trajec-
tory information into its own sensory feedback to improve the
tracking performance. The human’s control is formulated as
a feedback controller with unknown control gains and desired
trajectory. An unscented Kalman filter is used to estimate first
the control gains and then the desired trajectory. The estimated
human’s desired trajectory is used as augmented sensory
information about the system and combined with the robot’s
measurement to estimate a reference trajectory. Simulations
and an implementation on a robotic interface demonstrate that
the reactive control can robustly identify the human user’s
control, and that the sensory augmentation improves the robot’s
tracking performance.

I. INTRODUCTION

How to program a robot working in contact with its human
user? While the benefits of contact robots are suggested
by the effects observed during physical tasks carried out
between humans exchanging haptic information [1], [2], [3],
contact robots have so far made little use of the opportunities
of interactive control [4]. It is often stated that collaborative
strategies between the robot and human should be designed
to use the best of their respective capabilities. By this it
is usually meant that the robot would carry heavy loads
according to reference trajectories identified by the human
user, who has the superior analysis and sensorimotor intelli-
gence capabilities [5], [6]. While the aforementioned works
focus on how humans and robots can share the task load and
control effort [7], [8], [9], [10], we propose here a different
strategy according to which a robot and its human partner
could use haptic information during physical interaction to
complement their own sensing. This sensory augmentation is
in line with the notion of the observation-control duality in
control theory [11] but has not been studied for human-robot
collaboration.

External sensors such as (3D) camera, ultrasonic sensors
and LIDAR have been used to infer the partner’s movement
intention, based on which reactive/collaborative control could
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be designed e.g. for obstacle avoidance in multi-agent sys-
tems [12]. Could the haptic information exchanged during
physical interaction be used to infer the movement intention
of the human user and improve the performance of the robot?
Many research works in assistive devices estimate/recognize
the human user’s movement intention or command [13], e.g.
assistance of path following by rollators and wheelchairs
[14], [15]. These works typically use the user’s information
to modulate the robot’s controller, but do not use that
information to improve the robot’s sensing and knowledge
of the task.

In [2], it has been shown that when humans in physi-
cal contact (e.g. through an object) carry out a common
action, they improve their sensorimotor performance by
understanding their partner’s control and extracting their
motion goal. It has been further shown in [3] that these
benefits, which apply to both partners regardless of their
relative ability, are due to haptic communication mediated
through mechanical interaction between the partners. Using
this communication, the partners are able to understand each
other’s motion goal and integrate this information to improve
their performance beyond their individual tracking capability.
In this paper, we develop an algorithm to replicate this neural
mechanism which can be used to improve the sensorimotor
performance of a human-robot system. This algorithm is
fundamentally different from the aforementioned approaches
for multi-agent systems and assistive devices, by integrating
the partner’s sensing to one’s own and thus improves the task
performance.

To infer the desired trajectory of a partner, it is necessary
to know their control law. However, the robot cannot a-
priori know the control used by the human, so they must
learn it during the interaction. This requires the design of an
observer through which both partners will understand each
other’s control in order to predict their motion planning.
This paper first develops such an observer-predictor pair. The
interactive behaviour and potential benefits of the resulting
robotic partner are then tested in three steps:
• Simulations examine whether in ideal cases the esti-

mation techniques result in correct identification, and
in similar improvements to that observed in human
interactions.

• Experiments between a robot and a known secondary
controller (or “virtual” human, VH) are implemented
on a physical system to validate that the estimation is
robust to real-world disturbances.

• An experiment with human subjects verifies that the
improvements from the robot partner’s sensory augmen-
tation are robust to unmodelled human factors.
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II. PROBLEM FORMULATION

A. System dynamics
The dynamics of an object manipulated at a common end-

effector point by a robot and a human can be described as

u+ uh + ν = Mẍ+ Cẋ (1)

where u ≡ u(t) and uh ≡ uh(t) are the robot and human
control inputs, respectively, ν is white noise in the robot
and human’s control inputs, x≡x(t) is the (common) end-
effector position in task space, M ≡M(x) is the object’s
mass matrix, and Cẋ ≡ C(x, ẋ) ẋ is the Coriolis and
centrifugal force term.

We assume that the robot and human generate motions
with little error and effort [16], corresponding to minimising
the respective cost functions

J ≡
∫ ∞
t0

(x− τ)′Qx(x− τ) + ẋ′Qẋ ẋ+ u′u dt, (2)

Jh≡
∫ ∞
t0

(x− τh)′Qh,x(x− τh) + ẋ′Qh,ẋ ẋ+ u′huh dt

where the subscript h stands for human, ′ is the transpose
operator, x ≡ x(t), τh ≡ τh(t), τ ≡ τ(t) are functions of
time, Qh,x, Qh,ẋ, Qx, Qẋ are subject specific positive semi-
definite matrices, and t0 is the start time of one trial. Qh,x

and Qx are used to express the minimisation of the human
and robot’s tracking errors, respectively, and Qh,ẋ and Qẋ

the minimisation of their velocity. The weights of the human
and robot’s control inputs u and uh are assumed to be 1 for
analysis convenience. τh and τ are the human and robot’s
desired trajectories which are unknown to the partner and
modelled as constants that may evolve with the system noise.

To facilitate the analysis, the system dynamics eq.(1) and
cost functions of the human and robot eq.(2) can be written
in state-space form as

ξ̇ = Aξ +B(u+ uh + ν) , (3)

ξ≡

 x− τx− τh
ẋ

, A ≡
0 0 1

0 0 1
0 0 −M−1C

, B ≡
 0

0
M−1

,
J =

∫ ∞
t0

ξ′(t)Qξ(t) + u′(t)u(t) dτ,

Jh =

∫ ∞
t0

ξ′(t)Qh ξ(t) + u′h(t)uh(t) dτ

where

Q ≡

Qx 0 0
0 0 0
0 0 Qẋ

, Qh≡

0 0 0
0 Qh,x 0
0 0 Qh,ẋ

 .
In this formulation, both the robot and human use the same
state information ξ to minimise their own cost function.
Each of them generates motor commands minimising their
respective cost function using the LQR algorithm [17]:

u = −Lξ , L = B′P , (4)
A′P + PA+Q− PBB′P = 0

uh = −Lh ξ , Lh = B′Ph , (5)
A′Ph + PhA+Qh − PhBB

′Ph = 0

where L and Lh are the control gains of the human and robot,
resulting from their individual cost matrix parameters, and P
and Ph are computed by solving the respective Riccati equa-
tion. These control gains correspond to Cartesian stiffness
and viscosity. They vary slowly and smoothly with posture
due to the nonlinear kinematic transformation between the
joint and Cartesian spaces [18], and are assumed to be
constant for small movements.

B. Sensory augmentation

Suppose that the robot and human’s sensing provides them
with a measurement of the system’s common position x and
velocity ẋ as well as their own desired trajectory, i.e.

y ≡
[
x− τ
ẋ

]
+ ε ≡ Hξ + ε , H ≡

[
1 0 0
0 0 1

]
, (6)

yh ≡
[
x− τh
ẋ

]
+ εh ≡ Hh ξ + εh , Hh ≡

[
0 1 0
0 0 1

]
where εh, ε represent the respective white noises resulting
from the different measurement capabilities of each partner.

How to estimate ξ based on yh and y? In the human-
human collaborative tracking task of [2], the partner’s desired
trajectory inferred from haptic information was combined
with their reference estimation obtained from visual sensing
[3], which resulted in tracking improvement. Similarly, could
an observer combining the user and partner’s estimated
reference be implemented according to their respective noise
statistics? In this paper, we apply such a method for human-
robot interaction and design the robot’s control.

As in the human model of [3], we assume that the two
agents estimate each other’s desired trajectory and combine
it with their own. In particular, the robot can use

y ≡ [(x− τ)′ (x− τ̂h)′ ẋ′]′ (7)

to replace the measurement in eq.(6) where τ̂h is the estimate
of τh. In this way, it is expected that the estimation of the
reference trajectory will be improved due to the additional
sensory signal. We elaborate into how this sensory augmen-
tation strategy is realised in the following section.

III. ESTIMATION OF HUMAN’S CONTROL

In this section, we develop a method to estimate the
human’s control input uh in eq.(5), which includes two parts
unknown to the robot, namely the subject and task specific
control gain Lh and their desired trajectory τh. As both of
them have to be estimated, we extend the system state from
the robot’s point of view to

ξ̄ ≡ [(x− τ)′ (x− τh)′ ẋ′ Lh,x Lh,h Lh,ẋ]′ (8)

The last three components which are from the unknown
human’s control gain, i.e.

Lh ≡ [Lh,x Lh,h Lh,ẋ] (9)



correspond to the three variables x − τ , x − τh and ẋ,
respectively. Then, eqs.(3,7) are extended to

˙̄ξ = Ā ξ̄ + B̄(u+ ν) , (10)

y = H̄ξ̄ + ε , H̄ ≡
[

1 0 0 0 0 0
0 0 1 0 0 0

]

Ā ≡


0 0 1 0 0 0
0 0 1 0 0 0
a21 a22 a23 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, B̄ ≡


0
0

M−1

0
0
0


a21 ≡ −M−1Lh,x , a22 ≡ −M−1Lh,h ,

a23 ≡ −M−1(C + Lh,ẋ) .

To estimate Lh and τh, noting the non-linearity resulting
from the multiplication of the unknown controller gains
with the state within the extended state, we develop an
observer using an unscented Kalman filter (UKF, [19]) with
the observer

˙̂̄
ξ = ˆ̄A ˆ̄ξ + B̄(u+ ν) +K(y − ŷ), ŷ = H̄ˆ̄ξ (11)

where ˆ̄A is the estimate of Ā with Lh replaced by L̂h, ŷ
is the estimate of y and K is the UKF gain. Yielding the
estimated extended state ˆ̄ξ, the estimated human’s control
gain and desired trajectory are obtained.

Note that H̄ is a sparse matrix, which indicates that the
measurable system information is limited. Therefore, it is
difficult to simultaneously estimate the human’s control gain
and desired trajectory. To address this issue, in this paper
we propose to estimate Lh and τh sequentially: the human’s
control gain Lh is estimated from an initial trajectory τh(t)
known to the robot (which is shown for the human to
track), after which any human’s desired trajectory τh can
be estimated. The following two subsections describe how
Lh and τh can be estimated.

A. Estimation of human’s control gain

Supposing that the human’s initial desired trajectory is
known to the robot, the robot’s ‘measurement’ yields x− τ

x− τh
ẋ

+ ε1 =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 ξ̄ + ε1 ,

ȳ1 ≡ H̄1ξ̄ + ε1 . (12)

Then, ˆ̄ξ, the robot’s estimate of ξ̄, can be obtained from the
observer (11) with the replacements y → ȳ1 and ŷ → ˆ̄y1 ≡
H̄1

ˆ̄ξ. The UKF gain is updated iteratively with each time
step k4t as

K1 = P1H̄
′
1R
−1
1 (13)

where P1 is obtained by solving the Riccati equation

P1Ā
′ + ĀP1 − P1H̄

′
1R
−1
1 H̄1P1 +Qk = 0 . (14)

Qk and R1 are covariance matrices of white noises ν and
ε1, respectively, reflecting the relative skill of the agent in

their prediction/measurement. This minimises the estimation
error

J = E[‖ˆ̄ξ − ξ̄‖2] (15)

and the last three components of ˆ̄ξ form the estimate of ξ
used to estimate the human control gain L̂h. In performing
this estimation we note that the system eq.(10) with mea-
surement eq.(12) is not observable. Therefore the estimation
requires the injection of persistently exciting noise into the
reference of one or both of the partners.

B. Estimation of the partner’s desired trajectory

With L̂h the estimate of the human’s control gain Lh, it
becomes possible to estimate the system state ξ including
the human’s desired trajectory τh, provided that the robot
and human’s desired trajectories are persistently exciting. In
particular, the robot’s ‘measurement’ including L̂h becomes

x− τ
ẋ

L′h,x
L′h,h
L′h,ẋ

+ ε2 =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ξ̄ + ε2 ,

ȳ2 ≡ H̄2 ξ̄ + ε2 . (16)

Similarly as in the previous subsection, ˆ̄ξ, the robot’s esti-
mate of ξ̄, can be obtained from the observer (11) with the
replacements y → ȳ2 and ŷ → ˆ̄y2 ≡ H̄2

ˆ̄ξ. The UKF gain is
updated iteratively with each time step k4t as

K2 = P2H̄
′
2R
−1
2 (17)

where P2 is obtained by solving the Riccati equation

P2Ā
′ + ĀP2 − P2H̄

′
2R
−1
2 H̄2P2 +Qk = 0 . (18)

R2 is covariance matrix of white noise ε2. Then, the second
component of ˆ̄ξ can be used to obtain the estimate of the
human’s desired trajectory τh.

IV. SIMULATION

To demonstrate the benefits of the proposed sensory aug-
mentation method, we simulate a scenario where a human
arm is rigidly connected to a robot at a common end-
effector while both track the same reference trajectory, i.e.
τh(t)=τ(t) ∀t. This is simulated by considering the system
dynamics eq.(1), with mass M=6kg and 0 Coriolis and
centrifugal component. Motor noise ν is added to the control
input (generated using randn() in Matlab). The human and
robot are assumed to have equal skill and use the cost
functions of eq.(2) with Qx = Qh,x = 20000 m−2 and
Qẋ = Qh,ẋ s2 m−2.

First, we suppose that the human and robot know each
other’s initial desired trajectory. The robot’s desired trajec-
tory is a 1m square wave plus a sweeping signal [sin(t) +
sin(2t) + sin(3t)]/104 while the human’s desired trajectory
is a 0.1m square wave plus another sweeping signal [cos(t)+
cos(2t)+cos(3t)]/104. The covariance matrices of noises are
Qk = 10−1018 m−2 and R1 = 10−1014 m−2, respectively.
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Fig. 1. Estimation of the partner’s control in the final 2 seconds of the trajectory. A: The actual trajectory is in the middle between the human’s and
robot’s desired trajectories, as they have the same weights in their respective cost functions. B: Human’s control gains Lh,x, Lh,ẋ (solid lines) and their
estimates by the robot (dotted lines) almost overlap. C: Robot’s control gains Lx, Lẋ (solid lines) and their estimates by the human partner (dotted lines)
almost overlap. D: The human and robot are able to estimate each other’s desired trajectory.
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Fig. 2. Integration of the estimated partner’s desired trajectory. The left panels illustrate the measurement of each partner in the presence of sensory noise,
while the right panels show that the error in estimation of the reference is reduced for both partners superior in the tracking task (A), both inferior (B),
and with one superior and one inferior(C).



An UKF is implemented to deal with the non-linearity in
the system eq.(10) and estimate the control gains L̂ and L̂h.

Second, the identified estimated control gains are used
to estimate the partner’s new desired trajectory. The noise
covariance matrices are Qk = 10−1018 m−2 and R2 =
10−1017 m−2, respectively. An UKF is implemented again
to obtain the estimated desired trajectories τ̂ and τ̂h, respec-
tively.

A. Estimation of the partner’s control gain and trajectory

We first simulate estimation of the partner’s control gain.
Fig.1A illustrates the position profile during the reaching
task: since the human and robot have the same weights
in their respective cost functions, the actual trajectory is
exactly in the middle between human’s and robot’s desired
trajectories. Figs.1B and 1C show that the human’s and the
robot’s control gains can be reliably estimated by the partner.

With the estimated partner’s control gain, we are ready to
simulate estimation of the partner’s new desired trajectory.
For this purpose, we assume that the human’s and robot’s
desired trajectories become a square wave with magnitude of
0.1m. Note that they are unknown to their respective partner
and that the same trajectories are considered as this will
be used for goal integration in the next subsection. Fig.1D
illustrates the estimation results of the partner’s desired
trajectory. In particular, the upper figure shows that human
is able to estimate the robot’s desired trajectory τ , with a
certain error due to the continuous change of the movement
direction. Correspondingly, the bottom figure shows similar
performance of estimating the human’s desired trajectory τh
by the robot.

B. Goal integration

After the partners estimate each other’s desired trajectory,
they can combine it with their own motion planning. When
the two agents track the same reference these two pieces
of information can be used to improve the estimation of
the ‘true’ reference trajectory. To do so the robot uses the
‘measurement’

y ≡ [(x− τ)′, (x− τ̂h)′, ẋ′]′ + ε (19)

and the human

yh ≡ [(x− τ̂)′, (x− τh)′, ẋ′]′ + εh . (20)

The same reference trajectory is set as a 0.1m square
wave. Other parameters remain the same as in the previous
subsection.

Fig.2 illustrates the simulation results with and without
integrating the estimated partner’s desired trajectory under
three conditions reflecting different relative skill levels in
interpreting partner information and measurement:
• Superior measuring: both partners have excellent mea-

suring ability with the covariance matrix of the mea-
surement noise set as 10−5 m−2 for both.

• Inferior measuring: the covariance matrix of the mea-
surement noise is set as 10−3 m−2 for both.

• One superior partner and one inferior partner: the co-
variance matrix of the measurement noise is set as
10−5 m−2 for the human and 10−3 m−2 for the robot.
All other parameters are held identical.

It is observed that the estimation is refined when the esti-
mated partner’s desired trajectory is integrated. Both partners
improve their individual tracking, no matter if their partner
is superior or inferior in using their vision to measure
the reference trajectory. These results correspond to the
observations of human-human interaction in [3]. How about
the overall tracking performance? Fig.3 illustrates that when
integrating the estimated partner’s desired trajectory, the
tracking performance is improved compared to that without
integration. These results show that human-robot interaction
can be used to improve not only the reference estimation,
but also the reference tracking of collaborative robots.

0 0.5 1 1.5 2
-0.1

0

0.1

without goal integration

reference

with goal integration

Fig. 3. Tracking performance with a superior simulated human and an
inferior robot. The performance improvement resulting from integrating the
estimated partner’s desired trajectory is also found for the cases of the human
and robot both superior and both inferior, but is omitted.

V. EXPERIMENTAL RESULTS

To validate the accuracy of the estimation and the capabil-
ity of the algorithm for sensory augmentation when applied
to a physical system, we implemented a similar scenario as
in the simulation, where two agents are rigidly connected
to a common 1 degree of freedom (DoF) robotic interface.
One of the two agents is the robot, which is estimating its
partner. This partner is either i) a human, or ii) a ‘virtual’
human (VH) which is used during the validation of the
algorithm’s estimation capability. The VH implements the
control law eq.(5) with control gains that the robotic agent
has to identify. By using the VH we have a benchmark with
known parameters on which the developed algorithms can
be systematically tested.

The experiments are implemented on the Hi5 wrist inter-
face [20]. Fig.4A depicts this robotic interface with a 1 DoF
revolute joint. After Coulomb and viscous friction compen-
sation, the system can be modeled with the system dynamics
eq.(1), where the inertia is given by M=0.004 kg m2 and there
is 0 Coriolis and centrifugal contribution. The robot and VH
actuate the interface through a directly driven DC motor,
while the human partner can provide actuation through the
robotic joint which they are rigidly attached to. The robot
agent’s component of the control uses the cost functions of
eq.(2) with Qx = 1 rad−2 and Qẋ = 0 s2 rad−2. In addition
to the real-time haptic feedback provided through mechanical



interaction throughout the experiment, position feedback for
the human operator is shown on a monitor.

First, in Section V-A, using the VH partner we suppose
that the partners know each other’s desired trajectory and
observe the robot’s estimation of the control gain. The VH’s
desired trajectory is set as a rounded square wave with
magnitude of 8◦ and period of 4s given by

τh(t) = 8 (sin(0.5πt))
1
3 . (21)

This trajectory is chosen as it approximates a point to point
reaching task including both forward and backward move-
ments. The robot’s desired trajectory is the VH’s desired
trajectory plus a sweeping chirp signal with frequencies
ranging from 0Hz to 2Hz to provide persistent excitation.
The covariance matrices of noises are Qk = 10−216 rad−2

and R1 = 10−1013 rad−2, respectively. An UKF [19] is
implemented to deal with the non-linearity in the system
eq.(10) and to obtain the estimated control gain L̂h, which
is varied, in different trials, over a range of values.

Second, in Section V-B, one of the estimated control gains
from the first experiment is used to estimate the VH’s now
unknown desired trajectory. Covariance matrices of noises
are set to Qk = 10−216 rad−2 and R2 = 10−1015 rad−2,
respectively. An UKF is implemented again to obtain the
estimated desired trajectory τ̂h. These two validating exper-
iments confirm that the estimation can still work despite the
unmodelled non-linearities and quantisation present in the
physical system.

Third in Section V-C, the estimated VH’s desired trajec-
tory is used, in a manner consistent with the findings of
[3], as additional sensory information about the system. This
information is combined with the robot’s measurement, using
a third UKF, in order to improve the robot’s estimate of an
uncertain reference trajectory.

Finally in Section V-D, the same procedure is performed
as a pilot study on two human subjects. The results are then
compared to the VH partner performance and confirm that
the algorithm is able to deal with the additional variance
and unmodelled non-linearities, and that the effect of sensory
augmentation is similar to that observed in previous human-
human interaction studies [2], [3].

A. Estimation of the ‘virtual’ human’s control gain

In this subsection, we estimate the VH’s control gain for
the known VH and robot trajectories (shown in Fig.4C). With
fixed robot control, we vary the imposed VH partner gain
from Lh = [0, 0, 0] N m rad−1 to Lh = [0, 2, 0] N m rad−1

in increments of Lh,h = 0.5 N m rad−1. Twelve trials are
recorded at each gain level to verify the estimation con-
sistency. Fig.4B shows the resulting partner control gain
estimation as a function of the input control gain. These
values are reported as the mean value over the final 8 seconds
of the interaction.

It can be seen that the robot always estimates a value near
to the partner’s true control gain, however, a small error likely
resulting from residual non-linear dynamics is present in all
cases. This estimation error is worst at Lh,h = 0 in which

the persistently exciting noise injected in the robot’s desired
trajectory would have no effect on the system. From the
figure it can also be observed that the estimation is relatively
consistent across trials with the maximum standard deviation
given by 0.082 at Lh,h = 2 and the deviation less than 7.5%
of the mean in all cases. This small deviation likely comes
from the probabilistic nature of both the noise and UKFs.

To illustrate the convergence behaviour of the imple-
mented UKF, Fig.4D shows the robot’s partner gain esti-
mation as a function of time for the 1st trial with Lh =
[0,2,0] N m rad−1. It can be seen from this representative
example that the estimated gains converge towards an os-
cillatory behaviour about the true value, taking about 6-8s to
get to the vicinity of that value. This oscillation is produced
as a result of the exciting noise input into the system and the
friction compensation taking place in the robot. Compared to
the simulation, these factors have a larger role because of the
unmodelled dynamics for which the friction compensation is
not completely cancelling.

B. Estimation of the ‘virtual’ human’s desired trajectory

With the estimated VH control gain, it is possible to
estimate the VH’s new desired trajectory. For this purpose,
analogously to Section IV-A we assume that the VH and
robot’s desired trajectories become the same trajectory as
given by eq.(21). Fig.4E illustrates the results of the es-
timation of the partner’s desired trajectory. The robot is
able to estimate the correct magnitude and shape for the
VH partner’s desired trajectory. However, the estimation
possesses a certain amount of error consistent with that
observed in the estimated controller gains, likely due to
the exciting noise input into the system and the friction
compensation taking place in the robot.

C. Goal integration

Using the measurement given by eq.(19), the robot is able
to exploit its estimation of the VH partner’s desired trajectory
to improve the estimation of the ‘true’ reference trajectory.
The experiment is conducted with the same reference trajec-
tory as is given by eq.(21) and the other parameters remain
the same as in the previous subsection.

Fig.4F illustrates the average root mean squared error of
the robot’s estimated error state with and without integrating
the estimated partner’s desired trajectory under a range of
different injected robot measurement noise levels. When the
robot’s measurement noise level is relatively high, it is clear
that the estimation performance is improved with the esti-
mated VH’s desired trajectory integrated. When the robot’s
measurement noise level is low, the estimation performance
is similar with or without goal integration, as there is not
much room to improve the robot’s accurate measurement.

D. Pilot study with human subjects

A pilot study was conducted with two human subjects by
performing the same procedure as with the VH in Sections
V-A–V-C: the robot first estimated the human subjects’ gains
(estimated as Lh,h = 0.70 and 0.51 for subjects 1 and 2),
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Fig. 4. Experimental validation. A: Hi5 revolute joint robotic interface and experimental scenario with a human subject. The interface is equipped with
a DC motor that allows for the rendering of interaction torques in real-time due to physical coupling. The apparatus includes a monitor mounted in front
of the manipulandum for providing visual feedback to the human user of the manipulandum’s position and the moving reference. This interface is used
throughout the implementation. B: Estimation of the VH’s varying control gains for 12 trials. The mean estimated values across all trials at the same
gain are shown with red crosses, while the individual estimations are represented as black circles. C: Robot’s and VH’s desired reference trajectories.
The red dashed line constitutes the VH’s desired trajectory τh given by eq.(21) and the black line τ represents the robot’s desired trajectory which has
an additional imposed chirp signal. D: The robot’s VH gain estimates as a function of time for VH gain Lh = [0, 2, 0]. In each case, the mean value
over the last 8 seconds is shown with the dashed line. E: Robot’s estimation of the human trajectory. The black line denotes the estimation obtained for a
representative trial when Lh = [0, 2, 0], while the red line denotes the VH’s desired trajectory. F: Root mean squared error (RMSE) of the robot error state
estimation with and without goal integration for increasing values of robot error covariance expressed in rad−2 (VH: ‘virtual’ human; GI: goal integration;
S1: human subject 1; S2: human subject 2). The goal integration improves the robot’s estimation when interacting with the VH and two human subjects,
under conditions of different measurement noise levels.

then their desired trajectories, which were combined with its
own motion planning. The human subjects were required to
follow the moving reference displayed on the monitor. All the
parameters remained the same as in the previous subsection.

The average root mean squared error of the robot’s esti-
mated error state with and without integrating the estimated
subject’s desired trajectory is shown in Fig.4F. The results
demonstrate the same pattern as the VH partner: the robot’s
state estimation was improved with integration of the es-
timated partner’s desired trajectory. The robot’s estimation
performance is similar with lower noise level when compared
to the larger improvement occurring with larger noise level.
This means that the proposed algorithm will not improve
the task performance if the robot is equipped with accurate
sensors.

Note that the robot’s estimations of the human subjects’
gains and desired trajectories are not focused upon as in
contrast to the VH no benchmark is available to be compared
with. Together with the simulation results and the experimen-
tal results with the VH partner, these experimental results
correspond to the observations of human-human interaction
in [3] and demonstrate that human-robot interaction can be

used to improve not only the reference trajectory estimation,
but also the reference tracking of collaborative robots.

VI. DISCUSSION

This paper developed a new algorithm that can explain
haptic communication between humans, and be used to im-
prove human-robot performance in tracking. When humans
in physical contact have to track the same reference, their
central nervous system estimates each other’s desired trajec-
tory, which they integrate with their own visual estimation to
improve the reference trajectory’s estimation [3]. To model
this neural mechanism, it was necessary to identify the
partner’s control gains and their desired trajectory, which was
achieved here through an unscented Kalman filter (UKF).
The partner’s desired trajectory could then be combined
with their own reference visual observation to plan motion
accordingly. Simulation and experimental results showed
how this augmented sensing strategy improves the reference
estimation performance across a range of different interaction
noise values.

The proposed technique considered the case where both
a robot and a human operator track the same independently



defined trajectory. The case of tracking either different trajec-
tories and/or references that dynamically change in response
to the human is differed to further work. The human control
modeling assumed constant gains, which has been verified
in tasks such as target reaching [21] or tracking [3]. Since
human impedance varies with posture, the use of constant
gains limits the trajectory used in the training to keep a
relatively similar posture in order for the identified constant
gains to still be valid. Although simple, target reaching and
tracking corresponds to many typical tasks such as pick-
and-place and navigation. More complex tasks may require
estimating time-varying human control gains.

On the other hand, the observability of the human-robot
system dynamics-observation pair is a necessary condition
for estimating the partner’s control and estimating their
motion planning. This condition can be fulfilled if the human
and robot exchange rich haptic information. In this paper,
observability between the human and robot pair was achieved
by splitting the identification and required introducing a
persistently exciting noise into the desired trajectory. The
human control gain was first estimated on a known trajectory,
before this information could be used to infer and track any
unknown trajectory. However, humans are able to instinc-
tively perform similar estimation concurrently provided that
their interaction is suitably rich. Future works will be geared
towards understanding the conditions for simultaneous esti-
mation of control gain and desired trajectory.

By exploiting the interaction with the user, the novel
augmented sensing algorithm could be used to improve the
performance of various contact robots. For instance, if a
robot has to help a human transporting an object [22], it
can infer the human’s planned movement and so improve its
assistance. In shared control of semi-autonomous vehicles
[23], the vehicle controller (i.e. the robot) may improve its
sensing and performance in path tracking by using sensory
information from the driver. Different from existing works
that focused on collaborative control [4], this is (in our
knowledge) the first concept and algorithm to use the part-
ner’s sensing for improving own sensing and performance.
The pilot experiment with human users confirmed how this
could improve the robot’s performance by using feedback
from the human partner, as interacting humans do [2]. We
note that this algorithm could also be used to optimise the
sensing of several interacting robots, and we expect that the
interaction benefits would increase with the number of robots
as was observed in human collectives [24].
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