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Abstract— This paper presents a framework for 3D instance
segmentation on point clouds. A 3D convolutional neural net-
work is used as the backbone to generate semantic predictions
and instance embeddings simultaneously. In addition to the
embedding information, point clouds also provide 3D geometric
information which reflects the relation between points. Con-
sidering both types of information, the structure-aware loss
function is proposed to achieve discriminative embeddings for
each 3D instance. To eliminate the quantization error caused
by 3D voxel, the attention-based k-nearest neighbor (kNN) is
proposed. Different from the average strategy, it learns different
weights for different neighbors to aggregate and update the
instance embeddings. Our network can be trained in an end-to-
end style. Experiments show that our approach achieves state-
of-the-art performance on two challenging datasets for instance
segmentation.

I. INTRODUCTION

With the development of 3D sensors such as RGB-D
cameras, 3D scene understanding becomes more and more
important in augmented reality, autonomous driving and
robotics. Compared with 2D scene understanding, 3D un-
derstanding is more challenging due to the data sparsity
and high computational cost. However, 3D data contain
rich geometric information which is useful for semantic
understanding whereas 2D images do not directly reflect
such information. 3D understanding includes many tasks.
In comparison to 3D semantic segmentation and object
detection, 3D instance segmentation is more challenging
since it simultaneously provides the semantic category and
the instance identification. In this paper, we focus on 3D
instance segmentation.

Instance segmentation in 2D images has achieved a great
performance. Most approaches to 2D instance segmentation
are proposal-based which first apply a proposal generator
to obtain the initial region proposals [1]–[6] and then use
a binary segmentation network to obtain the instance mask.
Such idea [7] achieves desirable results thanks to accurate
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Fig. 1. The network takes RGB-D point clouds as input and outputs in-
stance labels. The wall and the floor are ignored in the instance segmentation
of the ScanNet dataset [11].

region proposals. However, these methods have some draw-
backs. First, they are the combination of object detection
and semantic segmentation. The training process is usually
two-stage which is more complex than those of single-
stage instance segmentation methods. Second, one pixel
may have more than one instance label since it may be in
two overlapped bounding boxes simultaneously. The second
problem can be more serious when it is the multi-class
instance segmentation of clutter scenes.

An alternative idea is to generate embeddings for each
pixel [8]–[10] and then apply a clustering algorithm to
obtain the final instance result. This idea utilizes semantic
segmentation networks to generate discriminative embed-
dings. Although such proposal-free methods [8]–[10] can
not get as high performance as proposal-based methods [7]
on 2D images, they are simpler in the implementation
and can avoid the drawbacks of proposal-based methods.
Additionally, such a framework can simultaneously segment
images at the semantic level and instance level while the
proposal-based methods can only obtain the instance result.
In this paper, we propose a proposal-free framework for 3D
instance segmentation. Fig. 1 shows the input and output of
our method.

SGPN [12] is a pioneering work on 3D instance segmen-
tation. It proposes a loss function based on the similarity
matrix to supervise the instance embedding. However, the
complexity of its loss function is O(n2) where n is the
number of points which makes it difficult to process large
scenes on the order of 105 or more points. Inspired by
the central idea in [13], we propose a structure-aware loss
function that reduces the complexity to O(n) and utilizes the
structure information of point clouds. Previous research [13]
only pays attention to the embedding center. In addition
to the embedding information, point clouds also have 3D
geometric information which is represented as the 3D co-
ordinates. Therefore, we also present a geometric center for
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each instance in the loss function. Within an object instance,
the embeddings of points near the geometric center of the
object are more likely to be similar, whereas the embeddings
of points near the edge are more likely to be different. This
means that the embeddings near the edge are hard examples.
To deal with this problem, the proposed loss function focuses
more on points far from the geometric center. For instance
segmentation, the local consistency of embeddings is very
important. We can search the k-nearest neighbors (kNN) for
each point according to their 3D coordinates and then aver-
age neighboring embeddings from neighbors to enhance the
consistency. However, kNN is not so accurate for modeling
the relation between two points. This means that a point and
its neighbor may belong to different instances even if they
are very close in the physical world. In this case, wrong
information will be passed to the point when using a simple
averaging strategy. Considering this problem, we propose the
attention-based kNN. When aggregating information from
neighbors, the weight for each neighbor is not fixed but
learnable. Additionally, if using a 3DCNN as the backbone
to extract features, then a quantization error will be caused
by 3D voxel. kNN is a pointwise operation that can eliminate
such an error.

In conclusion, the main contributions of this paper are as
follows:
• We propose the structure-aware loss function to take

both geometric information and embedding information
into account for supervising instance embeddings.

• We propose the attention-based kNN to aggregate infor-
mation from neighbors and eliminate the quantization
error caused by 3D voxel.

• Experiments show that our proposed method achieves
state-of-the-art performance on the ScanNet bench-
mark [11] and the NYUv2 dataset [14].

II. RELATED WORK
A. Instance Segmentation

Instance Segmentation on 2D Images. As a combination
of object detection [1]–[6] and semantic segmentation [15]–
[17], instance segmentation [7]–[10], [18] becomes a hot
research topic since it provides richer semantic information.
There are two main ideas for instance segmentation. One
idea is proposal-based which is relevant to general object
detection. [7] is an effective system for instance segmentation
which segments the proposal bounding box to obtain the
instance mask. Based on [7], [18] enhances the information
propagation in representative pipelines and proposes a more
flexible feature pooling method. The other idea is to learn
an embedding for each pixel and then group pixels to
form instance masks. [8] uses the Euclidean distance with
a sigmoid function to measure the similarity of each pair of
embedding vectors. [9] proposes a loss function to pull pixels
belonging to the same instance closer in the embedding
space. [10] utilizes the cosine similarity which is invariant
to the scale of the embedding vector.

Instance Segmentation on Point Clouds. Recently, sev-
eral researchers have tried instance segmentation on point

clouds. [12] is a pioneer in 3D instance segmentation
which generates an embedding for each point and proposes
a double-hinge loss to supervise the embedding learning.
[19] generates a proposal for each object by reconstructing
the shape and then applies PointNet++ to obtain the final
instance segmentation result. [20] proposes a detection-
based method to obtain instance predictions by fusing multi-
modal inputs. [21] proposes a detection-by-segmentation
network for part instance segmentation. [22] predicts pixel-
wise panoptic labels for 2D images using [7], [17] and then
integrates the predicted 2D labels into a 3D volumetric map.
[23] proposes a multi-task pointwise network for semantic-
instance segmentation and a multi-value conditional random
field model for the joint optimization. [24] learns global
features from an intermediate bird’s-eye view representation
and then propagates the learned features to 3D point clouds.
[25] processes a voxelized point cloud and predicts the
instance affinity between neighboring voxels at different
scales. [26] directly regresses 3D bounding boxes for all
instances in a point cloud and simultaneously predicts a
point-level mask for each instance.

B. Deep Learning on Point Clouds

Deep learning on point clouds develops fast in recent
years. View-based methods [27], [28] convert point clouds
to images and apply 2D convolution. The voxel-based
method [29], [30] is a natural generalization of 2D convolu-
tion. However, the performance of the voxel-based methods
is limited by the resolution of the voxels. [31], [32] exploit
the sparsity property of 3D data and enable a 3DCNN to
achieve higher resolution and efficiency. Additionally, such
sparse convolutional operations can be easily combined with
many useful network frameworks for 2D images. Point-
Net [33] provides a brand new direction for 3D deep learning.
It directly processes raw point clouds without quantitative er-
rors. Several methods [34]–[36] model the local relationship
to extract hierarchical features using PointNet. The point-
based methods can not process large scale scenes with too
many points, so most of them divide the whole scene into
a collection of blocks instead of directly processing the
whole scene. Such strategy can be effective for tasks such as
semantic segmentation. However, for instance segmentation,
the division makes the post-processing pipeline much more
complex since we need to merge the same instance from
different blocks. As a result, the voxel-based method is
chosen to be the backbone of our network to generate the
instance embeddings.

III. METHOD DESCRIPTION

In section III-A, we first describe the whole network
architecture. In section III-B, we introduce our proposed
structure-aware loss function for supervised learning of in-
stance embeddings. In section III-C, we present the attention-
based kNN for automatically selecting information from
neighbors and eliminating the quantization error.
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Fig. 2. Illustration of the whole network architecture. N is the number of points. F is the dimension of the backbone output. C is the number of the
semantic classes. E is the dimension of the instance embedding. The mean-shift algorithm is used to cluster the instance embeddings during the inference.

A. Network Architecture

The whole network (illustrated in Fig. 2) consists of
three main components including the backbone network, the
structure-aware loss function and the attention-based kNN
algorithm. The backbone network is a kind of 3DCNN and
borrowed from [32]. The input is the original point coor-
dinates with RGB attributes. We recommend [32] for more
details on the backbone network. The output of the backbone
network is fed into two branches. The semantic branch
directly outputs the semantic predictions supervised by the
cross entropy loss function after a fully connected layer. The
instance branch outputs the initial instance embeddings for
the structure-aware loss function after a fully connected layer.
To eliminate the quantization error caused by 3D voxel, the
output of the fully connected layer is fed into a series of
attention-based kNN modules. Finally, three loss items are
added as the total loss. During the inference, the mean-shift
algorithm is used to cluster the embeddings generated by the
instance branch to obtain instance clusters.

B. Structure-Aware Loss Function

After generating the initial embeddings for all points, we
hope that the points within the same instance have similar
embeddings while the points from different instances are
apart in the embedding space. This is a classical problem
in metric learning [13], [37]. However, for a 3D point cloud,
it does not only have the embedding information but also
have the 3D geometric relations. This is different from past
research on metric learning. We utilize this relation to make
the final results more discriminative.

On the one hand, we want to minimize the distance be-
tween embeddings within the same instance. The Euclidean
distance is chosen to measure the similarity due to its
simplicity. For the ith instance, we calculate the geometric
center µp,i and the embedding center µs,i, and then the
corresponding centers are subtracted from the 3D coordinates
and the embedding vector, respectively:

µp,i =
1

Ni

Ni∑
k=1

pi,k, p
′

i,k = pi,k − µp,i (1)

µs,i =
1

Ni

Ni∑
k=1

si,k, s
′

i,k = si,k − µs,i (2)

where pi,k and si,k are the 3D coordinates and the embedding
of the kth point within the ith instance, respectively. p

′

i,k and

s
′

i,k are the 3D coordinates and the embedding after mean
centering, respectively.

The intra-loss item for the ith instance is formalized as
follows:

Lossintrai =

Ni∑
k=1

g(‖p
′

i,k‖)[‖s
′

i,k‖ − α]2+ (3)

where α is a threshold for penalizing large embedding
distances. Ni is the point number of the ith instance. g(x) :
R 7→ R is a function that is monotonically increasing. It
means that points far from the geometric center are penalized
more heavily in Equation (3). We use the sigmoid function
as g(x) in our application. [x]+ means max(0, x).

It should be noted that the embeddings of the points near
the edge are more likely to be different from the mean
embedding which means that they are hard examples for
instance segmentation. Equation (3) focuses more on these
points. Experiments show the effectiveness of this operation.

On the other hand, to make the points of different instances
discriminative, the mean embeddings between different in-
stances should be far from each other:

Lossinterij = [β − ‖µs,i − µs,j‖]2+ (4)

where β is a threshold for the distance between mean
embeddings. It means that the loss function only penalizes
small distances. If a distance is larger than the threshold, then
it will not contribute to the loss value since the embeddings
are far enough apart in the embedding space.

The final loss function is composed of the above items:

Loss =
1

M

M∑
i=1

Lossintrai +
1

M(M − 1)

M∑
i=1

M∑
j=1,j 6=i

Lossinterij

(5)
where M is the total number of instances in the scene.

Analysis. We define an attractive term and a repulsive term
in Equation (5) in line with [9] and utilize the 3D information
to enhance the discrimination of the instance embedding. The
effectiveness of the 3D structure is shown in two aspects.
First, we extend the attractive term in Equation (3) with a
spatial weighting related to the geometric center. The usage
of the spatial weighting makes the network focus more on the
points near the edge which are hard examples in the training
process. Second, the raw input of our network includes the
3D point coordinates which makes the embedding reflect the
spatial relation. Objects are separate in 3D space, and the 3D
coordinates reflect the structure of 3D objects. However, in
2D image segmentation, the input is the RGB value, which
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Fig. 3. Illustration of the attention-based kNN. In step 1, for each input point, the k-nearest neighbors are searched according to the 3D coordinates. In
step 2, different weights are learned for different neighbors. The value of the weight is determined by both the center point and the corresponding neighbor.
The output of the attention-based kNN is the weighted average of the embeddings of k neighbors. The skip connection is used to concatenate the output
and the input embeddings together. A fully connected layer follows to update the output embedding.

can not directly reflect the spatial geometric information.
We can find that proposal-free methods usually perform
worse than proposal-based methods in 2D segmentation
while our method can perform better than some proposal-
based methods [19], [20] in 3D segmentation.

C. Attention-based K-Nearest Neighbor

3DCNN is a powerful method for extracting features from
point clouds. However, 3DCNN is a voxel-based method.
One voxel may contain several points with different cate-
gories. Regardless of how well the method extracts features,
a quantization error always exists. The k-nearest neighbor
(kNN) algorithm is a pointwise operation. A point can aggre-
gate information from surrounding neighbors. Such a point-
wise operation can eliminate the quantization error caused
by 3D voxel. However, because the neighbors are searched
according to the 3D coordinates, aggregating information by
simple averaging will result in some wrong information if the
neighbors do not belong to the same instance as the center
point. Therefore, we propose an attention-based kNN for
automatic embedding selection. We add the attention-based
kNN after the 3DCNN to refine the instance embedding.
Combining the 3DCNN and the attention-based kNN can
allow them to benefit from each other. In this section, we
describe the attention-based kNN module. Fig. 3 illustrates
the process of the attention-based kNN.

The input embeddings of point clouds are denoted by
X = {x1, ..., xn} ⊆ RF .

{
xji1 , ..., xjik

}
are the k-nearest

neighbors of xi according to their 3D coordinates. The
average-based kNN aggregation process can be formalized
as follows:

xaggregatei =
1

k

k∑
m=1

xjim (6)

For automatic embedding selection and aggregation, we
utilize the attention mechanism. The operation can be for-
malized as follows:

xaggregatei =

k∑
m=1

αmxjim (7)

where αm is the attention weight for each neighbor. It is re-
lated to the embedding of the neighbor and the corresponding
center point and can be calculated as follows:

pm = f(xi, xjim ) (8)

where f : R2×F 7→ R1 is a two-layer fully connected
network. αm is the normalization of pm using the softmax
function:

αm = softmax(pm) =
exp(pm)∑k

m=1 exp(pm)
(9)

After aggregating the embeddings from neighbors, the skip
connection is used to combine the original embedding and
the aggregated embedding together to obtain the hierarchical
embedding. Then, a fully connected layer is used to generate
the final output embedding:

xoutputi = [xi, x
aggregate
i ]W (10)

where W ⊆ R2F×F is a trainable parameter.
Analysis. Compared to the average-based kNN aggrega-

tion, the attention-based kNN can learn different weights for
different neighbors. This means that the relation between
two points is determined by their features. Additionally,
the attention-based kNN is a point-based operation while
the backbone is a voxel-based network. Combining the two
representations can allow them to benefit from each other.
The voxel-based method has the ability to effectively process
large scenes and the point-based method can eliminate the
quantization error caused by voxel and provide a more
precise receptive field since it directly uses the absolute
coordinates to search neighbors.

Implementation. We search the k-nearest neighbors using
CUDA implementation on the GPU. For each point, the fea-
tures of its k neighbors are obtained. Equation (7) aggregates
these features in an attention fashion. The kNN search itself
does not have learnable parameters, so it does not need to
be updated when back propagating. The role of the kNN
search is to provide the index of neighbors. Our attention-
based kNN can be trained in an end-to-end style without



any special operation. The function f : R2×F 7→ R1 in
Equation (8) needs to be updated when back propagating.
Its training process has no difference from other networks.

IV. EXPERIMENTS

Datasets. We evaluate our model with two datasets which
provide 3D instance segmentation labels:
• ScanNet [11]: This dataset contains 1613 3D indoor

scans. We follow the official split of 1201 training
samples, 300 validation samples and 100 testing sam-
ples (without ground truths). The dataset provides a
benchmark for several tasks including 3D instance seg-
mentation. It provides images from different views but
we only use the point cloud data in our method.

• NYUv2 [14]: This dataset contains 1449 single RGB-
D images. We follow the same preprocessing method
as [12] and [19] to obtain the 3D annotations of point
clouds. We follow the standard split of 795 training
samples and 654 testing samples.

Implementation Details. We implement the network with
Pytorch1.0 [38] and run it on a single NVIDIA GTX1080Ti.
Our network can be easily trained in an end-to-end style. We
use the ADAM optimizer with a learning rate of 0.001. α
and β in the structure-aware loss function are set to 0.7 and
1.5 respectively. For the kNN search, we set k = 8 and use
the L2-distance according to the 3D coordinates of points.
The dimension of the instance embedding is set to 4. We find
that higher dimension has minor influence on the accuracy
and makes it difficult to determine the bandwidth of the
mean-shift algorithm during the inference. The mean-shift
algorithm is used to cluster the embeddings generated by the
instance branch to obtain instance clusters. The bandwidth
of the mean-shift algorithm is set as 1.0. Meanwhile, the
semantic branch outputs a semantic prediction for each
point. We determine the category of each instance cluster
by majority vote. For data augmentation, we randomly scale
the scenes and rotate them along the vertical axis.

In our experiment, we use two backbone networks with
different model capacities provided by [32]. The first back-
bone network is a UNet-like architecture based on the
submanifold sparse convolution with a smaller capacity and
a faster speed. The second is a ResNet-like architecture with
a larger capacity and a slower speed. In addition to UNet
with the standard sparse convolutional layers, the ResNet-
like architecture uses ResNet style convolutional layers1 for
deeper feature extraction. We train the whole model from
scratch with the UNet backbone for 650 epochs and the
model with the ResNet backbone for 300 epochs.

Metrics. The average precision (AP) is widely used in
instance segmentation. For the ScanNet online benchmark,
it provides the result of the AP with an IoU threshold of 0.5
(AP0.5) and 0.25 (AP0.25) and the mean AP (mAP ) with the
IoU ranging from 0.5 to 0.95 [11]. For the NYUv2 dataset,
the AP with an IoU threshold of 0.25 (AP0.25) is commonly

1https://github.com/facebookresearch/SparseConvNet/blob/master/
examples/ScanNet/README.md

used. For both datasets, images and RGB-D point clouds
are provided. Some previous methods use both inputs while
others use a single input. Our network only uses the point
clouds as the input. We do not use the features extracted
from images via image-based 2D networks.

A. Instance Segmentation on ScanNet

The ScanNet dataset provides an online benchmark and
we first evaluate our method with it. Eighteen categories are
used in the instance segmentation task which makes it more
challenging compared to instance segmentation on a single
category.

Among all previous methods, SGPN [12] is the most
similar method to our method. Compared to SGPN, the space
complexity and the computational complexity of our pro-
posed structure-aware function are both O(n), while those of
SGPN are both O(n2). Additionally, our proposed function
considers the structure information while SGPN consid-
ers each point equivalently. R-PointNet [19], 3D-SIS [20],
PanopticFusion [22] and 3D-BoNet [26] are proposal-based
methods. 3D-SIS and PanopticFusion use not only the point
cloud but also images from multiple views as the input. The
image information also contributes to their final results.

Our method achieves state-of-the-art performance on the
ScanNet benchmark. Tab. I provides the AP0.5 of each
class and the overall AP0.5. Tab. II provides the overall
mAP , AP0.5 and AP0.25 reported on the ScanNet online
benchmark. The qualitative results are shown in Fig 4. The
model using UNet as the backbone outperforms most of the
methods including R-PointNet [19]. The model using ResNet
as the backbone almost outperforms all methods except for
the AP0.5 of PanopticFusion-inst [22] which additionally
uses images as the input and 3D-BoNet [26]. However, our
method performs better than them on the mAP and AP0.25
metrics. Specially, our method exceeds PanopticFusion-inst
on mAP by a large margin. Compared to the AP0.5, the
mAP requires a higher overlap between the prediction and
the ground truth. This means that the prediction of our
method is more complete than that of PanopticFusion-inst.
This is attributed to the framework of our method. The
proposed structure-aware loss function aims to make the
points within the same instance have similar embeddings.
Moreover, it focuses more on hard examples far from the
geometric center. Therefore, our method is more likely to
generate similar embeddings for all points within an object.
Additionally, the attention-based kNN further enhances the
local consistency of the instance embeddings.

In Tab. I, we find that classes such as pictures, counters,
bookshelves, and desks are not predicted well. For 3D points,
pictures and bookshelves are easily misclassified as the
wall because their geometric shapes are similar. Desks are
also easily predicted as tables. In contrast, panopticFusion-
inst well predicts windows, bookshelves and pictures. These
classes are easily recognized in images.



TABLE I
RESULTS ON THE TEST SET OF THE SCANNET (V2) 3D INSTANCE SEGMENTATION BENCHMARK. AP0.5 IS REPORTED IN THE TABLE.

Method image
point
cloud Mean

cabi-
net bed chair sofa table door

win-
dow

book-
shelf

pic-
ture

coun-
ter desk

cur-
tain

fri-
dge

show-
er toilet sink

bath-
tub other

Mask R-CNN [7] yes no 5.8 5.3 0.2 0.2 10.7 2.0 4.5 0.6 0.0 23.8 0.2 0.0 2.1 6.5 0.0 2.0 1.4 33.3 2.4
SGPN [12] no yes 14.3 6.5 39.0 27.5 35.1 16.8 8.7 13.8 16.9 1.4 2.9 0.0 6.9 2.7 0.0 43.8 11.2 20.8 4.3
3D-BEVIS [24] no yes 24.8 3.5 56.6 39.4 60.4 18.1 9.9 17.1 7.6 2.5 2.7 9.8 3.5 9.8 37.5 85.4 12.6 66.7 3.0
R-PointNet [19] no yes 30.6 34.8 40.5 58.9 39.6 27.5 28.3 24.5 31.1 2.8 5.4 12.6 6.8 21.9 21.4 82.1 33.1 50.0 29.0
3D-SIS [20] yes yes 38.2 19.0 43.2 57.7 69.9 27.1 32.0 23.5 24.5 7.5 1.3 3.3 26.3 42.2 85.7 88.3 11.7 100.0 24.0
MASC [25] no yes 44.7 38.2 55.5 63.3 63.9 38.6 36.1 27.6 38.1 32.7 0.2 26.0 50.9 45.1 57.1 98.0 36.7 52.8 43.2
PanopticFusion [22] yes yes 47.8 25.9 71.2 55.0 59.1 26.7 25.0 35.9 59.5 43.7 0.0 17.5 61.3 41.1 85.7 94.4 48.5 66.7 43.4
3D-BoNet [26] no yes 48.8 30.1 67.2 48.4 49.9 51.3 34.1 43.9 59.0 12.5 9.8 30.6 62.0 43.4 79.6 90.9 40.2 100.0 25.9

UNet+strucLoss+kNN no yes 31.9 18.9 71.5 47.9 61.5 35.5 20.1 9.3 23.3 10.7 0.8 6.7 21.8 12.3 43.8 91.6 15.0 66.7 17.3
ResNet+strucLoss+kNN no yes 45.9 25.9 73.7 58.7 53.6 59.0 41.6 30.4 15.9 12.8 13.8 21.7 47.5 31.5 71.4 87.3 41.1 100.0 40.8

Semantic Predition Semantic GT Instance Prediction Instance GTInput

Fig. 4. Visualization of ScanNet results. The first column is the input of our model. The second column is the prediction of the semantic labels. The third
column is the ground truth of the semantic segmentation. The fourth column is the instance prediction. The fifth column is the ground truth of the instance
segmentation. For the instance segmentation, we only visualize the 18 categories that are useful for the evaluation while dropping the other categories.

TABLE II
RESULTS ON THE TEST SET OF THE SCANNET (V2) 3D INSTANCE

SEGMENTATION BENCHMARK. mAP , AP0.5 AND AP0.25 ARE

REPORTED IN THE TABLE.

Method mAP AP0.5 AP0.25

Mask R-CNN [7] 2.2 5.8 26.1
SGPN [12] 4.9 14.3 39.0
3D-BEVIS [24] 11.7 24.8 40.1
R-PointNet [19] 15.8 30.6 54.4
3D-SIS [20] 16.1 38.2 55.8
MASC [25] 25.4 44.7 61.5
PanopticFusion [22] 21.4 47.8 69.3
3D-BoNet [26] 25.3 48.8 68.7

UNet+strucLoss+kNN(ours) 16.1 31.9 60.5
ResNet+strucLoss+kNN(ours) 26.3 45.9 69.5

B. Instance Segmentation on NYUv2
Different from the ScanNet dataset, the NYUv2 dataset

provides single RGB-D images instead of whole scenes.

Previous methods usually use both images and point clouds
as the input to increase the precision on this dataset. We only
use the 3D point clouds as the input in this paper. Despite
this, our method outperforms all state-of-the-art methods
on this dataset (shown in Tab. III). Especially, our method
achieves the highest precision for many categories. Since the
NYUv2 dataset provides single RGB-D images with partial
point clouds, categories such as boxes, monitors, and garbage
bins are difficult to recognize only using point clouds. It
is easier to segment these categories on the image than on
the point cloud. Therefore, MRCNN obtains better results
than our method on some of these categories. Fusing visual
features from images can also be helpful. We leave the multi-
sensor fusion as a future work.

C. Ablation Study

We conduct an ablation study on the validation set of the
ScanNet (v2) dataset.

Different loss functions. To validate the effectiveness



TABLE III
RESULTS ON THE TEST SET OF THE NYUV2 DATASET. AP0.25 IS REPORTED IN THE TABLE.

Method image
point
cloud mean

bath-
tub bed

book-
shelf box chair

coun-
ter desk door

dres-
ser

gar-
bage lamp

moni-
tor

night
stand

pil-
low sink sofa table TV toilet

MRCNN yes no 29.3 26.3 54.1 23.4 3.1 39.3 34.0 6.2 17.8 23.7 23.1 31.1 35.1 25.4 26.6 36.4 47.1 21.0 23.3 58.8
MRCNN* yes no 31.5 24.7 66.3 20.1 1.4 44.9 43.9 6.8 16.6 29.5 22.1 29.2 29.3 36.9 34.6 37.1 48.4 26.6 21.9 58.5
SGPN-CNN [12] yes yes 33.6 45.3 62.5 43.9 0.0 45.6 40.7 30.0 20.2 42.6 8.8 28.2 15.5 43.0 30.4 51.4 58.9 25.6 6.6 39.0
R-PointNet-CNN [19] yes yes 39.3 62.8 51.4 35.1 11.4 54.6 45.8 38.0 22.9 43.3 8.4 36.8 18.3 58.1 42.0 45.4 54.8 29.1 20.8 67.5

ResNet+strucLoss+kNN no yes 43.0 82.1 67.3 48.1 3.5 65.4 56.8 14.5 37.6 23.1 7.3 60.0 4.4 52.9 34.3 68.2 55.0 28.3 20.7 87.2

TABLE IV
COMPARISON OF DIFFERENT LOSS FUNCTIONS.

Method AP AP0.5 AP0.25

UNet+intra-only 7.5 18.4 41.6
UNet+inter-only 6.3 16.5 42.0
UNet+vanillaLoss 15.0 33.8 59.9
UNet+strucLoss 15.8 35.0 61.3

TABLE V
COMPARISON OF DIFFERENT KNN LAYERS. AVERAGE-KNN ASSIGNS

EQUAL WEIGHTS FOR EACH NEIGHBOR. ATTENTION-KNN ASSIGNS

LEARNABLE WEIGHTS FOR EACH NEIGHBOR.

Method AP AP0.5 AP0.25

UNet+strucLoss 15.8 35.0 61.3
UNet+strucLoss+average-kNN×1 16.0 34.8 62.0
UNet+strucLoss+average-kNN×2 15.1 34.5 61.7
UNet+strucLoss+attention-kNN×1 16.3 35.6 62.1
UNet+strucLoss+attention-kNN×2 17.1 36.0 63.0
UNet+strucLoss+attention-kNN×3 16.5 35.1 62.3

of our structure-aware loss function, we compare it with
the vanilla loss function. The vanilla loss function can be
viewed as a center loss [13] with an additional inter-item.
The vanilla version does not use structure information, so the
importance of each point in the same instance is the same.
Tab. IV shows the comparison. The use of the structure-
aware loss function increases the AP0.5 and AP0.25 by more
than 1%. This means that assigning larger weights to points
far from the geometric center is beneficial to generating
more discriminative embeddings. Additionally, we train the
network on the intra-cluster and inter-cluster loss separately.
We find that using the single constraint can not obtain
satisfactory results. If using the intra-cluster loss solely, the
points from different instances may have similar embeddings.
If using the inter-cluster loss solely, the embeddings of
points within the same instance may be of great difference.
Therefore, the two items need to be applied simultaneously.

Different kNN layers. We compare different types and
numbers of kNN layers to explore their effectiveness. Tab. V
provides the results. The average kNN assigns equal weights
for each neighbor. The results show that it barely improves
the result or even harms it. We suppose that simple averaging

TABLE VI
COMPARISON OF DIFFERENT METHODS FOR FEATURE AGGREGATION.

Method AP AP0.5 AP0.25

UNet+strucLoss+mlp-pooling×2 16.6 35.4 62.3
UNet+strucLoss+attention-kNN×2 17.1 36.0 63.0

TABLE VII
COMPARISON OF DIFFERENT BACKBONES.

Method AP AP0.5 AP0.25

UNet+strucLoss+attention-kNN×2 17.1 36.0 63.0
ResNet+strucLoss+attention-kNN×2 27.0 46.4 67.2

may cause blurry features. However, the attention-based
kNN can contribute to the final result due to its automatic
embedding selection mechanism. It can be found that the
use of two layers performs the best. More layers do not
necessarily lead to better results. We find that using more
layers may cause oversmoothing. Additionally, too many
layers may increase the difficulty of training. Further, we
compare the proposed attention-based kNN with the feature
aggregation method in PointNet++. The feature aggregation
operation in PointNet++ uses MLP to update features and
max pooling to aggregate features. We call the operation mlp-
pooling. Here our goal is to refine the features. We think that
weighted averaging has better interpretability than pooling.
Tab. VI also proves the effectiveness of our method.

Different backbone networks. Our proposed architecture
can adapt to different backbone networks. In this paper, we
compare two models that use the UNet backbone and the
ResNet backbone. The results are shown in Tab. VII. The
model using the ResNet backbone outperforms the model
using the UNet backbone. This means that deeper models
can perform better using our framework which shows the
expansibility of our method.

V. CONCLUSIONS

In this paper, we propose a framework for 3D point cloud
instance segmentation. By using the proposed structure-
aware loss function, discriminative instance embeddings can
be easily generated. To aggregate information from neighbors
and eliminate the quantization error caused by 3D voxel, the



attention-based kNN is proposed to learn different weights
for different neighbors. Experiments show that our approach
achieves state-of-the-art performance on the ScanNet bench-
mark and the NYUv2 dataset. In the future, multi-sensor
fusion can be added into our network to combine geometric
features and image features.
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