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Abstract— Effective communication is key to successful, de-
centralized, multi-robot path planning. Yet, it is far from
obvious what information is crucial to the task at hand, and how
and when it must be shared among robots. To side-step these
issues and move beyond hand-crafted heuristics, we propose
a combined model that automatically synthesizes local com-
munication and decision-making policies for robots navigating
in constrained workspaces. Our architecture is composed of
a convolutional neural network (CNN) that extracts adequate
features from local observations, and a graph neural network
(GNN) that communicates these features among robots. We
train the model to imitate an expert algorithm, and use the
resulting model online in decentralized planning involving
only local communication and local observations. We evaluate
our method in simulations by navigating teams of robots to
their destinations in 2D cluttered workspaces. We measure
the success rates and sum of costs over the planned paths.
The results show a performance close to that of our expert
algorithm, demonstrating the validity of our approach. In
particular, we show our model’s capability to generalize to
previously unseen cases (involving larger environments and
larger robot teams).

I. INTRODUCTION

Efficient and collision-free navigation in multi-robot sys-
tems is fundamental to advancing mobility. The problem,
generally referred to as Multi-Robot Path Planning (MRPP)
or Multi-Agent Path Finding (MAPF), aims at generating
collision-free paths leading robots from their origins to
designated destinations. Current approaches can be classified
as either coupled or decoupled, depending on the structure of
the state space that is searched. While coupled approaches
are able to ensure the optimality and completeness of the
solution, they involve centralized components, and tend to
scale poorly with the number of robots [1], [2]. Decoupled
approaches, on the other hand, compute trajectories for each
robot separately, and re-plan only in case of conflicts [3],
[4], [5]. This can significantly reduce the computational
complexity of the planning task, but generally produces sub-
optimal and incomplete solutions. Balancing optimality and
completeness with the complexity of computing a solution,
however, is still an open research problem [6], [7].

This work focuses on multi-robot path planning for sce-
narios where the robots are restricted in observation and
communication range, and possess no global reference frame
for localization. This naturally arises when considering phys-
ical robots equipped with hardware constraints that limit
their perception and communication capabilities [8]. These
scenarios impose a decentralized structure, where at any
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given point in time, robots have only partial information
of the system state. In this paper, we propose a combined
architecture, where we train a convolutional neural network
(CNN) [9] that extracts adequate features from local obser-
vations, and a graph neural network (GNN) to communicate
these features among robots [10] with the ultimate goal of
learning a decentralized sequential action policy that yields
efficient path plans for all robots. The GNN implementation
seamlessly adapts to the partial information structure of the
problem, since it is computed in a decentralized manner. We
train this architecture to imitate an optimal coupled planner
with global information that is available offline at training
time. Further, we develop a dataset aggregation method
that leverages an online expert to resolve hard cases, thus
expediting the learning process. The resulting trained model
is used online in an efficient, decentralized manner, involving
communication only with nearby robots. Furthermore, we
show that the model can be deployed on much larger robot
teams than the ones it was trained on.

II. RELATED WORK AND CONTRIBUTION

Related work. Classical approaches to multi-robot path
planning can generally be described as either centralized
or decentralized. Centralized approaches are facilitated by a
planning unit that monitors all robots’ positions and desired
destinations, and returns a coordinated plan of trajectories
(or way-points) for all the robots in the system. These plans
are communicated to the respective robots, which use them
for real-time on-board control of their navigation behavior.
Coupled centralized approaches, which consider the joint
configuration space of all involved robots, have the advantage
of producing optimal and complete plans, yet tend to be com-
putationally very expensive. Indeed, solving for optimality
is NP-hard [11], and although significant progress has been
made towards alleviating the computational load [12], [13],
these approaches still scale poorly in environments with a
high number of potential path conflicts.

Decentralized approaches provide an attractive alternative
to centralized approaches, firstly, because they reduce the
computational overhead, and secondly, because they relax
the dependence on centralized units. This body of work
considers the generation of collision-free paths for individual
robots that cooperate only with immediate neighbors [14],
[5], or with no other robots at all [3]. In the latter case, coor-
dination is reduced to the problem of reciprocally avoiding
other robots (and obstacles), and can generally be solved
without the use of communication. Yet, by taking purely
local objectives into account, global objectives (such as path
efficiency) cannot be explicitly optimized. In the former case,
it has been shown that monotonic cost reduction of global
objectives can be achieved. This feat, however, relies on
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strong assumptions (e.g., problem convexity and invariance
of communication graph [15], [16]) that can generally not
be guaranteed in real robot systems.

Learning-based methods have proven effective at de-
signing robot control policies for an increasing number of
tasks [17], [18]. The application of learning-based methods
to multi-robot motion planning has attracted particular at-
tention due to their capability of handling high-dimensional
joint state-space representations, by offloading the online
computational burden to an offline learning procedure. The
work in [19] proposes a decentralized multi-agent collision
avoidance algorithm based on deep reinforcement learning.
Their results show that significant improvement in the quality
of the path (i.e., time to reach the goal) can be achieved with
respect to current benchmark algorithms (e.g., ORCA [3]).
Also in recent work, Sartoretti et al. [7] propose a hybrid
learning-based method called PRIMAL for multi-agent path-
finding that uses both imitation learning (based on an ex-
pert algorithm) and multi-agent reinforcement learning. It is
note-worthy that none of the aforementioned learning-based
approaches consider inter-robot communication, and thus,
do not exploit the scalability benefits of fully decentralized
approaches. Learning what, how, and when to communicate
is key to this aim.

Of particular interest to us is the capability of learning-
based methods to handle high-dimensional joint state-space
representations, useful when planning for large-scale collec-
tive robotic systems, by offloading the online computational
burden to an offline learning procedure [20], [21], [19]. The
fact that each robot must be able to accumulate information
from other robots in its neighborhood is key to this learning
procedure. From the point of view of an individual robot,
its local decision-making system is incomplete, since other
agents’ unobservable states affect future values. The manner
in which information is shared is crucial to the system’s
performance, yet is not well addressed by current ma-
chine learning approaches. Graph Neural Networks (GNNs)
promise to overcome this deficiency [22], [10]. They capture
the relational aspect of robot communication and coordina-
tion by modeling the collective robot system as a graph:
each robot is a node, and edges represent communication
links [23]. Although GNNs have been applied to a num-
ber of problem domains, including molecular biology [24],
quantum chemistry [25], and simulation engines [26], they
have only very recently been considered within the multi-
robot domain, for applications of flocking and formation
control [23], [20], [21].

Contributions. The application of GNNs to the problem
of multi-robot path planning is novel. Our particular GNN
implementation offers an efficient architecture that operates
in a localized manner, whereby information is shared over a
multi-hop communication network, through explicit commu-
nication with nearby neighbors only [10]. Our key contribu-
tion in this work is the development of a framework that can
learn what information needs to be shared between robots,
such that each robot can make a decision based on this local
information; importantly, our robots only have local, relative
information about their positions and goals (i.e., they possess

no global reference frame). This framework is composed of
a convolutional neural network (CNN) that extracts adequate
features from local observations, and a graph neural network
(GNN) that learns to explicitly communicate these features
among robots. By jointly training these two components, the
system is able to best determine what information is relevant
for the team as a whole, and share this to facilitate efficient
path planning. The proposed model is trained to imitate a
centralized coupled planner, and makes use of a novel dataset
aggregation method that leverages an online expert to resolve
hard cases, thus expediting the learning process. We achieve
performance that is close to that of optimal planners in terms
of success rate and flowtime (sum of path costs), while also
being able to generalize to previously unseen cases, such as
larger robot teams and environments.

III. PROBLEM FORMULATION

Let V = {v1, . . . , vN} be the set of N robots. At time
t, each robot perceives its surroundings within a given field
of vision; although the robot knows where its own target
destination is located, this information is clipped to the field
of vision in a local reference frame (see Fig. 1). Furthermore,
we assume no global positioning of the robots. This map
perceived by robot i is denoted by Zi

t ∈ RWFOV×HFOV where
WFOV and HFOV are the width and height, respectively, and
are determined by the field of vision radius rFOV.

The robots can communicate with each other as deter-
mined by the communication network. We can describe this
network at time t by means of a graph Gt = (V, Et,Wt)
where V is the set of robots, Et ⊆ V × V is the set of
edges and Wt : Et → R is a function that assigns weights to
the edges. Robots vi and vj can communicate with each
other at time t if (vi, vj) ∈ Et. The corresponding edge
weight Wt(vi, vj) = wij

t can represent the strength of the
communication (or be equal to 1 if we are only modeling
whether there is a link or not). For instance, two robots
vi and vj , with positions pi,pj ∈ R2 respectively, can
communicate with each other if ‖pi − pj‖ ≤ rCOMM for
a given communication radius rCOMM > 0. This allows us
to define an adjacency matrix St ∈ RN×N representing the
communication graph, where [St]ij = sijt = 0 if (vj , vi) /∈
Et.

In this work, we formulate the multi-agent path planning
problem as a sequential decision-making problem that each
robot solves at every time instant t, with the objective of
reaching its destination. More formally, the goal of this work
is to learn a mapping F that takes the maps {Zi

t}vi∈V and
the communication network Gt at time t and determines an
appropriate action ut. We want the action ut = F({Zi

t},Gt)
to be such that it contributes to the global objective of moving
the robots towards their destinations in the shortest possible
time while avoiding collisions with other robots and with
obstacles that might be present. The objective is to train the
network to perform as well as a coupled centralized expert,
while restricting robots to partial observations. The mapping
F has to be restricted to involve communication only among
nearby robots, as dictated by the network Gt at each time
instant t.
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IV. GRAPH NEURAL NETWORKS

In order to guarantee that the mapping F is restricted to
communications only among nearby robots, we parametrize
it by means of a GNN, which is a naturally decentralized
solution (Sec. IV-B). We then train this GNN to learn
appropriate actions that contribute to the global objective by
means of supervised learning through an expert algorithm
(i.e., imitation learning) (Sec. V-E).

A. Graph Convolutions
Assume that each robot has access to F observations x̃i

t ∈
RF at time t. Let Xt ∈ RN×F be the observation matrix
where each row collects these F observations at each robot
x̃i
t, i = 1, . . . , N ,

Xt =

 (x̃
1
t )

T

...
(x̃N

t )T

 =
[
x1
t · · · xF

t

]
. (1)

Note that the columns xf
t ∈ RN represent the collection of

the observation f across all nodes, for f = 1, . . . , F . This
vector xf

t is a graph signal [27], since it assigns a scalar
value to each node, xf

t : V → R so that [xf
t ]i = xift ∈ R.

To formally describe the communication between neigh-
boring agents, we need a concise way of describing the graph
Gt and relating it to the observations Xt. Towards this end,
we use the adjacency matrix St. We note that other matrix
descriptions of the graph, such as the Laplacian matrix or
the Markov matrix are possible. We generically call St the
graph shift operator (GSO) [27].

The operation StXt represents a linear combination of
neighboring values of the signal due to the sparsity pattern
of St. More precisely, note that the value at node i for
observation f after operation StXt ∈ RN×F becomes

[StXt]if =

N∑
j=1

[St]ij [Xt]jf =
∑

j:vj∈Ni

sijt x
jf
t (2)

where Ni = {vj ∈ V : (vj , vi) ∈ Et} is the set of nodes
vj that are neighbors of vi. Also, the second equality in (2)
holds because sijt = 0 for all j /∈ Ni.

The linear operation StXt is essentially shifting the values
of Xt through the nodes, since the application of St updates
the value at each node by a linear combination of values in
the neighborhood. With the shifting operation in place, we
can define a graph convolution [10] as linear combination of
shifted versions of the signal

A(Xt;St) =

K−1∑
k=0

Sk
tXtAk (3)

where {Ak} is a set of F × G matrices representing the
filter coefficients combining different observations. Several
noteworthy comments are in order with respect to (3).
First, multiplications to the left of Xt need to respect
the sparsity of the graph since these multiplications imply
combinations across different nodes. Multiplications to the
right, on the other hand, can be arbitrary, since they imply
linear combination of observations within the same node in

a weight sharing scheme. Second, Sk
tXt = St(S

k−1
t Xt) is

computed by means of k communication exchanges with 1-
hop neighbors, and is actually computing a summary of the
information located at the k-hop neighborhood. Therefore,
the graph convolution is an entirely local operation in the
sense that its implementation is naturally distributed. Third,
the graph convolution is actually computing the output of a
bank of FG filters where we take as input F observations per
node and combine them to output G observations per node,
A(Xt;St) ∈ RN×G. There are FG graph filters involved in
(3) each one consisting of K filter taps, i.e., the (f, g) filter
can be described by filter taps afg = [afg0 , . . . , afgK−1] ∈ RK

and these filter taps are collected in the matrix Ak as
[Ak]fg = afgk .

B. Graph Neural Networks
A convolutional GNN [10] consists of a cascade of L lay-

ers, each of which applies a graph convolution (3) followed
by a pointwise nonlinearity σ : R → R (also known as
activation function)

X` = σ
[
A`(X`−1;S)

]
for ` = 1, . . . , L (4)

where, in a slight abuse of notation, σ is applied to each
element of the matrix A`(X`−1;S). The input to each layer
is a graph signal consisting of F`−1 observations and the
output has F` observations so that X` ∈ RN×F` . The input
to the first layer is X0 = Xt so that F0 = F and the output
of the last layer corresponds to the action to be taken at
time t, XL = Ut which could be described by a vector of
dimension FL = G. The GSO S to be used in (4) is the
one corresponding to the communication network at time t,
S = St. At each layer ` we have a bank of F`F`−1 filters A`

described by a set of K`F`F`−1 total filter taps {A`k}K−1k=0 .
We note that, in the present framework, we are running

one GNN (4) per time instant t, where each time step
is determined by the moment the action is taken and the
communication network changes. This implies that we need
to carry out

∑L
`=1(K` − 1) total communications before

deciding on an action. Therefore, it is important to keep the
GNN shallow (small L) and the filters short (small K`).

In summary, we propose to parametrize the mapping F
between maps Zt and actions Ut by using a GNN (4) acting
on observations Xt = CNN(Zt) obtained by applying a
CNN to the input maps. We note that, by choosing this
parametrization we are obtaining a mapping that is naturally
distributed and that is adequately exploiting the network
structure of the data.

V. ARCHITECTURE

The following sections describe the architecture, of which
all components are illustrated in Fig. 1.

A. Processing Observations
In an environment (W × H) with static obstacles, each

robot has a local field-of-view (FOV), the radius of which is
defined by rFOV, beyond which it cannot ‘see’ anything. The
robot itself is located at the center of this local observation,
and does not know its global position. The data available
at robot i is a map Zi

t of size WFOV × HFOV (Fig. 1
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Fig. 1: Illustration of the proposed framework. (i) The input tensor is based on a binary map representation (1st channel: partial observation
of the environment; 2nd channel: the position of goal (pi

goal), or its projection onto the boundary of the field-of-view; 3rd channel: self
(agent) at center, with other agents within its field-of-view). (ii) The decentralized framework consists of a CNN to extract observations
from the input tensor, a GNN to exchange information between the neighboring agents, and an MLP to predict the actions. (iii) Training
is performed through cross-entropy loss over a discrete action space.

illustrates how we implement such partial observations). The
input map Zi

t is fed into a CNN that is run internally on
each robot. This results in a vector x̃i

t ∈ RF containing
F observations (1), x̃i

t = CNN(Zi
t). These observations can

then be communicated to nearby robots. The intuition behind
using a CNN is to process the input map Zi

t into a higher-
level feature tensor x̃i

t describing the observation, goal and
states of other robots. This feature tensor is then transmitted
via the communication network, as described in the following
section,Sec. V-B.
B. Communication

Each individual robot communicates its compressed obser-
vation vector x̃i

t with neighboring robots within its commu-
nication radius rCOMM over the multi-hop communication
network, whereby the number of executed hops is limited
by K. As described in Sec. IV-B, we apply our GNN
to aggregate and fuse the states (x̃j

t ) within this K-hop
neighborhood of robots j ∈ Ni, for each robot i. The output
of the communication GNN is a hyper-representation of the
fused information of the robot itself and its K-hop neighbors,
which is passed to the action policy, as described in Sec. V-
C. We note that each robot carries a local copy of the GNN,
hence resulting in a localized decision-making policy.

C. Action Policy
We formulate the path-finding problem as a sequential

classification problem, whereby an optimal action is chosen
at each time step. We adopt a local multi-layer perceptron
(MLP) to train our action policy network. More specifically,
each node applies a MLP to the aggregated features resulting
from the communication GNN. This MLP is the same across
all nodes, resembling a weight-sharing scheme. The action ũi

t

taken by robot i is given by a stochastic action policy based

on the probability distribution over motion primitives, which
in our case consists of five discrete options (up, left, down,
right, idle), and are represented by one-hot vectors. The final
path is represented by the series of sequential actions.

D. Network Architecture

We construct our CNN architecture by using
Conv2d-BatchNorm2d-ReLU-MaxPool2d and
Conv2d-BatchNorm2d-ReLU blocks sequentially three
times. All kernels are of size 3 with a stride of 1 and zero-
padding. In the GNN architecture, we deploy a single layer
GNN (as described in Sec. IV-B) and set 128 as the number
of input observations F and output observations G. Note
that we can tune the filter taps K for non-communication
(K = 1) and multi-hop communication (K > 1). In the
action policy, we use a linear soft-max layer to decode the
output observations G from the GNN with 128 features into
the five motion primitives.

E. Learning from Expert Data

To train our models, we propose a supervised learning
approach based on expert data (i.e., imitation learning).
We assume that, at training time, we have access to an
optimal trajectory of actions {U∗t } for all the robots, and
the corresponding maps obtained for this trajectory {Zi

t},
collected in a training set T = {({Ut}, {Zi

t})}. Then, we
train the mapping F so that the output is as close as possible
to the corresponding optimal action U∗ using a cross entropy
loss L(·, ·). If the mapping F is parametrized in terms of a
GNN (4) then this optimization problem becomes

min
CNN,{A`k},MLP

∑
({Ut},{Zi

t})∈T

∑
t

L(U∗t ,F({Zi
t},Gt)). (5)
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input map Zi
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goal or exceeds the timeout Tmax.

We are optimizing over the filters in the CNN required to
process the map as well as the set of matrices {A`k} that
contains the

∑L
`=1K`F`−1F` learnable parameters of the

communication GNN. Note that the number of parameters is
independent of the size of the network N .

Imitation learning rests on the availability of an optimal
solution (further elaborated in Sec. V-F, below). While
this solution might be computationally expensive, or even
intractable for large networks, we only need it at training
time. Once trained, the GNN models can be deployed in dif-
ferent communication topologies [28], including those with
a larger number of robots as is evidenced in the numerical
experiments of Sec. VI-C. Given the decentralized nature
of the parametrizations, the trained models are efficient in
the sense that their computation is distributed among the
agents, demanding only communication exchanges with one-
hop neighbors.

F. Expert Data Generation

As described in our problem statement in Sec. III, the
robots operate in a grid world of size W × H with static
obstacles randomly placed throughout the map. For each grid
world, we generate cases randomly, i.e., problem instances,
which consist of pairs of start and goal positions for all robots
(we also refer to this as a configuration). We filter duplicates
or invalid cases, and store the remaining cases in a setup
pool, which is randomly shuffled at training time. For each
case, we generate the optimal solution. Towards this end, we
run an expert algorithm: Conflict-Based Search (CBS) [12]
(which is a similar approach as taken in [7]). This expert
algorithm computes our ‘ground-truth paths’ (the sequence
of actions for individual robots), within a 300 s timeout, for
a given initial configuration. Our data set comprises 30,000
cases for any given grid world and number of agents. This
data is divided into a training set (70%), a validation set
(15%), and a testing set (15%).

G. Policy Execution with Collision Shielding

At inference stage, we execute the action policy with a
protective mechanism that we name collision shielding. Since
it is not guaranteed that robots learn collision-free paths,
we require this additional mechanism to guarantee that no
collisions take place. Collision shielding is implemented as
follows: (i) if the inferred action would result in a collision

Algorithm 1: Generation of sequential actions.
Input: Input tensor, xi

0, i ∈ [0, N ], N is the number of
robots; timeout Tmax = 3TMP∗ as explained in
Sec. VI-A; Policy π

Output: Predicted paths (χ̂i) for each robot (i), consisting
of sequential predicted actions
ûi
t, for all t ∈ [0, TMP] from initial position pi

0

1 for t in [0, Tmax] do
2 while not all robots at their goals do
3 for robot i ∈ {1, . . . , N} do
4 obtain input tensor xi

t and adjacency matrix
St;

5 ûi
t ← π(xi

t,St) ;
6 if robot i with action ûi

t collides with obstacle
then

7 ûi
t ← idle (collision shielding);

8 end
9 end

10 if robot i, with action ûi
t, performs an edge

collision with robot j then
11 ûi

t ← idle (collision shielding);
12 else
13 record and update position pi

t+1 of robot i by
ûi
t; update input tensor xi

t and adjacency
matrix St.

14 end
15 end
16 end
17 Evaluate χ̂ according to metrics (Sec. VI-A).

with another robot or obstacle, then that action is replaced by
an idle action; (ii) if the inferred actions of two robots would
result in an edge collision (having them swap positions),
then those actions are replaced by idle actions. It is entirely
possible that robots remain stuck in an idle state until the
timeout is reached. When this happens, we count it as a
failure case. The overall inference process is summarized in
Alg. 1 and Fig. 2.

H. Dataset Aggregation during Training

The use of collision shielding leads to failure cases due to
potential deadlocks in the actions taken by the robots, where
some of them remain stuck in an idle state. To overcome
such deadlocks, we propose a dataset aggregation method
that makes use of an online expert (OE) algorithm, during
training. More specifically, every C epochs, we select nOE

random cases from the training set and identify which ones
are stuck in a deadlock situation. Then, we run the expert
starting from the deadlock configuration in order to unlock
them into moving towards their goal. The resulting successful
trajectory is added to the training set and this extended
training set is then used in the following epochs. This process
is detailed in Alg. 2. We note that no change is made to
the validation or test sets. This dataset aggregation method
is similar to the approach in DAgger [29], but instead of
correcting every failed trajectory, we only correct trajectories
from a randomly selected pool of nOE cases, as calls to our
expert algorithm are time-consuming. Another key difference
is that we need to resort to an explicit measure of failure
(i.e., through the use of a timeout), since focusing on any
deviations from the optimal path (as in the DAgger approach)
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Algorithm 2: Training process with dataset aggrega-
tion.

Input: Input tensor, xi
t, t ∈ [0, TMP∗ ], i ∈ [0, N ], N is the

number of robots; and adjacency matrix St; target
actions u∗,i

t generated expert algorithm;
cross-entropy loss L; learning rate γ;
(xi

t,St, u
∗,i
t ) ∈ offline dataset Doffline

Output: Proposed framework π(· : w)
1 D ← Doffline ;
2 π(· : w)← initialize parameters w ;
3 for epoch ∈ {1, . . . , epochmax} do
4 for {sit,St, u

∗,i
t }Ni=1 ∈ D do

5 for i ∈ {1, . . . , N} do
6 ûi

t = π(xi
t,St : w) ;

7 w← w − γ · ∇wL(ûi
t, u

∗,i
t )

8 end
9 end

10 if mod (epoch, C) = 0 then
11 for nOE randomly selected cases from Doffline do
12 Deploy π(· : w) based on Alg. 1;
13 Upon timeout, deploy expert algorithm to

solve failure case DOE ;
14 D ← D ∪DOE

15 end
16 end
17 end

may be misleading, because those paths may still lead to very
competitive solutions in our problem setting.

VI. PERFORMANCE EVALUATION

To evaluate the performance of our method, we perform
two sets of experiments, (i) on networks trained and tested
on the same number of robots, and (ii) on networks trained
on a given number of robots, and tested on previously unseen
team sizes (both larger and smaller).

A. Metrics

1) Success Rate (α) = nsuccess/n, is the proportion of
successful cases over the total number of tested cases n.
A case is considered successful (complete) when all robots
reach their goal prior to the timeout;

2) Flowtime Increase (δFT) = (FT−FT∗)/FT∗, measures
the difference between the sum of the executed path lengths
(FT) and that of expert (target) path (FT∗). We set the
length of the predicted path T i = Tmax = 3TMP∗ (Alg. 1
and Fig. 2), if the robot i does not reach its goal. Here,
TMP∗ is the makespan of the solution generated by the expert
algorithm.

B. Experimental Setup

Our simulations were conducted using a 12-core, 3.2Ghz
i7-8700 CPU and an Nvidia GTX 1080Ti GPU with 32 and
11GB of memory, respectively. The proposed network was
implemented in PyTorch v1.1.0 [30], and was accelerated
with Cuda v10.0 APIs. We used the Adam optimizer with
momentum 0.9. The learning rate γ scheduled to decay from
10−3 to 10−6 within 150 epochs, using cosine annealing. We
set the batch size to 64, and L2 regularization to 10−5. The
online expert on the GNN is deployed every C = 4 epochs
on nOE = 500 randomly selected cases from the training
set.
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Fig. 3: Results for success rate (α) and flowtime increase (δFT),
as a function of the number of robots. For each panel, we vary the
number of communication hops (K ∈ [1, 2, 3]), including results
obtained through training with the online expert (OE). We also
compare our framework with Discrete-ORCA [3][31].

C. Results
We instantiate 600 different maps of size 20×20, of which

420 are used for training, 90 for validation, and 90 for testing.
We generate 50 cases for each map. The obstacle density is
set to 10%, corresponding to the proportion of occupied over
free space in the environment. We consider a field of view of
radius rFOV = 4 and a communication radius of rCOMM =
5. At each time step, each robot runs a forwards pass of its
local action policy (i.e., the trained network). At the end of
each case (i.e., it is either solved or the timeout is reached),
we record the length of each robot’s path and the number of
robots that reach their goals, to compute performance metrics
according to Sec. VI-A.

1) Effect of Communication on Flowtime and Success
Rates: Figures 3a and 3b show results for the success
rate and flowtime increase, respectively, as a function of
the number of robots. For each panel, we train a model
for N ∈ [4, 6, 8, 10, 12], and test it on instances of the
same robot team size. In each experiment, we vary the
number of communication hops (K ∈ [1, 2, 3]). Note that
for K = 1 there is no communication involved. Similar
to [3] and [31], we use a discrete version of a velocity-
based collision-avoidance method (Discrete-ORCA) as an
additional benchmark against which to test our method.

In both figures, we see a drop in performance for larger
teams, but this drop is much more pronounced for the non-
communicative GNN (K = 1). Our framework generally
outperforms the Discrete-ORCA in terms of success rate and
flowtime increase.

2) Generalization: Fig. 4a and 4b summarize the general-
ization capability of our model for success rate and flowtime
increase, respectively. The experiment was carried out by
testing networks across previously unseen cases. The tables
specify the number of robots trained on in the rows, and
the number of robots tested on in the columns. The results
demonstrate strong generalization capabilities.

We perform subsequent experiments on larger robot teams
to further test the generalization. Results in Fig. 5 show
that our network, trained on only 10 robots scales to teams
of sixfold size. We test the network in different grid map,
where the map sizes are scaled to preserve the effective
robot density. Notably, the results show no degradation of
performance.

We train the GNN (K ∈ [2, 3]) with and without the online
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Fig. 4: Success rate and flowtime increase. The rows represent
the number of robots on which each model was trained, and
columns represent the number of robots at test time. The heatmap
maps performance to a color range where purple indicates the best
performance and red indicates the worst performance.

20 30 40 50 60
# robots

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Su
cc

es
s 

R
at

e

Exp setup
GNN(OE) - K=2 - TR10
GNN(OE) - K=3 - TR10
GNN(OE) - K=3 - TR20

a: Success rate (α)

20 30 40 50 60
# robots

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Fl
ow

tim
e 

In
cr

ea
se

Exp setup
GNN(OE) - K=2 - TR10
GNN(OE) - K=3 - TR10
GNN(OE) - K=3 - TR20

b: Flowtime increase (δFT)
Fig. 5: Results for success rate and flowtime increase, as a function
of the number robots tested on. We vary the GNN implementation
(K ∈ [2, 3]), trained (‘TR10’) on a 20 × 20 map with 10 robots,
and GNN implementation (K = 3) trained (‘TR20’) on a 28× 28
map with 20 robots. Testing was performed on maps that maintain
constant effective robot density.

expert (OE) implementation on 10 robots, and test it on
60 robots in 50 × 50 environments, respectively. The grid
maps are scaled to preserve the same effective density β =
nrobots+nobs

W×H , where the number of obstacles nobs = ρ×W×H ,
ρ is the obstacle density in the map (W × H) and nobs is
the number of robots.

Different from our success rate metric, which only con-
siders complete cases (all robots reach their goals), Fig. 6
presents the proportion of cases distributed over the number
of robots reaching their goals. The distributions show that
more than 75% of all robots always reach their goals across
all implementations. In 97% of cases, more than 95% of
robots (57 out of 60) reach their goals. For instance, there
are 995 out of 1000 cases (99.5%), where at least 54 robots
reach their goals with the GNN (K = 3) without OE
implementation (worst implementation). We see from Fig. 6a
how the GNN network with OE tends to generalize better
than the GNN without OE, since the proportion of robots
reaching the goal is larger. In Fig. 6b, we see how an
increased communication hop count (from K = 2 to K = 3)
contributes to a slightly larger proportion of robots reaching
their goals.
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Fig. 6: Histogram of proportion of cases distributed over the number
of robots reaching their goal; the network with hop count K ∈
[2, 3], is trained on 10 robots and tested on 60 robots, with and
without the OE.

VII. DISCUSSION AND FUTURE WORK

Our results show that the decentralized framework gen-
eralizes to different numbers of robots, as seen in Sec. VI-
C.1 and Sec. VI-C.2. We note that a single forward pass of
our model (enabling a robot to predict its action) takes only
0.0019±2.15e−4 s on the workstation described in Sec. VI-
B. In addition to the decentralized nature of our solution, this
speed of computation is beneficial in real-world deployments,
where each robot runs its own (localized) action policy. In
contrast, the expert algorithm [12] is intractable for more
than 14 agents in dense environments within the given
timeout; this is corroborated by results in [6], [7].

The experiments in in Sec. VI-C.2 showed the capability
of our decentralized policy to generalize to robot teams
across different sizes. Fig. 4a and Fig. 4b showed that
the framework trained in smaller robot teams (n = 4, 6)
tends to perform worse than those trained in larger teams
(n = 8, 10, 12), across any unseen instances (larger as
well as smaller in size). The intuition for the cause of this
phenomenon can be due to two main factors. Firstly, larger
robot teams tend to cause more collisions, allowing the policy
to learn how to plan more efficient paths more quickly.
Secondly, policies trained on very small robot teams (e.g.
4 robots), tend to produce communication topologies that
are idiosyncratic, and hence, may generalize more poorly.
Results in Fig. 5 showed very strong generalization capa-
bilities, with tests scaling to a factor of 6x of the instances
trained on, without noticeable performance deterioration.

We also demonstrated that the use of our online expert
leads to significant improvements (as seen in Fig. 3). Fig. 6a
shows how the GNN with the online expert was able to
increase the success rate of all 60 robots reaching goal given
a framework trained on 10 robots, and contribute to a right-
shift of the distribution.

There are some assumptions and corresponding limitations
in the current implementation, which will be improved in
future work. Firstly, we assumed that communication be-
tween robots was achieved instantly without delay. Time-
delayed aggregation GNNs [20] can be introduced to extend
our framework to handle time-delayed scenarios. Secondly,
inter-robot live-locks and position swaps remain a challenge
impeding 100% success. One potential solution to this is
to deploy a policy gradient to add a penalty on the action
causing such scenarios. Such a strategy (e.g., as implemented
in [7]) is harder to train, and is left for future work.
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VIII. CONCLUSIONS

We considered the problem of collision-free navigation
in multi-robot systems where the robots are restricted in
observation and communication range, and possess no global
reference frame for localization. We proposed a combined
architecture, composed of a convolutional neural network
that extracts adequate features from local observations, and
a graph neural network that communicates these features
among robots. The key idea behind our approach is that we
jointly trained these two components, enabling the system to
best determine what information is relevant for the team of
robots as a whole. This approach was complemented by a
data aggregation strategy that facilitated the learning process.

This work is the first to apply GNNs to the problem of
multi-robot path planning. Our results show that we are very
close to achieving the same performance as first-principles-
based methods; in particular, we showed our model’s ca-
pability to generalize to previously unseen cases involving
much larger robot teams. Of particular importance is the
fact that we can already scale our system to sizes that are
intractable for coupled centralized solvers, while remaining
computationally feasible through our decentralized approach.
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