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Abstract— In this paper, we propose an abstraction that
captures high-level formation and location-based swarm be-
haviors, and an automated control synthesis framework to
generate correct-by-construction behaviors. Our abstraction
includes symbols representing both possible formations and
physical locations in the workspace. We allow users to write
linear temporal logic (LTL) specifications over the symbols to
specify high-level tasks for the swarm. To satisfy a specification,
we automatically synthesize a centralized symbolic plan, and
environment and swarm-size-dependent motion controllers that
are guaranteed to implement the symbolic transitions. In
addition, using integer programming (IP), we assign robots
to different sub-swarms to execute the synthesized symbolic
plan. Our framework gives insights into controlling a large
fleet of autonomous robots to achieve complex tasks which
require composition of behaviors at different locations and
coordination among different groups of robots in a correct-
by-construction way. We demonstrate the proposed framework
in simulation with 16 UAVs and 8 ground vehicles, and on
a physical platform with 20 ground robots, showcasing the
generality of the approach and discussing the implications of
controlling constrained physical hardware.

I. INTRODUCTION

Swarm and multi-robot systems can perform various tasks
such as surveillance [1], warehouse logistics [2], and object
transport [3]. Such tasks might require robots to achieve
certain formations for communication and collaboration, or
even for entertainment [4].

Control laws that cause swarms to create a specific shape
are referred to as formation control [5]. Many aspects of
formation control have been studied, such as stability [6] and
decentralized coordination [7]. However, work in formation
control typically does not consider how to create control
that ensures a formation happens in a specific location in
the workspace, nor has past work enabled users to specify
complex behaviors that include multiple different shapes, for
different subswarms, in different locations, and automatically
generate the appropriate control.

In this paper, we create abstractions for formations and
locations of swarms, and utilize the abstractions to synthesize
compositional and flexible behaviors in a provably-correct
way from user specifications. The framework we describe
could impact a variety of application domains from digital
agriculture where a farmer may deploy a swarm of UAVs for
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monitoring and spraying behaviors, to entertainment, where
a robotics-novice designer might create complex formations,
to construction where a civil engineer may deploy swarms
as scaffolding for different structures.

This work leverages our previous work [8], [9], where
[8] focuses on synthesizing decentralized symbolic plans
given high-level specifications, and [9] creates continuous
control guaranteed to avoid collision, physically implement
the symbolic plans, and mitigate deadlocks. Expanding on
[8], [9] that only consider region-based specifications, in
this work we create richer abstractions and specifications
corresponding to both swarm formation and location. In
addition, we design continuous controllers that are paramet-
ric in the specified formation and swarm size, and use a
centralized assignment mechanism to ensure the execution
of the symbolic plan satisfies the user-provided specification
and avoids collisions.

We consider this work as addressing high-level behaviors
for swarms even though our solution is centralized and
may be considered as multi-robot. This is because our
abstractions, specification formalism, and automatic control
synthesis are agnostic to the exact number of robots which
may change during execution, a characteristic of swarms.
Assumptions: In this work, we assume the environment and
robot poses are known. Furthermore, we synthesize controls
and provide guarantees for the robots assuming that they
are holonomic; when controlling physical, differential drive
robots, we increase the safety distance to mitigate the effects
of the dynamic constraints, as described in Section VIII.
Paper contributions: This paper presents (i) a novel abstrac-
tion and grammar that allow a user to specify location and
formation-based swarm behaviors, (ii) automated correct-
by-construction control synthesis for the swarm robots that
guarantees that the task will be satisfied, if feasible, and (iii)
demonstrations on simulated and physical swarm platforms
that showcase the generality of the approach.

II. RELATED WORK

This paper lies at the intersection of formation control and
automated control synthesis from high-level specifications.
Formation control has been studied extensively in swarm
and multi-robot systems research [10]. Some work develops
continuous control laws based on different robot sensing and
interaction capabilities [10]: for example, a camera-based
cooperative control framework for nonholonomic robots [11]
and a position-based method with dynamic communication
topology [12], while other works utilize graph theory to con-
vert multi-robot formation control to a discrete path planning
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problem [13], such as robots forming lattice patterns [14]
and switching formations on grids [15], [16]. Our work is
different in that we tackle high-level behaviors that include
both the sequencing of formations but also the automatic
distributions of the robots into several sub-swarm formation,
to achieve the desired high-level task in the continuous space.

Recently, compositions of swarm behaviors have been
studied [17], [18]. The work in [17] focuses on continu-
ous control for reaching certain spatial configurations and
switching between different behaviors to guarantee effective
information flow. The work in [18] focuses on selecting an
optimal sequence of behaviors to achieve a certain task. In
our paper, we focus on creating abstractions and synthesizing
controls from user-defined formations and temporal logic
specifications, which automates the mission planning and
sub-swarm assignment process compared to [17], [18].
Control synthesis from high-level specifications has been
applied to multi-robot systems and swarms [19]–[24]. For
example, [19] deals with asynchronous motions of robots
in high-level mission planning to guarantee collision and
deadlock avoidance, and [20] composes motion primitives
based on high-level specifications to maintain spatial config-
urations on a grid. In [21], the authors develop specifications
for swarm robots and formally prove the system properties.
Authors in [22] developed a framework to automatically
generate optimal behaviors for heterogeneous multi-robot
teams to achieve missions specified in temporal logic, and
[23] describes a method to generate a sequence of multi-
robot policies for task allocation and planning from LTL
specifications. In [24], the authors present a mechanism for
a team of robots to coordinate to fulfill tasks given in LTL
under uncertainty. Our work also considers task allocation
and coordination during task execution, but different from
[22]–[24] where each robot has its own specification, we
assign temporal goals to an arbitrary number of robots under
formation-dependent constraints and synthesize controls to
achieve a global task specified in LTL.

III. PRELIMINARIES

A. Linear Temporal Logic

Linear temporal logic (LTL) [25] is a formal language
consisting of propositions and logical and temporal opera-
tors. Let AP be a set of atomic propositions. The syntax of
LTL is defined as follows:

ϕ ::= π | ¬ϕ |ϕ ∨ ϕ | © ϕ |ϕU ϕ

where π ∈ AP is a proposition, ¬ is negation, ∨ is disjunc-
tion, © is next and U is until. Other logical operators such
as conjunction (∧), implication (⇒) and temporal operators
such as always (�) and eventually (♦) can be derived from
these basic operators. An LTL formula over propositions AP
is interpreted over infinite words w ∈ (2AP )

ω . The language
of an LTL formula ϕ, denoted by L(ϕ), is the set of infinite
words that satisfy ϕ, i.e., L(ϕ) = {w ∈ (2AP )

ω | w |= ϕ}.
Intuitively, �π means proposition π has to be true at all
times, ♦π means proposition π will be true at some point,

and ©π means that proposition π has to be true in the next
step. We refer the readers to [25] for more details about LTL.

B. Abstractions and Specifications for Swarms

In [8], [9], [26] we propose a region based abstraction
for swarm behaviors. We partition a 2D workspace into a
set of regions R = {r1, ..., rm}, and use a region graph
GR = (R,E) to represent the connectivity of the regions,
where E ⊆ R × R represents possible transitions between
regions, i.e., (ri, rj) ∈ E indicates robots can move directly
from region ri to rj without going through any other region.
We define πr ∈ AP as an atomic proposition which is true
iff at least one robot is in region r ∈ R. By using these
propositions, a user can write location-based specifications
in the following format:

ϕ = φi ∧
∧
j

φsj ∧
∧
k

φgk, (1)

where φi is a Boolean formula over AP representing the
initial condition, φsj = �ϕsj are safety constraints where ϕsj is
a Boolean formula over AP

⋃
©AP representing conditions

that must always hold, and φgk = �♦ϕgk are system livenesses
where ϕgk is a Boolean formula over AP representing goals
that must eventually be reached. For example, a formula ϕ =
r1 ∧ �¬r2 ∧ �♦rm specifies that the swarm initially starts
at region r1, should repeatably visit rm, and never enter r2.
Formula (1) has similar structure to generalized reactivity (1)
(GR(1)) [27] which is a fragment of LTL that has polynomial
time complexity in synthesis. However, different from GR(1),
formula (1) does not contain environment propositions as the
environment is assumed static and known.

C. Control Synthesis for Swarms

In our previous work [8], [9], [26], we proposed a con-
trol synthesis framework to satisfy specifications of swarm
navigation tasks. We first apply LTL synthesis to obtain
a symbolic plan given the high-level specifications. The
symbolic plan S = {q0q1q2...} can be represented as a
sequence of states qi such that each state qi is labeled with
a set of propositions L(qi) ⊆ AP that are true in state qi.
Then, we partition the symbolic plan into decentralized plans
and execute the plans on different sub-swarms. By using
control barrier functions (CBF) [28], we generate continuous
controls that drive robots to reach the goal in collision-free
paths. The synthesis framework guarantees that the swarm
executes the task while avoiding collisions and satisfies
the specifications, when possible, although there may be
instances of deadlock which we mitigate.

IV. PROBLEM FORMULATION AND APPROACH

This paper solves the following problem: Given a
workspace that is partitioned into a set of regions, a set of
2D/3D shapes, a robot swarm and formation (shapes) and
location (regions) based high-level tasks, we automatically
synthesize controls for all individual robots such that the
robots correctly and safely satisfy the task. We assume the
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robots have full state information, i.e., their pose is known,
and that they are velocity controlled.

To solve this problem we first create abstractions for
formation and location-based robot behaviors, and then allow
users to specify tasks over those abstractions using the
LTL formulas in Eq. (1). We automatically synthesize a
symbolic plan by leveraging the work in [8], and we use
integer programming (IP) to assign robots to sub-swarms
for achieving the symbolic plan. We automatically create
continuous control for individual robots that implements the
symbolic plan while guaranteeing collision avoidance.

V. HIGH-LEVEL SPECIFICATIONS AND SYMBOLIC
SYNTHESIS

In this section we define the abstractions over which we
create propositions that we use for the task specifications,
and describe the specifications and the symbolic synthesis.

A. Abstractions: symbols and their physical grounding

Our abstraction contains three types of symbols; location,
target, and formation, that allow a user to capture formation
and location-based swarm behaviors.

1) Location symbols: As done in [9], [26], we partition
the continuous workspace into regions and create a symbol
for each region R = {r1, ..., rm}. These symbols are
grounded to the physical space and when used as proposi-
tions (Section V-B), the proposition are true only if there is
at least one robot in the corresponding region. The physical
space and regions can be either 2D or 3D, as shown in the
following.

2) Target symbol: We define the symbol T that represents
existence of a target in a region. In section V-B we use
this symbol in conjunction with formation symbols to create
propositions whose truth values depend on whether the
formation surrounds the target.

3) Formation symbols: We define formation symbols as a
set F = {C,F1, ..., Fk} where C represents coverage (robots
distribute in a region according to a given coverage metric
as described in Section VI-C ), and Fi(i ∈ {1, ..., k}) is a
shape formation.

We allow two types of shape formation in this paper: i)
forming a perimeter of a 2D polygon or ii) surface/curve
coverage of a 3D shape. For 2D shapes, a formation symbol
Fi represents a polygon (a list of vertices) s ∈ S where

S = {[(x1, y1), ..., (xp, yp)]|xi, yi ∈ R, p ≥ 3}.

For example, we can use ssqr = [(0, 0), (1, 0), (1, 1), (0, 1)]
and stri = [(1, 0), (0,

√
3), (−1, 0)] to represent a square and

an equilateral triangle respectively. Note that the coordinates
are only used to determine the shape rather than the actual
formation size which is scaled based on the region.

For 3D shapes, the formation symbol Fi corresponds to
a parametric function p : R → R3 representing a 3D
shape/curve. For example, p(t) = [rcos(t), rsin(t), ct] (0 ≤
t ≤ 6π) represents a helix with a radius of r and height
of 6cπ. In this paper, we use the set of formation symbols
F = {C, sqr, tri, dia, hex, oct, pen, helix, sph}, where the

symbols represent coverage, a square, a triangle, a diamond,
a hexagon, an octagon, a five-point star, a helix (3D), and a
sphere (3D) respectively.

B. Proposition Creation

Given the symbols defined in section V-A, we define the
set of atomic proposition over which the specifications will
be created, as Prop = (F∪{∅})×R×{T, ∅}, where × is the
Cartesian product. We use the notation Fj ri T for the tuple
(Fj , ri, T ), C ri for both (C, ri, ∅) and (C, ri, T ) (same
semantics), Fj ri for (Fj , R, ∅), and ri for both (∅, ri, ∅)
and (∅, ri, T ) (same semantics), where Fj ∈ F and ri ∈ R.
The semantics of the propositions are defined as:
• ri = true indicates that at least one robot is in region
ri, regardless of formation.

• C ri = true indicates that at least one robot spreads
out to cover the region represented by ri. We note that
“at least one robot” is the semantic definition due to ri,
but in practice a sub-swarm will cover the whole region.

• Fj ri T = true indicates that robots form the shape Fj
around the target in region ri with the target inside the
shape, and Fj ri = true indicates that robots form the
shape Fj in region ri disregarding the location of the
target, even if one exists.

Note that the proposition Fj ri T = true requires that there
exists a target in region ri, which might not be the case. Thus,
we relax the semantics by assigning Fj ri T = true when
robots form shape Fj anywhere in ri if there is no target in
region ri. Figure 1 depicts possible physical representations
of different atomic propositions.

(a) A swarm satisfy-
ing ri.

(b) A swarm satisfy-
ing C ri

(c) A swarm satisfy-
ing rect ri T

Fig. 1: Proposition satisfying formations for seven robots in
a pentagonal region. Blue dots represent locations of robots.
The yellow star represents the target in the region.

C. Specifications

Given a set of propositions, Prop, users can write speci-
fication of the form (1). Given such a formula, we automat-
ically reduce the number of propositions for synthesis and
add formulas representing the swarm motion constraints, as
described below.

1) Minimizing the set of propositions: Given the set
of propositions that appear in the user’s specifications,
Propspec, we create the set Prop′ = Propspec

⋃
R ⊆

Prop, that will be used in the synthesis process. Calculating
Prop′ can reduce the number of propositions, which makes
the synthesis faster as synthesis time grows exponentially
with the number of propositions in the worst case [8].
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2) Encoding motion constraints: In addition to the user
specification, we automatically create formulas that represent
motion constraints due to the topology and the formations.

For each region r ∈ R, we first define sets of outgoing and
incoming neighbors of r as out(r) = {r′ ∈ R|(r, r′) ∈ E}
and in(r) = {r′ ∈ R|(r′, r) ∈ E}, respectively. Then,
we add for each r two safety formulas to the specifica-
tions: φG1 = �(r → ©r ∨

∨
r′∈out(r)©r′) and φG2 =

�(
∧
r′∈in(r) ¬r′ ∧ ¬r →©¬r). The formula φG1 indicates

that robots in region r can only move to the outgoing
neighbors of r or stay in r at the next step, and φG2 indicates
that robots cannot be in r at the next step if currently there
is no robot located in r or any of its incoming neighbors.

To ensure formations in specific regions, we specify a
safety formula φp =

∧
F r T∈Prop′,F∈F �(F r T → (r ∧

©r))∧
∧
F r∈Prop′,F∈F �(F r → (r∧©r)) which encodes

that if a sub-swarm achieves a formation in region r, there
exist at least one robot in region r currently and at the
next step. Intuitively, the safety formula connects formation
and location to ensure that transition between formations is
reachable in physical space given the environment topology.
Example: Given the workspace in Fig. 4 and the formation
set F in section V-A, the task is to: 1) repeatedly and visit
r1 and form a triangle in r2 at the same time; 2) repeatedly
form diamonds in r1 and r2 around the targets, and cover r3
at the same time; and 3) never enter r4. Using the symbols,
the user can write the LTL formulas as:
• φu1 = �♦(r1 ∧ tri r2)
• φu2 = �♦(dia r1 T ∧ dia r2 T ∧ C r3)
• φu3 = �¬r4
Based on the task, Prop′ = {r0, r1, r2, r3, r4, tri r2,

dia r1 T, dia r2 T,C r3}. The added motion constraints are
φp =

∧
j=1,...,4 φpj :

• φp1 = �(tri r2 → (r2 ∧©r2))
• φp2 = �(dia r1 T → (r1 ∧©r1))
• φp3 = �(dia r2 T → (r2 ∧©r2))
• φp4 = �(C r3 → (r3 ∧©r3)).
The full specifications is

Φ =
∧

i=1,2,3

φui ∧
∧
i=1,2

φGi ∧ φp.

Expressiveness: Given the abstractions, we can specify tasks
that: 1) require robots to visit or avoid regions, and 2) require
robots to form shapes in certain regions (at most one shape
in each region), potentially around a target, or cover regions.
Our abstractions currently do not allow multiple formations
in one region or a formation that is created across multiple
regions, however, we note that the choice or workspace
partition and formation shapes are up to the user.

D. Synthesis

Given a specification, we use Slugs [29] to generate the
symbolic plan S and we leverage the work in [8] to verify
that the swarm will exhibit correct continuous behavior
when continuously implementing the symbolic plan. For the
example in Section V-C, synthesizing the symbolic plan took
0.655s and the plan included 6 states.

VI. CONTINUOUS CONTROL SYNTHESIS AND
EXECUTION

In this section we first briefly explain the continuous
execution from a given a synthesized symbolic plan. Then,
we formalize the integer programming (IP) based approach to
dynamically assign robots to sub-swarms. Finally, we define
the continuous control synthesis for each individual robot.

A. Continuous Execution
Given a synthesized symbolic plan S from Section III-C,

we describe the continuous execution of a transition from
state qi to qi+1:

First, we obtain the desired formations (including region
visit and coverage) and the goal regions from L(qi+1). Then,
we calculate the minimum and maximum number of robots
needed to achieve each desired formation, and use an IP
based approach (Section VI-B) to assign robots to sub-
swarms. Finally we apply the continuous control (Section VI-
C) with control barrier functions [28] to each sub-swarm to
achieve the desired formations with no collisions.

B. Sub-swarm Assignment
For correct continuous implementation of the symbolic

plan, we must assign robots to sub-swarms based on the
required symbolic transitions. Our method is based on linear
assignment [30], which deals with optimally assigning n
items (robots) to n places (goals). The main difference with
respect to [30] is that we add constraints to the IP formulation
to ensure the correct execution of the symbolic plan and
enforces the topological constraints of the space, i.e. robots
can only move to their neighboring regions or stay in the
same region.

For N robots in a workspace partitioned into n regions,
we define an assignment matrix M ∈ RN×n as

[M ]ij =

{
1 if robot i is assigned to region j
0 otherwise.

For each symbolic transition (qi, qi+1), and for each region
appearing in L(qi+1), we define Nmin

L(qi+1),j
and Nmax

L(qi+1),j

as the minimum and maximum number of robots required
to be in rj in state qi+1 for the desired formation. In the
following we will use Nmin

j and Nmax
j to denote Nmin

L(qi+1),j

and Nmax
L(qi+1),j

for simplicity. Furthermore, we define Cij as
the cost of robot i moving into region j. We can obtain an
optimal assignment strategy by solving the following IP:

M = argmin
[M ]ij∈{0,1}

N∑
i=1

n∑
j=1

MijCij

s.t.

n∑
j=1

Mij = 1 ∀ 1 ≤ i ≤ N

N∑
i=1

Mij ≥ Nmin
j ∀ 1 ≤ j ≤ n

N∑
i=1

Mij ≤ Nmax
j ∀ 1 ≤ j ≤ n

Mij = 0 if (rki , rj) 6∈ E,

(2)
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where rki is the region where robot i is currently located. We
use the estimated travel distance for robot i to enter region
j as the cost Cij , thus we are optimizing the sum of the
distances the robot travel. The cost function can be easily
changed to capture other metrics such as minimum time.

The resulting assignment from (2) ensures that robots only
move to their neighboring regions and the sub-swarm size fits
the corresponding behaviors as long as Nmin

j and Nmax
j are

well defined.
Given Ds, the inter-robot safety distance, we automatically

determine Nmin
j and Nmax

j as follows:
Visit and Coverage. For 2D region visit and coverage, we
set Nmin

j = 1. For computing Nmax
j , we first estimate the

maximum number as Nmax
j e =

A(rj)
βAR

, where A(rj) is the area
of rj , AR is the area covered by a single robot, and β > 1 is
a parameter. Nmax

j e is an initial guess of Nmax
j based on the

ratio of the region area and the robot dimensions, and β can
be defined based on the safety distance between robots. We
verify the result Nmax

j e by finding the goals given Nmax
j e and

rj using the method in Section VI-C, and let Nmax
j = Nmax

j e

if there exists a solution, otherwise we replace Nmax
j e by

Nmax
j e − 1 and repeat the process until a solution for the

goals is found. For 3D regions, we choose the central plane
of the region to calculate Nmin

j and Nmax
j as the controller

we use for region visit and coverage is the same as in 2D.
Shape formation. For 2D polygon forming, we let Nmin

j =
p where p is the number of vertices of the specified shape as
defined in Section V-A. We enforce robots to at least occupy
all the vertices of a given shape. For the maximum number,
we make Nmax

j =
∑

[li/Ds] where li is the length of each
edge and [x] = max{m ∈ Z|m ≤ x}. The intuition is to
ensure that the distances between goal points are at least Ds.

The edge length li is determined based on the formation S
defined in V-A and the actual region size once the user has
created the formation symbols. We assume min(li) > Ds to
avoid unsafe occupancy at the vertices. For 3D curve/surface
forming, we have the user specify Nmin

j and Nmax
j as there

are no vertices that robots have to occupy, and we verify that
minimum distance between generated goal points is larger
than the safety distance given Nmax

j .
Optimality and feasibility: The robot assignment happens
once for each transition in the symbolic plan S, thus the
assignment optimizes one transition; the assignment is not
necessarily optimal for the whole task. In addition, when
the number of robots cannot satisfy the constraints in Eq. 2,
the execution will terminate as the task cannot be correctly
executed even though the high-level specifications are real-
izable. In [8] we discussed an IP-based method to calculate
ahead of time the minimum number of robots for each region
in each state of the symbolic plan, needed to guarantee the
execution of location-based tasks. In the future we will apply
the method to formation-based tasks to provide Nmin

j and
Nmax
j as the assignment constraints.

Computation complexity: Integer programming is generally
NP-complete [31]. However, when the constraints and ob-
jective functions are linear, the IP becomes an integer linear
programming and it can be solved in polynomial time. In

the IP formulation (2), all the equality constraints can be
converted to a combination of two inequalities constraints,
and all the constraints as well as the objective function are
linear. Thus, the assignment can be calculated in polynomial
time with respect to the number of robots. Our formulation
can easily optimizes other metrics, such as minimum time,
at the expense of longer computation times.

C. Continuous Control

Given the symbolic plan and the assignment of robots to
sub-swarms, we present the approach to automatically syn-
thesizing continuous controls that ensure robots to achieve
the specified behavior while avoiding collisions. Control
barrier functions (CBF) with nonlinear dynamics constraints
are presented in [32], [33] for collision avoidance. However,
in this paper we use a simple version of CBF [9], [28]
for multi-robot systems assuming holonomic robots, and
mitigate the effect of the robots’ dynamics by increasing the
safety distance Ds in the physical demonstrations.

For all symbolic transitions, we divide the control syn-
thesis into two sub-problems: 1) determine goal points for
robots in the sub-swarms, and 2) create controls that drive
robots to the goals with no collision.
Region visit and coverage. To determine the goal points in
any region rj for the visit behavior, we first pick as a starting
point the region centroid, and then increase the number of
points around the centroid in a hexagonal lattice pattern (Fig.
1a). The growing distance is d = βDs, where β > 1, to
ensure collision-avoidance. We choose a hexagonal lattice as
this pattern guarantees the same distance between any two
neighbor points as shown in Fig. 1a. For region coverage,
we first find line segments that connect the centroid with the
vertices or the edge midpoints (2p in total where p is the
number of vertices), and divide these line segments evenly
by N such that (N − 2)p + 1 ≤ NR ≤ (N − 1)p + 1
where NR is the number of robots. Then we choose the
centroid and NR − 1 points at the equidistant points on the
line segments from the edges to the centroid. We check the
distances d between points. If there exists a distance d < Ds,
we replace N by N +1, thus creating more points to choose
from, and repeat the checking process. If N becomes large
enough such that distances between neighboring equidistant
points are all less than Ds, the algorithm returns no solution.
We note that here we assume convex regions; we can easily
substitute any other coverage algorithm that would also work
for non-convex regions.

To solve sub-problem 2), we run a linear assignment
[30] to distribute goal points to individual robots, then
design a PID controller for each single robot, and finally
apply the CBF [28] to ensure that robots reach their goals
with no collisions. CBFs are used to modify control inputs
(velocities) such that robots are guaranteed to move with
no collisions and reach their goals if there is no deadlock.
For 3D regions, we choose the vertically central 2D plane
to execute region visit and coverage motions although we
could also choose a 3D coverage metric.
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Fig. 2: Screenshots from a demonstration of 16 UAVs and 8 rovers performing a high-level formation and location-based
task in the AirSim simulation. Four target buildings are located in regions ri (i ∈ {0, ..., 3}) respectively. The rounded
squares and triangles represent the UAV and the rover locations respectively. The numbers 1-4 show the time sequence of
the screenshots. A side view is provided for better visualization of a 3D helix.

Shape formation. Given the sub-swarm size N , we solve
sub-problem 1) for a 2D polygon by making p robots occupy
the shape vertices, and N − p distribute evenly on the
edges. For sub-problem 2), we design a two-step process
for obtaining continuous controls, which first drives robots
to surround the centroid of the desired formation or the
target, depending on the required behavior, and then assign
them to different goals to complete the desired shape. In
the surrounding step, we compute the velocities based on
robot poses with the objective of evenly distributing robots
around the polygon centroid or target. After completion of
the surrounding step, we assign goals to robots and apply
a PID controller with the CBF to make the robots form
the shape while avoiding collisions. Once all sub-swarms
finish forming the shapes, they proceed to the next state in
the symbolic plan. When forming 3D shapes, we use the
parametric function to generate a list of goal points given
N , the number of robots, to solve sub-problem 1). For sub-
problem 2), instead of the two-step control process for 2D
polygons, we assign robots to goal points and drive them
towards their goals to achieve the 3D shape.
Deadlocks:. In multi-robot systems, deadlocks are situations
where robots cannot make progress towards their goals. In
[9] we discussed different deadlock scenarios and provided
perturbation and roadmap-based method to mitigate dead-
locks. In general, in environments with obstacles, we cannot
guarantee deadlock avoidance; however, in practice, such
techniques often result in deadlocks being resolved.

VII. SIMULATIONS

We first demonstrate the control framework on 16 UAVs
and 8 ground vehicles in AirSim [34]. The simulation envi-
ronment is a space with four target buildings. We partition the
3D workspace into ri j (i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2}) such
that the target buildings are in regions ri 0, i ∈ {0, ..., 3}.
The index j represents the height of the regions: j = 0
represents the ground-plane 2D regions, j = 1 represents

Fig. 3: Symbolic plan for the example of Section VII

3D regions at 10 to 20 meters above ground, and j = 2
represents 20 to 30 meters above ground.

A. Specifications

Initially, the UAVs and the rovers are located in regions
r1 1 and r2 0 respectively. We require the swarm to ac-
complish three goals: repeatedly form hexagons around the
targets in r1 1 and r2 0, repeatedly form a square around the
target in r3 0 and a helix in r1 1, and repeatedly form a square
around the target in r3 0 and a sphere in r1 2. Note that we
assume the UAVs only fly in the air and rovers only move on
the ground, which is encoded in the region graph. Formally,
the specifications are expressed in LTL and include:
• �♦(hex r2 0 T ∧ hex r1 1 T ∧

∧
k 6=2 0,1 1 ¬rk),

• �♦(sqr r3 0 T ∧ helix r1 1 ∧
∧
k 6=3 0,1 1 ¬rk),

• �♦(sqr r3 0 T ∧ sph r1 2 ∧
∧
k 6=3 0,1 2 ¬rk).

The negation of propositions in the formulas indicates that
no robots should be in those regions, thus robots should
only appear in the regions that have the specified formations.
These specifications simulate tasks where UAVs and ground
vehicles collaboratively guard some target buildings.

B. Results

From the given specifications in Section VII-A, we use the
approach in Section V to synthesize a symbolic plan shown
in Fig. 3, where states qi (i ∈ {0, ..., 6}) are labeled with
propositions that are true in that state.
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We execute the synthesized symbolic plan on 16 UAVs
and 8 rovers using the approaches in Section VI. The
result shows that the swarm achieves the high-level task
correctly and safely (Fig. 2). For executing two cycles of the
symbolic plan, the average computation time for sub-swarm
assignment is 0.08s, and the average time for computing
the velocity commands during execution is 0.12s. The time
for synthesizing the symbolic plan in this demonstration is
0.97s. The simulation was run on a desktop machine with
an Intel Core i7-7700 CPU@3.6GHz and 16GB RAM.

Fig. 4: A demonstration of 20 coachbots performing a high-
level task. Two targets (labeled with ”T”) are located in r1
and r3. The arrows indicate the motion of nearby robots.

VIII. PHYSICAL DEMONSTRATIONS

In this section we demonstrate our approach on physical
robots, using 20 Coachbot V2.0 robots [35] (customized
differential-drive ground robots) in an environment parti-
tioned into five regions. We use the formation symbols F
(Section V-A) for creating propositions and specifications.

A. Specifications

The swarm is initially in r0. We require the swarm to
achieve three goals: repeatedly form an octagon around the
target in r1 and cover the space of r2 at the same time while
avoiding all other regions, repeatedly form a diamond in r3

and a five-point star in r4 at the same time while avoiding all
other regions, and repeatedly gather in r0. We add a safety
specification that prevents the swarm from being in r1 and
r4 simultaneously at any time. The specifications is formally
expressed in LTL (part of the full formula is shown here):
• �♦(oct r1 T ∧ C r2 ∧ ¬r0 ∧ ¬r3 ∧ ¬r4)
• �♦(dia r3 ∧ pen r4 ∧ ¬r0 ∧ ¬r1 ∧ ¬r2)
• �♦(r0 ∧ ¬r1 ∧ ¬r2 ∧ ¬r3 ∧ ¬r4)
• �¬(r1 ∧ r4).

B. Results
We synthesize a symbolic plan from the given specifica-

tions in Section VIII-A and show the execution in Fig. 4.
The robots start from r0, first form an octagon in r1 and
cover r2, then form a diamond and a five-point star in r3
and r4 respectively, and go back to gather in r0, as shown in
Fig. 4. All the objectives and constraints are satisfied using
the symbolic and continuous control synthesis. Note that the
robots gather in r2 and r3 before entering r4 because robots
are not allowed in r1 and r4 at the same time and the unsafe
transitions between r1, r2 and r3, r4 are ruled out during the
synthesis process.

C. Discussion
Controlling a swarm of physical robots correctly and

safely is challenging. We address the problems that we have
encountered during the implementation on physical robots
and discuss the possible solutions that might improve the
physical swarm ability to perform high-level tasks.

In contrast to the simulation, where the behavior of the
swarm satisfied the desired behaviors and no collisions
occurred, during the physical demonstrations, collisions did
happen when too many robots were in a narrow space,
e.g., when forming the five-point star in r4 in Fig. 4. This
is due to the mismatch between our assumptions of full
state information and idealized kinematic robots and the
reality of the physical platform where we have 1) imperfect
localization, 2) nonlinear robot dynamics, and 3) a tight
workspace. Specifically, we assume a honolomic kinematic
model for each robot to design collision-free control, and
then map the robot velocity in the global frame to the
wheel speeds for coachbots. However, the mapping is not
fully accurate as the differential-drive robots cannot move
sideways, which might violate some constraints in the CBF
when robots get too close in a tight environment. Usually
increasing the safety distance can improve the robustness for
collision avoidance. In this work, we set the safety distance
Ds = 1.2Dr where Dr is the robot diameter, for the purpose
of fitting 20 robots in one region to achieve the synthesized
symbolic plan. Such tight safety margins, together with the
nonlinear dynamics and sensing error, lead to some collisions
in the physical demonstration. Our future work is to consider
robot dynamics in the CBF formulation thus guaranteeing
collision avoidance [32], [33], [36].

IX. CONCLUSION AND FUTURE WORK

In this paper we propose a novel abstraction for robot
swarms that allows a user to specify tasks regarding the

8033



swarm’s formations and locations. We describe a framework
for automatically creating control for the swarm robots such
that the swarm is guaranteed to achieve its tasks while
avoiding collisions with the environment and between the
robots. We demonstrate the approach both in simulation and
on physical robots.

In future work we will robustify the approach with respect
to constrained physical systems. Specifically, we will create
continuous controls by adding robot dynamics to the CBF
constraints. In addition, we will study the amount of informa-
tion that individual robots need, and design communication
and synchronization frameworks for swarms to achieve such
high-level tasks in a distributed manner to increase the
scalability of the approach.
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