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Abstract—
There has been much recent interest in deep learning meth-

ods for monocular image based object pose estimation. While
object pose estimation is an important problem for autonomous
robot interaction with the physical world, and the application
space for monocular-based methods is expansive, there has been
little work on applying these methods with fisheye imaging
systems. Also, little exists in the way of annotated fisheye
image datasets on which these methods can be developed
and tested. The research landscape is even more sparse for
object detection methods applied in the underwater domain,
fisheye image based or otherwise. In this work, we present
a novel framework for adapting a ROI-based 6D object pose
estimation method to work on full fisheye images. The method
incorporates the gnomic projection of regions of interest from
an intermediate spherical image representation to correct for
the fisheye distortions. Further, we contribute a fisheye image
dataset, called UWHandles, collected in natural underwater
environments, with 6D object pose and 2D bounding box
annotations.

I. INTRODUCTION

The advantages of fisheye imaging systems in robotics
applications has long been recognized. With technological
improvements in imaging sensor resolution and dynamic
range, fisheye cameras can capture significantly greater in-
formation about the surrounding environment without appre-
ciably increasing the imaging sensor footprint, compared to
their perspective model counterparts. However, little work
has been done on applying CNN based methods to the
problem of 6D object pose estimation on full fisheye images.
Dealing with fisheye images is challenging, due to the large
distortions and viewpoint ambiguities arising from the wide
field of view. We address the problem of 6D object pose esti-
mation in full fisheye images by proposing a method whereby
the image is first projected to the surface of a sphere, where
we mathematically define a consistent apparent viewpoint
which the network is trained to predict. The true orientation
relative to the fisheye frame can then be recovered using the
predicted translation. The gnomonic projection is used in our
method to undistort the region of interest (ROI) from the
sphere surface, and we investigate applying this projection
both before and after the feature extraction stage.

Further, while deep learning has greatly advanced the
state of-the-art in terrestrial based visual methods for object
detection and pose estimation, the challenges of collecting
underwater datasets for training these methods and the
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limited access to underwater environments has hindered
progress in leveraging these advancements for underwater
applications. We address this challenge by introducing an
easy and efficient method for collecting fiducially grounded
monocular images of underwater scenes containing known
objects, and we contribute a tool for annotating the 6D object
poses and bounding boxes in the image sequences. We also
contribute an underwater visual dataset of three different
graspable handles with annotated ground truth poses and
bounding boxes. The dataset was collected with a fisheye
camera mounted on the wrist of an ROV manipulator, with
objects appearing in different arrangements in diverse natural
seafloor environments.

In summery, we present the following contributions: 1) A
framework for adapting ROI-based networks for predicting
6D object pose from monocular images to work on full
fisheye images, through an intermediate mapping onto a
sphere and ROI processing through the gnomonic projection.
This adaptation is demonstrated with the SilhoNet method
presented in [1]; 2) UWHandles2, an underwater monocular
fisheye image dataset of handle objects, with annotated 6D
pose and 2D bounding boxes, collected in natural seafloor
environments. We also release the annotation tool, VisPose3,
used to process the dataset;

The rest of this paper is organized in the following sec-
tions: Section II discusses related work; Section III presents
our methods for adapting SilhoNet to the fisheye domain;
Section IV presents the UWHandles dataset; Section V
presents the experimental results; and Section VI concludes
the paper.

II. RELATED WORK

In general, state-of-the-art works that apply CNN meth-
ods to full fisheye images process the raw images directly
through the network without special consideration of the fish-
eye distortions [2]–[4]. These networks are mostly applied to
the problems of segmentation or ROI detection in the fish-
eye images. Due to the sparsity of available benchmarking
datasets for fisheye images, these works report their results
on synthetic datasets, generated by projecting perspective
images to distorted fisheye images. Zhu et al. [5] used a CNN
in the prediction of ground vehicle positions relative to an
aerial fisheye imaging platform. They directly train the CNN
on the raw fisheye images to generate ROI proposals. They
assume the detected object is on the ground plane and fuse
measurements from height and orientation sensors on the

2https://github.com/gidobot/UWHandles
3https://github.com/gidobot/VisPose
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camera platform to recover only the object’s 3D translation
in the world. Salem et al. [6] extended the Cascaded Pose Re-
gression algorithm to estimate the 3D pose of mice in fisheye
images from detected 3D keypoints. However, their method
incorporates priors about the structured lab environment, and
the fisheye camera is fixed in the scene, allowing them to
easily segment the mice from the background image. In
contrast to these works, our method incorporates knowledge
of the fisheye distortion model through a spherical mapping,
which improves network performance and is also necessary
to create visually consistent pose annotations which can
be regressed directly from ROI proposals across the full
fisheye field of view. Further, we report the performance of
our method on a real fisheye dataset captured in a natural
unstructured environment.

Closely related to fisheye image processing is the extensive
body of work on omni-directional imaging, as both fisheye
and omni-directional image distortions can be represented
on a sphere. Beyond naively applying CNNs directly to a
flattened equirectangular projection of an omni-directional
image, which has been shown to suffer from the nonlinear
distortions of the spherical mapping to the plane and attain
sub-optimal performance [7], the methods of dealing with
omni-directional distortions can be roughly categorized un-
der three approaches: generating multiple perspective pro-
jections from the sphere, such as cube map, and processing
each projection separately through the CNN [8]; adapting
the kernel sampling locations based on a spherical distortion
model or a learned mapping [9]–[12]; re-sampling the spheri-
cal image based on a uniform sampling geometry such as the
icosahedron, and processing the spherical representation with
specialized convolution operations [13]–[16]; or transform-
ing the spherical feature signals and convolution operations
into the spectral domain, typically by representation of the
spherical image as a graph [17]–[19]. Methods that operate
on multiple perspective projections suffer from discontinu-
ities at the projection borders, due to variance in feature
appearance on different tangent plane mappings. Methods
that operate on graphical representations of the sphere in
the spectral domain are memory limited in scaling to full
resolution images and have some level of rotation invariance
in the convolution response function, which is undesirable
when regressing 6D object pose. Methods that re-sample the
convolution kernel sampling location based on a learned or
distortion based mapping are most relevant to our work. The
methods of Coors et al. [10] and Zhao et al. [9] sample
regular kernel locations on a tangent plane and then project
the sampling locations to the spherical surface, encoding the
spherical distortions directly into the convolution operation.
Zhao et al. [20] adapts a region proposal network with
the distortion aware convolutions of [9], [10] in a two-
stage architecture to predict region proposals from omni-
directional images. However, these distortion aware convo-
lutions are designed to operate on full 360◦images. Because
fisheye images represent only a partial view of the sphere,
they can also be analyzed under different planar projections
than omni-directional images. Further, application of omni-

directional CNNs to 6D object pose estimation is so far
lacking in the literature. Our method takes inspiration from
these prior works [9], [10] that incorporate a mapping to a
spherical surface and the Gnomonic projection to a tangent
plane to deal with feature distortions in omni-directional
images. The main technical contribution of our work is the
mathematical formulation of applying a spherical mapping
and the Gnomonic projection to the problem of 6D object
pose estimation in wide field-of-view imagery. Though we
develop the method assuming the equidistant fisheye projec-
tion model, the formulation is valid for any camera projection
that can be mapped to a spherical surface, including omni-
directional images.

The body of work applying CNN methods to underwa-
ter imagery is mostly limited to the problems of species
detection and classification [21]–[29], or underwater image
correction [30], [31] on perspective images. Kuang et al.
[32] used a simple color distortion model based on image
depth to generate a synthetic dataset of omni-directional
images that were color cast as though captured underwater.
They trained a distortion aware CNN to predict image depth
from an omni-directional image, and reported results on their
synthetic dataset. While they did not test with real omni-
directional data, the perspective image equivalent of their
method performed very poorly on real underwater images.
Most related to our work in the underwater domain is the
work of Jeon et al. [33], who proposed a CNN based method
for underwater object detection and pose estimation, using a
synthetic dataset generated from CAD models to train the
network. However, the objects used in their dataset were
very simple, and their tests were limited to tank environment
with high contrast between the object models and the scene
background. Further, they only regressed the 3D orientation
of the detected objects. Also related to our work is Nielsen
et al. [34], where a PoseNet CNN was trained to regress
the 6D pose of a mock-up sub-sea connector relative to a
small ROV. The dataset was collected in a tank environment,
with high contrast between the connector target and the low
featured background. In contrast to these works, our method
addresses the problem of full 6D object pose estimation from
monocular underwater images captured in wild unstructured
environments. Further, our method is applied to full view
fisheye images, which capture a significantly greater field of
view over perspective images. Also, our dataset is composed
with visually challenging handle objects used to manipulate
ROV tools in real life applications.

Largely, works targeting deep learning methods applied
to omni-directional or fisheye images resort to generating
or collecting their own custom datasets, due to a lack of
large scale annotated image datasets of this type. Many works
simply project annotated perspective images to the distorted
omni-directional or fisheye domain, as a simple way to
generate a proxy dataset. Some recent work seeks to address
this lack of annotated fisheye datasets [35], [36]. However,
no such annotated dataset exists for fisheye images in the
underwater domain. We address this problem by releasing
our annotated UWHandles dataset, along with the method



and annotation tool used to collect and process the images.
III. METHOD

Special care must be taken in regressing 6D pose from
full fisheye images, as there can be large distortions and
ambiguity in the object viewpoint (Fig. 2). In the following
sections, we outline how we use an intermediate spherical
representation and the gnomonic projection to attain visually
consistent pose annotations, followed by an overview of three
different adaptions of the SilhoNet method[1] for 6D pose
prediction from full fisheye images (Fig.1).

A. Spherical Mapping and Gnomonic Projection

While a class of different projection models exist for
fisheye cameras [37], the model followed by the camera
system used in this work, and the most common model in
practice, is the equidistant projection

R = fθ (1)
where θ is the angle in radians from a point in the world
to the optical axis, f is the lens focal length, and R is the
radial position of the point projected on the imaging plane.
A major challenge of fisheye images when regressing the
object orientation is the large space of visual ambiguity.
We define the global reference frame as coincident with the
fisheye camera frame. As the angle between the object center
in the world to the camera optical axis increases, there is
increasing discrepancy between the object orientation relative
to the global frame and the apparent orientation relative to
a cropped ROI (Fig. 2). We deal with this visual ambiguity
by first mapping the fisheye image onto the unit sphere. The
mapping between the pixel coordinates (x, y) on the fisheye
image with focal length f and the polar coordinates (θ, φ)
on the unit sphere is given as

r =
√
x2 + y2; ρ = r/f ; z =

r

tan ρ
(2)

θ = sin−1 (
y√

x2 + y2 + z2
); φ = tan−1 x

z
. (3)

The inverse mapping can also be calculated by first convert-
ing the spherical coordinates to cartesian and then projecting
onto the image plane with the fisheye model

xs = cos θ sinφ; ys = sin θ; zs = cos θ cosφ (4)

ρ = cos−1 (
zs√

x2s + y2s + z2s
); r = fρ (5)

x =
xsr√
x2s + y2s

; y =
ysr√
x2s + y2s

. (6)

By mapping the fisheye image to a unit sphere centered on
the global origin, we can define the apparent viewpoint of the
object as the appearance of the object when projected onto
a tangent plane centered on the vector extending from the
sphere center to the center of the object. The projection from
the sphere onto the tangent plane is known as a gnomonic
projection and has a long history in mapping as well as
recent application in omni-directional CNN methods [9],
[10]. Given a spherical mapping of an image and the tangent
plane centered on the sphere at polar coordinates (θ0, φ0),

the gnomonic projection of the spherical point (θ,φ) onto the
tangent plane is given as

x =
cos θ sin (φ− φ0)

sin θ0 sin θ + cos θ0 cos θ cos (φ− φ0)
(7)

y =
cos θ0 sin θ − sin θ0 cos θ cos (φ− φ0)

sin θ0 sin θ + cos θ0 cos θ cos (φ− φ0)
, (8)

and an optimized inverse mapping from the tangent plane
onto the sphere is given as

θ = sin−1 (
sin θ0 + y cos θ0√

1 + x2 + y2
) (9)

φ = φ0 + tan−1 (
x

cos θ0 − y sin θ0
), (10)

where x and y are the coordinates of the pixel on the tangent
plane normalized by the virtual perspective camera focal
length fp [38], [39]. The gnomonic projection is core to our
method of regressing the object 6D pose from ROI proposals
on the distorted fisheye image. The orientation of the object
Rp relative to a virtual perspective camera frame centered
on the apparent viewpoint can be calculated as a rotation
correction to the object orientation R that is referenced to
the global frame. The rotation correction matrix Radj can be
constructed as follows. First, the polar coordinates (θ0, φ0)
of the intersection of the virtual camera optical axis with the
sphere is calculated based on the 3D translation (x, y, z) of
the object relative to the global frame

θ0 = sin−1 (
y√

x2 + y2 + z2
) (11)

φ0 = tan−1 (
x

z
). (12)

The rotation adjustment matrix is then constructed column-
wise using the coordinates of the rotated virtual camera frame
axes in the global reference frame

X = [cosφ0, 0, − sinφ0] (13)
Y = [− sin θ0 sinφ0, cos θ0, − sin θ0 cosφ0] (14)

Z = [cos θ0 sinφ0, sin θ0, cos θ0 cosφ0] (15)
Radj = [X; Y ; Z] (16)

The orientation of the object relative to the virtual camera
frame is then given as

Rp = RadjR (17)
The orientation branch of the network is trained to regress
the apparent orientation Rp. The predicted true orientation
R can be recovered using the predicted object translation by
constructing the inverse Radj matrix.

B. SilhoNet Adaptation to Fisheye

We compare three different variants of SilhoNet adapted
for processing full fisheye images (Fig.1). For all variants, the
size of the predicted silhouettes was increased to 128x128,
because the handle objects in the UWHandles dataset have
very thin features. The translation prediction output was
also modified to predict the normalized pixel offset of the
object center relative to the ROI directly without passing
through a sigmoid function, and the predicted offsets were
thresholded to lie within the ROI bounds. Because the dataset
does not include segmentation annotations, the occluded



Fig. 1. Overview of the three different SilhoNet [1] adaptations for processing full fisheye images. The Baesline method processes the raw fisheye image
directly through the unmodified network. The Projective variant processes the raw fisheye image through the feature extraction stage and then projects the
features within the ROI through a spherical mapping to the tangent plane centered on the ROI, before processing the features through the ROI-pooling
stage. The Perspective adaptation maps the fisheye image to a sphere and then generates a virtual perspective image for each object detection using a
gnomonic projection, centered on the ROI. Each virtual image is then processed through the network.

Fig. 2. These objects have the same orientation relative to the rendered
fisheye image frame but different translations, resulting in drastically differ-
ent apparent orientations. Also, objects appear more distorted as they move
from the image center.

silhouette branch was removed from the network. The orien-
tation predictions of the handle objects were also reduced
by their shape symmetries, as described in the SilhoNet
paper [1]. Under these symmetry reductions, the network
predicts orientations unique to shape symmetries only, which
is appropriate for many object manipulation tasks, such as
grasping tool handles, which are generally agnostic in feature
space to how they are grasped. Also, because the symmetry
reduction is applied directly to the training labels, no special
care is needed to deal with symmetric objects in the training,
and a simple distance loss function for orientation regression
is used, as in the original method. The annotated ROIs were
used as input to the network for both training and testing.

The first variant we consider as a baseline, which is
essentially the vanilla SilhoNet architecture with the ori-
entation branch output modified to regress the apparent
orientation Rp, as described in the previous section. All
variants of the network retain this prediction strategy. The
second variant, which we refer to as ”projective”, processes
the raw fisheye image through the feature extraction stage

and then projects the features within the ROI through a
spherical mapping to the tangent plane centered on the ROI,
using the gnomonic projection. The projected features are
then passed to the ROI-pooling stage. The motivating idea
behind this projective strategy is that local features do not
appear heavily distorted in fisheye images, but the spacial
relationship of features across the ROI can be significantly
distorted. The local feature map is thus generated directly on
the raw fisheye image and then the spacial relationship of
these local features is corrected through the projection onto
the tangent plane. This projection operation is implemented
as a Tensorflow layer for efficient and simple integration
into the original network. The third variant, which we refer
to as ”perspective”, projects a region of the fisheye image
to a virtual perspective image centered on the ROI using the
gnomonic projection. We chose the virtual image dimension
to be 400x400 with a pixel relative focal length of 350. This
virtual perspective image is processed through the feature
extraction stage and then the ROI is cropped from the
center of the feature map and passed to the ROI-pooling
stage. Essentially, this method generates a virtual perspective
image for each detected object and processes each of these
virtual images separately through the network. This methods
corrects for the fisheye distortions through the entire network
pipeline. However, the computation scales with the number
of detected objects, as a separate virtual image is processed
for each one.

As a further comparison point, we take each of the
three variants described above and replace the silhouette
prediction branch with a branch that directly regresses the
quaternion orientation, rather than first predicting a silhouette



and passing it to a second stage network for orientation
prediction. This orientation branch has the same structure
as the translation branch, but with the output size equal
to 4x(# classes). The predicted quaternion for the class
of the detected object is extracted from the output and
normalized using an L2-norm. These methods which bypass
the silhouette prediction to directly regress the orientation are
referred to in the following sections by appending ” direct”
to the name of the associated variant: ”baseline direct”,
”projective direct”, and ”perspective direct”.

C. Network Training

The networks were trained with the same loss functions
and dropout rates as in [1] on Titan V GPUs. All networks
were trained for 400,000 iterations on the training set ex-
cept for the ”perspective direct” method which was only
trained for 356,000 iterations because of time constraints.
Due to GPU memory limitations, the raw fisheye images
of dimension 2,448x2,048 were downsampled by a factor
of 3 for the baseline and projective variants and by a
factor of 2 for the perspective variant. The baseline and
projective variants were trained with a batch size of 2 and
the perspective variant with a batch size of 3. As with the
original SilhoNet method, the second stage network which
regresses orientation from silhouettes was trained using only
perfect rendered silhouettes.

IV. DATASET

We collected fisheye images of three different types of
graspable handles, randomly arranged in different natural
seafloor environments of the Costa Rican shelf break. Two of
the handle types are actively used by Schmidt Ocean Institute
and Woods Hole Oceanographic Institute to manipulate tools
with Remotely Operated Vehicles (ROV) during underwa-
ter operations. AprilTag fiducials were randomly dispersed
throughout the scene and on mount plates attached to the
base of the handle objects in order to recover ground truth
poses of the camera in the image sequences. The image
sequences were then post processed with an annotation tool
to obtain labeled 6D object poses and bounding boxes. The
camera system was a FLIR BFLY-PGE-50S5C-C with a
Fujinon FE185C086HA-1 fisheye lens centered in a dome
housing that was mounted on the wrist of a Schilling Titan 4
hydraulic manipulator. This dataset is relevant to automating
underwater manipulation tasks; if the pose of a handle
attached to a known tool type can be accurately estimated,
the handle can be autonomously grasped and manipulated to
perform a desired manipulation task.

The dataset is composed of 25 training image sequences
with a total of 18,329 images, 1 validation sequence with
910 images, and 2 testing sequences with 1,188 images.

A. Data Collection

We use AprilTag fiducials to obtain globally consistent
camera poses in the image sequences. At various locations
on the seafloor, the ROV was set down and the handle
objects were randomly dispersed throughout the reachable
area of the manipulator. 4 metal tag plates with attached 4”

Fig. 3. Tags are detected in the raw fisheye images and processed
through TagSLAM [40] to get globally consistent camera poses for an image
sequence.

AprilTag fiducial stickers were randomly scattered around
the handle objects. Initially, we also attached 4” April Tag
stickers to mount plates at the base of the handle objects, but
through trial and error, we found the most robust detection
results were obtained with multiple 2” stickers attached to
the object mount plates rather than the single 4” sticker.
The smaller tags on the objects enabled better detection of
the tags at close range, and the large tags on the scattered
metal plates provided good detection at greater distances.
While the pose of the handles could be directly recovered
from the detected mounted tags if they remained rigid, we
found that tag plates could move and sometimes break when
handled with the hydraulic manipulator. Also, the mounted
tags were not always visible or were poorly detected from
certain camera viewpoints. Therefore, our annotation method
assumes that all tag locations are static throughout an image
sequence, but the exact transform between any tag and a
tool handle is unknown and may change across sequences.
Full 5MP resolution images were recorded at 3Hz, with the
manipulator moving around the objects in various motion
paths to obtain a diverse set of viewpoints.

B. Data Processing

We used the ROS TagSLAM package [40] to process
the image sequences and obtain globally consistent camera
poses for each image in the sequence. In order to make
use of the full fisheye view, tags were detected in the raw
fisheye images (Fig. 3), and then the detected tag poses
were calculated using a pinhole equidistant distortion model
calibrated with the Kalibr ROS package [41], [42]. The
pinhole model was adequate for this camera system, because
the effective usable field of view of the image was less than
180◦.

We created an OpenGL based annotation tool called Vis-
Pose, which takes in the image sequence with an associated
camera pose file from the TagSLAM output. VisPose pro-
vides an interface to project models of the different objects
into the image sequence, play through the sequence, and
tweak the fit of the models to obtain accurate 6D pose
annotations. Pose outliers can be filtered from the image
sequence and then a COCO style annotation file exported,
including 6D pose and 2D bounding box annotations, for the
full image sequence (Fig. 4).

V. RESULTS

The following section presents the performance of the
different SilhoNet adaptations on the UWHandles dataset.



Fig. 4. Sample from the UWHandles dataset showing the handle object
models projected into the fisheye image using the 6D pose annotations. The
fisheye image is rectified here for visualization.

Table I and Table II show the percentage of translation
and orientation predictions under different error thresholds,
respectively. Table III shows the overall 6D pose prediction
accuracy using the ADD-S metric from [43].

TABLE I
PERCENTAGE OF TRANSLATION PREDICTIONS UNDER THE THRESHOLD

ERROR, WHERE A HIGHER PERCENTAGE UNDER A LOWER THRESHOLD

MEANS BETTER ACCURACY.

Method < 5cm < 10cm < 20cm < 30cm

Baseline 69.88 90.81 98.48 99.92
Projective 71.91 87.35 96.22 98.39
Perspective 74.63 90.61 96.73 98.14

Baseline-Direct 47.55 72.04 94.56 99.21
Projective-Direct 46.71 73.56 93.54 98.36
Perspective-Direct 57.69 81.29 96.11 99.07

TABLE II
PERCENTAGE OF ORIENTATION PREDICTIONS UNDER THE THRESHOLD

ERROR, WHERE A HIGHER PERCENTAGE UNDER A LOWER THRESHOLD

MEANS BETTER ACCURACY.

Method < 5◦ < 10◦ < 20◦ < 30◦

Baseline 12.75 34.77 62.78 75.31
Projective 11.26 35.33 63.03 74.89
Perspective 16.05 39.08 66.08 77.28

Baseline-Direct 22.58 45.58 69.00 81.31
Projective-Direct 28.91 50.45 69.48 83.19
Perspective-Direct 29.81 55.01 74.21 85.02

TABLE III
AREA UNDER ACCURACY-THRESHOLD CURVE FOR 6D POSE

EVALUATION USING ADD-S METRIC FROM [43], WHERE A HIGHER

AREA MEANS BETTER ACCURACY. PROJ. IS SHORT FOR PROJECTIVE

AND PERSP. IS SHORT FOR PERSPECTIVE

Handle Type Baseline Proj. Persp. Baseline
Direct

Proj.
Direct

Persp.
Direct

umichhandle 72.71 69.53 78.81 61.70 61.79 64.46
soihandle 71.48 79.98 75.11 47.51 53.33 60.77
whoihandle 61.82 57.34 61.95 48.54 47.39 59.90

ALL 68.65 68.92 71.94 52.57 54.15 61.69

For translation prediction errors under 5cm, which is a
common measure of interest for pose estimation methods, the

perspective variant shows significant performance improve-
ment over the baseline method, while the projective method
shows some improvement. All of the direct variants that
remove the intermediate silhouette prediction branch show
a drastic drop in translation prediction accuracy, indicating
that even though the silhouettes are not directly used in the
translation prediction, they enhance the networks ability to
learn accurate feature scaling. The perspective-direct variant
still shows significant improvement over the baseline-direct
method, indicating that compensating for distortions in the
fisheye image rather than directly predicting from the raw
image is important for accurate pose predictions.

For orientation prediction errors under 5◦, the perspective
variant also shows significant performance improvement over
the baseline method, while the projective variant does not
perform as well as the baseline. In contrast to the translation
predictions, all of the direct methods improve on the orien-
tation prediction accuracy by approximately a factor of two
across all variants, while the perspective-direct method still
outperforms the baseline-direct method by a large margin.
We observe that these initial results for orientation prediction
fall short of the general target accuracy of less than 5deg
error for manipulation applications. The UWHandles dataset
is especially challenging for several reasons: the amount
of training data is relatively small compared to terrestrial
datasets, due to the expense of gathering underwater imagery;
images are degraded by underwater back-scatter and lighting
effects; the variance in camera viewpoints across an image
sequence is high, due to the relatively low image collection
frame-rate and large manipulator motions. Though these at-
tributes make the dataset very challenging, they also motivate
the development of methods that can work in real-world
underwater environments with sparse training data. Future
work will explore incorporating explicit methods of dealing
with underwater effects, such as color correction and haze
removal. We also note that the performance of the original
SilhoNet [1] method was greatly improved through additional
training on rendered data. Synthetically generated data can
fill gaps in camera viewpoint representation missing in the
real training data, allowing the network to better learn the
full manifold of viewpoint representation. We are currently
working on a method for synthetically rendering fisheye
image data to supplement the UWHandles dataset. The syn-
thetic images will be consistent with the real fisheye camera
parameters, and the rendering process will incorporate some
of the underwater imaging effects.

The ADD-S results also show a strong improvement in
performance for the perspective variant against the baseline,
both with and without the silhouette predictions, while the
projective and baseline methods perform similarly. Because
the ADD-S metric is generally most sensitive to translation
errors, the results show stronger performance for the methods
that retain the intermediate silhouette prediction over the
direct methods. However, taking into account the separate
orientation and translation results, better overall performance
on this dataset might be achieved by a method which directly
predicts the orientation but retains a silhouette prediction



Fig. 5. Qualitative results with the perspective method on some sample test images for the whoihandle object. Predicted silhouettes and pose errors are
shown for a range of errors from low to high.

branch during training to boost the translation accuracy. This
is a method we plan to explore in the future. Overall, the
results indicate that accounting for fisheye distortions before
feature extraction, as the perspective method does, gives the
best performance.

Figure 5 shows some qualitative results with the perspec-
tive method for the whoihandle object on some test samples,
exhibiting a range of prediction errors. It is evident that the
network successfully learns the silhouette representation of
the handle object. However, some silhouette predictions are
distorted or regress to offset viewpoints. We conjecture that
these issues reflect the sparse coverage of the training data
over the full viewpoint manifold of the objects and could
be addressed through additional training on synthetic data,
which will be part of our future work.

VI. CONCLUSION

In this paper, we presented a framework for adapting a
ROI-based 6D object pose estimation method to work on
full fisheye images. We demonstrated the adaptation of the
SilhoNet [1] method on a new dataset of annotated fisheye
images, called UWHandles, collected in natural underwater
seafloor environments. The objects in the dataset are visually
challenging handles, used in ROV operations to manipulate
tools. The testing results on this dataset show that directly
accounting for the fisheye distortions in the network before
feature extraction is important for improving pose prediction
accuracy, where the best performance was obtained with a
method that generates a virtual perspective image centered
on each ROI detection and processes these virtual undistorted
images separately through the network. The results also
show that the intermediate silhouette predictions of the
SilhoNet method are important for the network to learn
feature scaling to accurately predict translation. However,
for this dataset, directly regressing the orientation rather
than predicting from an intermediate silhouette achieves the
greatest orientation accuracy. These observations motivate
future investigation into a method which directly regresses
the orientation, but retains the silhouette prediction branch

during training to supervise the learning of feature scaling.
Further improvements to the method will also be explored
through explicit modeling of underwater effects in the image
processing pipeline and augmentation of the training with
synthetically rendered fisheye data.
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[35] J. Fu, I. V. Bajić, and R. G. Vaughan, “Datasets for face and
object detection in fisheye images,” Data in brief, vol. 27,
p. 104 752, 2019.

[36] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley,
D. O’Dea, M. Uricár, S. Milz, M. Simon, K. Amende,
et al., “Woodscape: A multi-task, multi-camera fisheye
dataset for autonomous driving,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019,
pp. 9308–9318.

[37] (2019). Fisheye projection, [Online]. Available: https://
wiki.panotools.org/Fisheye_Projection.

[38] M. Cowlishaw. (2014), [Online]. Available: http : / /
speleotrove . com / pangazer / gnomonic _
projection.html.

[39] E. W. Weisstein. (2020). Gnomonic projection, [Online].
Available: http : / / mathworld . wolfram . com /
GnomonicProjection.html.

[40] B. Pfrommer and K. Daniilidis, “Tagslam: Robust slam with
fiducial markers,” arXiv preprint arXiv:1910.00679, 2019.

[41] J. Maye, P. Furgale, and R. Siegwart, “Self-supervised
calibration for robotic systems,” in 2013 IEEE Intelligent
Vehicles Symposium (IV), IEEE, 2013, pp. 473–480.

[42] P. Furgale, J. Maye, and J. Rehder. (2014). Ethz-asl/kalibr,
[Online]. Available: https://github.com/ethz-
asl/kalibr/wiki.

[43] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn:
A convolutional neural network for 6d object pose estima-
tion in cluttered scenes,” in Proceedings of Robotics: Science
and Systems, Pittsburgh, Pennsylvania, 2018.


