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Abstract— Visual odometry is an essential component in
robot navigation and autonomous driving; however, visual
sensors are vulnerable in fast motion or sudden illumination
changes. This weakness can be compensated with inertial mea-
surement units (IMUs), which maintain the short-term motion
when visual sensing becomes unstable and enhance the quality
of estimated motion with inertial information. An omnidirec-
tional multi-view visual odometry (ROVO) has recently demon-
strated superior performance and stability with the unceasing
feature observation of the omnidirectional setup; however, the
shortcomings of visual odometry remain. This paper introduced
an omnidirectional visual-inertial odometry system (ROVINS)
that could seamlessly integrate the inertial information into
the omnidirectional visual odometer algorithm: (a) The soft
relative pose constraints from the inertial measurement are first
added to the pose optimization formulation, which enables blind
motion estimation when all visual features are lost; (b) Using the
prediction results from the estimated velocity, the visual features
in tracking are initialized, resulting in feature tracking that is
more robust to visual disturbances. The experimental results
showed that the proposed ROVINS algorithm outperforms the
vision-only algorithm by a significant margin.

I. INTRODUCTION

Estimating ego-motion is a critical task for robots and

autonomous agents. This can be approached with several

existing techniques, one of the most popular being visual

odometry (VO), mainly because of the cameras, which, aside

from being much cheaper than special sensors, makes a

fairly accurate and robust motion estimation. Visual sensors

provide rich information of environment structures and ob-

jects in high resolution and relatively high speed, however,

they are sensitive to illumination conditions and motions.

For instance, even with auto-exposure functionality in cam-

eras, sudden illumination changes can make the subsequent

images look very different and the feature tracking to fail.

Another challenge is the fast motion of the shutter speed

where motion blur originates to create blurry visual features

and unstable feature tracking. Such drawbacks in the use of

visual odometry have been compensated by the installation

of inertial measurement units (IMUs) that can sense motion

differently. IMUs measure the linear acceleration and angu-

lar rotation velocity, which are then integrated to provide
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Fig. 1: Qualitative results of the proposed system in the Large-scale
In-Out dataset, including various challenging scenes (bottom: tex-
tureless, large-scale, auto-gain). After being aligned to the gravity
direction, the estimated trajectories of ROVINS(blue), ROVO(red),
and GT(black) are overlaid on the satellite image. For comparison,
the ground-truth trajectory is drawn by hand. Note that ROVO fails
at point X marked in red.

the displacement and rotation. However, IMU-based motion

estimation is normally affected by a drift: the (double)

integration process allows a very small error in measurements

to cause a large error at the positional or rotational estimate.

Drift errors accompanying IMU measurements cannot be

corrected as the units only measure the relative motion

information. Accordingly, they can be detected or corrected

using visual inputs, because they allow the absolute pose

(position and rotation) with respect to the environment to be

measured from multiple images.

In various challenging situations, visual-inertial odometry

(VIO) can be used to provide an accurate and robust esti-

mation of the camera-IMU rig motion. With this technique,

visual and inertial motion information are complementary;

thus, when the visual observation is missing due to illumi-
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nation conditions or fast motion, the inertial information can

keep the motion momentarily, while the visual information

helps correct the bias and noise in inertial measurements. The

most common setup of VIO consists of a monocular camera

and an IMU that are commonly found in smartphones.

The main context of this paper is the proposal of a VIO

system for an omnidirectional multi-view visual odometry

(ROVO) camera rig. In ROVO [1], four ultra-wide fisheye

cameras are utilized for motion estimation. These cameras

are equipped with 220◦ field-of-view (FOV) lenses (Fig. 2)

to maximize the overlapping regions for stereo matching of

the tracked features. Compared to conventional monocular

or stereo VO systems, ROVO demonstrates a superior per-

formance as feature points remain in view until they are

occluded by other objects or become too far away. However,

it still possess the limitations of conventional VO algorithms

as it purely relies on visual feature points. Integrating the

inertial motion constraints into ROVO’s optimization frame-

work, the proposed robust omnidirectional visual inertial

navigation system (ROVINS) further improves the motion

estimation performance of the conventional VIO or ROVO

systems. To improve the feature tracking, individual feature

motions are predicted from the relative motion measurements

of the IMUs, and then used as the initial feature locations

for feature tracking, e.g., Kanade-Lucas-Tomasi (KLT), in the

next frame. In this paper, the performance of the proposed

ROVINS algorithm is evaluated by capturing very challeng-

ing test sequences with fast motions, severe illumination

variations, and crowded situations. The ground-truth rig pose

data are collected by a motion capture system, and both

qualitative and quantitative comparisons are conducted to

demonstrate the improved performance of the algorithm.

II. RELATED WORKS

Various sensor configurations for pose estimation have

been researched to ensure the robustness and performance.

For vision-based pose estimation, several visual odometry

methods [2]–[6] developed for monocular cameras have

shown good performance, but often suffered from a scale

drift; moreover, the estimated poses were up-to-scale (non-

metric) unless additional information for metric upgrade has

been provided. These limitations were overcome with stereo

camera-based VO/VSLAM (simultaneous localization and

mapping) systems. Mur-Artal and Tardós [7], and Wang et

al. [8] developed a stereo camera-based visual SLAM system

that runs robustly in small indoor or outdoor environments.

Meanwhile, using wide-FOV cameras improves the robust-

ness as apparent feature motions become more evident. For

instance, Caruso et al. [9] proposed a fisheye camera-based

visual SLAM system with a direct method that optimizes the

photometric errors between images, whereas Liu et al. [10]

and Matsuki et al. [11] developed stereo fisheye camera-

based VO systems. Recently, VIO systems with a fusion

of cameras and IMU sensors have become more popular,

not only because IMU sensors provide noisy but camera-

independent motion with high rates, but also as they help

estimate the absolute metric scale of the trajectories. Such an

advantage significantly improves the accuracy and robustness

of conventional camera-based VO algorithms.

Many monocular VIO methods [12]–[16] have shown

superior accuracy in real-world environments, while var-

ious multi-camera-based methods have been reported to

improve the perception abilities. The visual odometry system

presented in [17] shows a full surrounding view camera

system, whose robustness has also been demonstrated with

the visual SLAM of Heng et al. [18] with a self-calibration.

More recently, Liu et al. [19] has presented a multi-camera

system using a direct method with a plane sweeping stereo.

Furthermore, the multi-camera based VIO methods [20]–[22]

have been shown to deliver an outstanding performance. The

VO algorithm of Seok and Lim [1] for a multi-view wide-

FOV camera setup have also been reported to demonstrate

a superior accuracy and robustness in large-scale motion

estimation.

III. PRELIMINARIES

A. IMU Pre-Integration

Fig. 2 shows the IMU b, which measures the acceleration

and angular velocity at regular time intervals ∆t. Here,

slowly varying biases ba and bg of the accelerometer

and gyroscope, as well as sensor noise, affect the sensory

information. Moreover, the gravity wg needs to be subtracted

from the raw accelerometer output to remove its effect

when computing the motion. The IMU motion between two

consecutive keyframes can be defined in terms of the pre-

integration ∆R, ∆v, and ∆p from all measurements in-

between, and the IMU orientations b
wR ∈ SO(3), position

b
wp, and velocity b

wv, as described in [15]:

b
wRi+1 = b

wRi∆i,i+1 Exp (J
g
∆Rbgi) ,

b
wvi+1 = b

wvi +
wg∆ti,i+1

+ b
wRi (∆vi,i+1 + J

g
∆vbgi + Ja

∆vbai) ,

b
wpi+1 = b

wpi +
b
wvi∆t+

1

2
wg∆ti,i+1

2

+ b
wRi

(

∆pi,i+1 + J
g
∆pbgi + Ja

∆pbai

)

,

where the Jacobian Jg
(·) and Ja

(·) account for a first-order

approximation of the effect of changing the biases without

explicitly recomputing the pre-integrations. A more detailed,

efficient computation of the pre-integrations and Jacobians

can be found in [15].

Fig. 2: The world, IMU(body), and camera coordinate systems of
the proposed VIO system and their respective transformations.



B. Notation

A rigid transformation T is parameterized as a rotation

vector r and a translation vector t in R
3. Essentially, it

transforms a 3D point X to T⊙X = R(r)X+t, where R(r)
is the 3 × 3 rotation matrix for the rotation r. Accordingly,

⊙ denotes the composition of transformations, whereas −1

is the inverse transformation. As shown in Fig. 2, three co-

ordinate systems are used, namely, world (w), body (b), and

camera (c). When needed, the coordinate system is marked

on the left side of a transformation, as in the case of w
bT,

which implies a rigid transformation from the body-to-world

coordinate system, or wX, as a point in the world coordinate

system. Note that in this paper, the body coordinate system

is aligned with the IMU coordinate system. Time is specified

using a right subscript, for example, the camera coordinate

of a world point X at time t can be written as

cXt =
c
bT⊙ b

wTt ⊙
wX.

The camera intrinsic parameters determine the mapping

between a 3D point cX and a pixel coordinate x in the

image; for example, the projection function x = π(cX;φ)
denotes the camera intrinsic parameter φ. Because of the

ultra-wide FOV cameras, a unit sphere instead of a plane is

used for computing rays for 3D points. Let π0(·) represent

the projection onto the unit sphere, thus, x̄ = π0(X) is a unit-

length ray pointing X, which also serves as the normalized

image coordinates of the projected point. The parameter

ρ is the Cauchy robust norm used in the optimization.

Accordingly, the state vector of the optimization θ is defined

as

θ =
{

b
wTi,

b
wvi,bai,bgi

, {wX}i

}

i∈W
,

where T and v represent the body poses and velocities in

the world coordinate, ba and bg the accelerometer and gyro

biases, and X the observed 3D landmark positions.

IV. ALGORITHM

Fig. 3 displays an overview of the system architecture

of ROVINS with IMU-predicted feature tracking. Here, the

camera intrinsic parameters and the IMU-to-camera extrinsic

parameter were assumed to be calibrated and given, and that

all cameras capture images synchronously with the IMU data

time-synchronized with the cameras. First, the raw fisheye

images were warped to the hybrid projection images [1],

and the motion from IMU data was propagated using the

mid-point pre-integration [12]. Next, feature detection and

IMU-aided intra-view feature tracking were performed in the

hybrid projection images. Propagated rotation from the IMU

was input to the IMU-aided feature tracker for predict of

the feature position in the current frame. This was followed

by an inter-view stereo feature matching to find feature

correspondences between the cameras. Once the data pro-

cessing step was completed, the camera and the IMU were

checked whether or not they were initialized. If not initial-

ized, vision-only Structure-From-Motion(SFM) was carried

out by ROVO [1] to process the visual-inertial alignment.

Afterwards, the system was initialized to approach VIO using

non-linear optimization. Each process is described fully in

the following subsections.

Fig. 3: An overview of the proposed system. Each color specifies
the processing blocks relative to the camera(blue), the IMU(orange),
and the camera+IMU(green), respectively. See Section IV for the
detailed description.

A. Measurement Processing

The raw input images and IMU measurements were

processed continuously throughout the algorithm. Initially,

the raw images were projected to the hybrid-projected

images [1] and used for feature extraction, tracking, and

matching, as in the cases with ROVO [1]. Utilizing the

hybrid-projection images should minimize the distortion and

maximize the feature matching and tracking across views.

These initial steps were necessary for the feature tracking

to work from discovery to disappearance of visual features.

Further, oriented FAST and rotated BRIEF (ORB) features

were extracted from the hybrid-projected images as inputs to

intra-view tracking and inter-view matching. Concurrently,

IMU measurements were propagated using pre-integration

methods [15]. The pre-integration computes the relative pose

change from the previous image frames and its uncertainty

in the pose covariance matrix. After both measurements have

been processed, the pre-integrated IMU motion was utilized

to improve the feature tracking performance, followed by

stereo feature matching across views.

B. Feature Tracking with Prediction

The KLT-tracking [23] technique, given its accuracy and

efficiency [1], [12], is generally popular for finding feature

correspondences between consecutive images. By principle,

a KLT-tracker starts at the previous feature location and

searches the current feature location using photo-consistency.

When handling large motions, KLT uses an image pyramid

where a coarse position is computed first and then the finer

motion is updated. Therefore, having good initial locations

in a new frame is important for accurate and fast feature

tracking. In this paper, the predicted feature location was

calculated using the pre-integrated IMU pose, before the KLT

tracker was initialized at the predicted position. Note that

predicting precise feature locations requires highly accurate

poses and depth of features. However, it is difficult to

maintain such information at all times, especially at the

process onset. Except very near features, the displacement

due to the camera translation is much smaller than the camera

rotation.



Thus, in this work, the feature location prediction was

accomplished by re-projecting the 3D feature points to

the current image plane using the IMU-propagated motion

when the 3D feature point was available. Otherwise, if the

feature has not been not registered yet, only the rotation

of the propagated IMU was considered for the prediction.

Although the propagated IMU motion becomes unreliable

in the long-term, it should be accurate enough to initialize

feature tracking points in the short propagation time period

(of approximately 100 ms, the same as the image frequency).

C. Vision-Inertial Initialization

Vision-inertial initialization is the essential step to suc-

cessfully fuse the two very different measurements, namely,

the gravity direction and IMU biases. However, as these

parameters are unknown at the beginning, they should be

bootstrapped from the visual and inertial measurements. In

this work, a similar approach of the loosely coupled sensor

fusion method as Qin et al. [12] was employed.

1) Vision-Only SFM: A highly accurate vision-based

SLAM system would work well on the initialization, which is

dependent on good visual SFM results. Thus, fully utilizing

the omnidirectional multi-view setup, ROVO [1] achieves

high robustness even in the dynamic scenes and texture-

less indoor environments. Moreover, because it observes

all direction, there is little chance for the initial motion

to degenerate (e.g., pure rotation); such failure cases can

be filtered by simply checking the number of pose inliers

(>50). With this advantage as well, the initial SFM can be

assumed to succeed and to return reasonably accurate poses,

as long as the rig moves enough distance. When the system

is turned on, it first monitors if enough motion (15 keyframes

in the present setup) is generated, before the visual-inertial

alignment is performed.

2) Visual-Inertial Alignment: In the present system, the

metric scale is directly observable from the omnidirectional

multi-view stereo setup, allowing the fusion of the IMU and

camera measurements with no worries on the initial scale

estimation and scale update. The methodology of Hong and

Lim [16] was employed for the alignment. In particular,

the implementation of the authors was modified so as not

to estimate the scale. Positively, such modification worked

well in the proposed multi-view system. However, only

the gravity direction, initial velocity, and IMU biases were

estimated in this paper using the modified code of [16] for

the simplification.

D. Optimization-based Visual-Inertial Odometry

The proposed VIO algorithm continuously estimates the

body pose, velocity, and IMU biases at a frame rate, which

resulted in the reliable calculation of the rig system’s trajec-

tory. Once the initialization has been completed, the current

frame pose was updated with the IMU pre-integrated pose,

and then the outlier features were rejected based on the

reprojection error, or the tangential error of unit ray in the

study’s ultra-wide FOV setup.

After the outlier rejection, the state vectors θ of the current

frame and the keyframes in the active local window W were

optimized in both their visual and IMU constraints. The

optimization problem was dealt with a Ceres solver [24],

yielding the optimal state,

θ
∗ = argmin

θ

∑

j,ij

∑

t∈W

(

ωijEvis(i, j, t) +Eimu(t− 1, t)
)

,

where Evis represents the visual constraints, Eimu the IMU

constraints, and ω the weight parameters. Note that ω is

proportional to the number of counts upon which the relative

3D landmark has been checked as an inlier.

1) Visual Constraint: With the given body poses, extrinsic

and map points, the visual constraint was calculated based

on the re-projection error of the feature points. A visual

constraint is widely used as a geometric error term for many

feature-based visual SLAM and VIO systems [1], [3], [12],

[13], [25]. Accordingly, the re-projection error Evis is given

by

Evis(i, j, t) = ρ
(

||x̄ij ,t − π0(
j
bT⊙ b

wTt ⊙
wXij )||

2
)

,

with the extrinsic point from the body to the j’th camera
c
bTt, the body pose at time t b

wTt, and the landmark

positions observed by i and j’th camera {wXi}j in the world

coordinate.

2) IMU Constraint: With the IMU readings between

two consecutive keyframes, the measurements were pre-

integrated [15] to obtain the relative IMU constraint.

This restriction is a widely used pre-integration term for

optimization-based VIO systems [12], [13], [25]. Here, the

pre-integration error Eimu is defined by

Eimu(k, l) =ρ
(

[eTRe
T
v e

T
p ]ΣI [e

T
Re

T
v e

T
p ]

T
)

+ ρ(eTb ΣReb),

eR = log
(

(∆Rkl Exp(J
g
∆Rbgl

))T w
bRk

b
wRl

)

,

ev =w
bRk

(

b
wpl −

b
wvk − wg∆tkl

)

− (∆vkl + J
g
∆vbgk

+ Ja
∆pbal

)

,

ep =w
bRl

(

b
wpl −

b
wpk − b

wvk∆tkl −
1

2
wg∆t2kl

)

−
(

∆pkl + J
g
∆pbgl

+ Ja
∆pbal

)

,

eb =bl − bk,

where ΣI is the information matrix from the pre-integration

and ΣR of the bias random walk. The pre-integration process

is fully explained in [15]. The optimization structures of

ROVO and ROVINS are shown in Fig. 4 in a comparative

manner.

V. EXPERIMENTS

A. Experimental Setup

All datasets were captured using a small square-shaped

rig (0.3 × 0.3m) with four 220◦ wide-FOV cameras as in

[1], [26], [27], and one Xsens MTi-10 IMU sensor. The

capture system recorded synchronized 4×(1600×1532) gray



Fig. 4: Comparison of optimization methods between ROVO(left) and the proposed ROVINS(right). The local windows in both methods
are retrieved by temporal order of keyframes. ROVO optimizes the poses and landmarks using visual constraints only, whereas ROVINS’s
optimization allows the poses, speed, biases, and landmarks to be simultaneously optimized by the visual and IMU constraints.

images at up to 10 Hz, as well as IMU measurements at up

to 200 Hz. The intrinsic and extrinsic parameters between

the cameras were calibrated using a checkerboard [26], [28],

[29]. In particular, the extrinsic parameters between the

camera and the IMU were calibrated using Kalibr [30], a

popular open-source toolbox. The hardware configuration is

shown in Fig. 5.

Fig. 5: The capture system used for this experiment. Four wide-
FOV fisheye cameras and one IMU sensor are attached to the rig
(left). The highlighted yellow dotted circle is the location of the
IMU. The cameras capture an extremely challenging dataset with
severe motion blurry images (right).

B. Dataset description

A total of 9 challenging real-world datasets were collected

from the experiments, which were subsequently used for

quantitative and qualitative evaluations. The datasets were

labelled as follows: Normal Hand-held, Spinning Hand-

held, Shaking Hand-held, Dynamic Objects, Spinning In-

Out, Large-scale In-Out, and Mocap All (Mocap0, 1, and

2 are parts of Mocap All with different motions). The Nor-

mal, Spinning, and Shaking Hand-helds were captured with

three different challenging motions; the dynamic Objects

included an abruptly changing motion and multiple dynamic

objects and; the Spinning In-Out and Large-scale In-Out

were especially challenging, as both have been captured

by a person walking around indoors and outdoors, includes

the opening of doors, illumination changes, and moving

objects. Specifically, the camera motion of the first one was

highly dynamic, but the length of its trajectory was relatively

shorter than the second one; second one was captured in

moderate motion around the large area of a university campus

with its illumination drastically changing by the auto-gain.

Finally, the Mocap series were captured in a motion capture

room with various motions, including spinning and shaking.

These datasets were recorded with the ground-truth poses,

captured by the highly accurate motion capture device, which

enabled the precise evaluation of the estimated poses in the

challenging environment.

C. Parameter Settings

All key parameters were shared by both ROVO and

ROVINS for fair comparison. First, the size of the hybrid

projected images were set to 640 × 480. The maximum

number of tracked features in each image was set to 150 in all

sequences. To spatially and uniformly distribute the features

in an image, the margins between the detected features were

set to 11 pixel. The patch size of the KLT tracker was 15×15
with four pyramid levels. Note that increasing the resolution

of hybrid images or the number of features improves the

overall performance of the feature-based SLAM systems,

like ORB-SLAM2, as it provides more detailed information

about the visual observations [31]. However, because of the

trade-off between performance and running-time, the above

parameters were selected based on both the performance

and time-complexity of the system. Two keyframe selection

parameters were used: the relative translation and rotation

thresholds from the last keyframe were set to 0.15 m and 5◦

respectively in all experiments, except in Large-scale In-Out,

where the parameters were set to 2 m and 5◦. Additionally,

these parameters were chosen heuristically considering the

characteristics of the environment. The respective sizes of

the local-bundle optimization window and the fixed window

were 10 and 15. With the above parameters as inputs, both

ROVO and ROVINS were ran at nearly 10 Hz with multi-

threaded implementation.

D. Evaluation of Estimated Poses

The captured datasets were utilized for extensive experi-

mental comparisons evaluating the accuracy and robustness



of the proposed ROVINS system. Two error metric types,

the absolute trajectory error of translation (ATEtrans) and

the start-to-end error, were employed for the quantitative

evaluation. On one hand, ATEtrans is widely used for

measuring the accuracy of VO/VIO systems; it is calculated

by the root mean-squared error (RMSE) of all rig positions

after rigidly aligning the estimated trajectory to the ground-

truth trajectory. On the other hand, the start-to-end error is

calculated by the difference between the start and end posi-

tions for the sequences whose start and end positions should

be the same. Although not as sophisticated as the ATE, it is

still the start-to-end error remains useful for measuring the

overall performance of the algorithms, especially for large

or complex environments where the ground-truth poses are

difficult to obtain. Accordingly, the proposed VIO method

was compared to ROVO [1] to reveal the improvement of

the system against the previous work, by utilizing the ATE

for Mocap datasets in Table II and the start-to-end error for

the other datasets in Table I. From the results, the proposed

system made a more accurate and robust estimation of the

trajectories with no failure in very challenging situations.

Dataset ROVO [1] ROVINS
Total

Length

Typical Hand-held 0.27 0.17 27m

Spinning Hand-held X 0.11 30m

Shaking Hand-held 1.57 0.37 52m

Dynamic Objects 1.93 1.64 42m

Spinning In-Out 2.82 1.00 170m

Large-scale In-Out X 11.26 770m

TABLE I: The start-to-end error evaluation results. In all datasets,
ROVINS shows better performance than ROVO [1].

1) Start-to-end Error Evaluation: In the Hand-held

datasets, the camera rig intermittently and quickly rotated,

creating motion blur for short periods of time. Motion blurs

make the feature tracking difficult, one of the main reasons

degrading the performance of vision-based pose estimation

algorithms. Conversely, VIO can utilize inertial information

when the feature tracking is unstable (i.e., when the number

of successfully tracked features decrease), resulting in a

more accurate and robust performance, as validated in the

experimental results of ROVO and ROVINS in Table I.

Taking a close look at the results, this advantage was more

evident in the other two Hand-held sequences, where the

cameras have been shaken more violently or with longer spin.

Although such extreme sequences lead to significant motion

blur degradation and feature tracking failure, ROVINS was

able to maintain a good pose estimation performance.

The Dynamic Objects sequence was captured where many

moving people continuously occluded the background scene

and wiped out the observed landmarks, as well as when

the camera was moved drastically, generating a motion blur.

Such an environment also induced the difficulty for long fea-

ture tracking, which is a critical element in ROVO as it solely

depends on the visual information. ROVINS is not exempted

from this problem, however, it showed a better performance

as the outliers have been rejected by the predicted poses

from IMU measurements. The most complex and challenging

datasets for both ROVO and ROVINS were the Spinning

In-Out and Large-scale In-Out. ROVO particularly suffered

from the drift problem in the Spinning In-Out dataset, when

there was an insufficient number of stereo-matched inliers to

estimate the metric scale of poses. Also, when the camera

was outside the building, there was a drastic change in

illumination that dipped the number of successfully tracked

and stereo-matched inliers for a moment, and drifted the

scale thereby degrading the overall accuracy. Given the same

scenario, ROVINS robustly maintained the correct trajectory

because the IMU constraints can correct the metric scale

during optimization. In Large-scale In-Out datasets, another

drastic illumination change occurred when entering the build-

ing from the outside. At this time, as shown in Fig. 1, ROVO

failed before reaching the end point with a significant error

for the large illumination changes between the indoor and

outdoor environments, whereas ROVINS correctly arrived

near the start point(yellow) along the ground-truth trajectory.

Finally, ROVINS stopped near the start point of full

trajectory, showing about 98.5% start-to-end accuracy. These

results demonstrated the superior accuracy and robustness of

the proposed system.

Dataset
ORB2 ORB2

ROVO ROVINS
Total

(no loop) (loop) Length

Mocap0 0.61 0.55 0.15 0.08 63m

Mocap1 0.50 0.51 0.17 0.07 61m

Mocap2 0.46 0.44 0.19 0.09 62m

Mocap All 0.55 0.52 0.34 0.15 183m

TABLE II: Quantitative comparison between the algorithms using
ATEtrans. ORB-SLAM2 with and without loop closing are speci-
fied as ORB2(loop) and ORB2(no loop), respectively.

2) RMS Error Evaluation: This section discusses the eval-

uation of the proposed system and its comparison with the

other systems in terms of specifically, the motion-captured

Mocap datasets with ground-truth poses. These datasets were

captured in a poorly textured room in three challenging

motions scenarios. From Mocap0 to Mocap2, the camera

motion was increased and changed more rapidly to induce

motion blurs, which are a typical challenge for vision-

based SLAM systems. To show the overall superiority of the

proposed system, it was compared against other state-of-the

art systems. However, as there was no public SLAM and VIO

systems to support the omnidirectional camera system, ORB-

SLAM2 [7] was chosen instead, by utilizing the rectified

120◦stereo images generated from the datasets as inputs, as

in [27]. The generated stereo images consisted of four pairs:

(0,1), (1,3), (2,0), and (3,2). They were run and the best result

was selected for comparison.

In addition, an attempt was made to compare VI-ORB [13]

and VINS-FUSION [12], [25]; however, no public imple-

mentation was made for VI-ORB to run the datasets. In

the case of VINS-FUSION, VO failed when the camera

moved fast, causing the VIO divergence in the early stages

of all datasets due to the poor quality of visual SFM, which

is important for the VIO initialization. This continuously



(a) ORB-SLAM2 (b) ROVO (c) ROVINS

Fig. 6: Comparative results in the Mocap0 dataset. ORB-SLAM2, ROVO, ROVINS, and ground-truth are indicated in blue, magenta, red,
and black line, respectively The estimated poses of ROVINS are smoothly aligned to the ground-truth.

(a) Mocap0 (b) Mocap1 (c) Mocap2

Fig. 7: Qualitative results in the Mocap0, 1, and 2 datasets. ROVINS, ROVINSTri, ROVINSSt, and ground-truth are indicated in red,
blue, green, and black lines, respectively. The estimated poses of all three methods smoothly follow the ground-truth without any bumpy
section.

Dataset ROVINS
ROVINSTri ROVINSSt Total

(0,1,2) (1,3,0) (2,0,3) (3,2,1) (0,1) (1,3) (2,0) (3,2) Length

Mocap0 0.08 0.17 0.18 0.09 0.12 0.13 0.19 0.18 0.18 63m

Mocap1 0.07 0.10 0.11 0.09 0.09 0.12 0.13 0.11 0.16 61m

Mocap2 0.09 0.09 0.13 0.12 0.15 0.13 0.20 0.14 0.15 62m

Mocap All 0.15 0.17 0.19 0.23 0.20 0.26 0.26 0.25 0.28 183m

TABLE III: Ablation study on the different numbers of camera settings. ROVINSTri and ROVINSSt are the results of trifocal and stereo
settings. The values in the parenthesis are the camera IDs used in the experiments.

happened even after tuning the parameters (the number of

features, keyframe parallax, etc), and thus, leading to a

decision to compare only with the ORB-SLAM2, after the

number of features has been set to 5000, the minimum

settings that should not fail for the whole sequences. During

the evaluation, the loop closing modules of ORB-SLAM2

were manually turned on and off for measurement of the

accuracy of both VO and SLAM.

Table II displays a comparison of the ATEtrans of both

ROVO and ROVINS, and ORB-SLAM2 in the Mocap

datasets. ROVINS was overall 2× more accurate than ROVO,

and 7× more accurate than ORB-SLAM2 (even with the

loop closing), in terms of the RMS error. With the absence

of drastic illumination changes, all methods ran well without

any catastrophic failures. However, for the vision trajectory,

only systems (ROVO and ORB-SLAM2) became bumpy as

the camera started to move very fast, mainly because such

drastic camera changes would induce motion blurry images

that degrade the overall performance of the vision-based sys-

tem. In contrast, ROVINS demonstrated a smooth trajectory

estimation regardless of the camera motion (Fig. 6). These

results validated that ROVINS can operate in an accurate and

robust manner even in challenging situations.

E. Simple Evaluation of Feature tracking

This section discusses the simple evaluation conducted for

the proposed feature tracking with prediction. To evaluate the

effect of the present algorithm, the average number of inliers

and ATEtrans was compared between the ROVINS with

and without the IMU-aided feature tracking, labelled here

as ROVINS(w/ pred) and ROVINS(w/o pred), respectively.

Based on the results in Table IV, ROVINS(w/ pred) per-

formed slightly better than ROVINS(w/o pred) in both mea-

sures, which confirms that the proposed algorithm improves

the number of inliers to helps boost the overall performance

of the system.

Dataset
avg. # of inliers ATEtrans(m)

w/o pred w/ pred w/o pred w/ pred

Mocap0 275.45 282.15 0.10 0.08
Mocap1 228.25 232.27 0.09 0.07

Mocap2 250.00 255.04 0.10 0.09

Mocap All 248.56 259.30 0.17 0.15

TABLE IV: Ablation study for the IMU-aided feature tracking.

F. Effectiveness of the Omnidirectional Setup

To confirm the effectiveness of the omnidirectional setup,

an experiment was conducted by varying the number of

cameras. Here, four ultra-wide FOV cameras were employed

to maximize the stereo overlapping regions. However, note

that the proposed algorithm also works without full 360◦

coverage. However, the drawback with just two or three

cameras for motion estimation are the missing parts in the

scene and the features in such area that cannot be tracked.

Thus, it would be logical to assume that the four-view system



would perform better than a-fewer-camera setup. Table III

and Fig. 7 show a comparison of the three different versions

of the proposed algorithms namely, ROVINS, ROVINSTri,

and ROVINSSt, using four(omnidirectional), three(trifocal),

and two(stereo) cameras, respectively. For comparison, the

performance of all possible configurations of ROVINSTri

and ROVINSSt were given. For example, ROVINSTri was

aligned with four configurations: (0,1,2), (1,3,0), (2,0,3), and

(3,2,1). ROVINS with an omnidirectional view is the most

accurate in all tests, even after comparisons with the best

candidates of ROVINSTri or ROVINSst. These results veri-

fied that the proposed omnidirectional setup is advantageous

in the overall accuracy and robustness of the system.

VI. CONCLUSIONS

This study introduced an omnidirectional multi-view

visual-inertial odometry algorithm called ROVINS. Unlike

conventional VIO systems, ROVINS fully utilizes a 360◦-

FOV with stereo overlaps, which drastically improves the ac-

curacy and stability of pose estimation drastically. Compared

to ROVO, an omnidirectional multi-view VO algorithm, the

inertial information in ROVINS are seamlessly integrated

into the pose optimization framework via formulations of

the relative motions from IMU as soft-pose constraints. The

biases of the IMU are robustly estimated from rich visual

information, thereby significantly improving the quality of

inertial measurements. The feature tracking also benefits

from this formulation, as the initial locations of the features

in the subsequent frames are updated by the estimated

IMU motion. For extensive experimental validation, many

challenging sequences were selected covering fast and abrupt

motions, severe illumination changes between the indoor and

outdoor environments, and many dynamic objects near the

camera. Based on the experimental results, the proposed VIO

algorithm is very effective and significantly improves the

motion estimation performance.
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[8] R. Wang, M. Schwörer, and D. Cremers, “Stereo dso: Large-scale
direct sparse visual odometry with stereo cameras.”

[9] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for
omnidirectional cameras.” in IROS, vol. 1, 2015, p. 2.

[10] P. Liu, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys, “Direct
visual odometry for a fisheye-stereo camera,” in Intelligent Robots and

Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE,
2017, pp. 1746–1752.

[11] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cremers,
“Omnidirectional dso: Direct sparse odometry with fisheye cameras,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3693–3700,
2018.

[12] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[13] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796–803, 2017.

[14] L. Von Stumberg, V. Usenko, and D. Cremers, “Direct sparse visual-
inertial odometry using dynamic marginalization,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2510–2517.

[15] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transac-

tions on Robotics, vol. 33, no. 1, pp. 1–21, 2016.
[16] E. Hong and J. Lim, “Visual-inertial odometry with robust initializa-

tion and online scale estimation,” Sensors, vol. 18, no. 12, p. 4287,
2018.

[17] G. Hee Lee, F. Faundorfer, and M. Pollefeys, “Motion estimation for
self-driving cars with a generalized camera,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 2746–2753.

[18] L. Heng, G. H. Lee, and M. Pollefeys, “Self-calibration and visual
slam with a multi-camera system on a micro aerial vehicle,” Au-

tonomous Robots, vol. 39, no. 3, pp. 259–277, 2015.
[19] P. Liu, M. Geppert, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys,

“Towards robust visual odometry with a multi-camera system.”
[20] K. Eckenhoff, P. Geneva, J. Bloecker, and G. Huang, “Multi-camera

visual-inertial navigation with online intrinsic and extrinsic calibra-
tion,” in 2019 International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 3158–3164.
[21] L. Heng, B. Choi, Z. Cui, M. Geppert, S. Hu, B. Kuan, P. Liu,

R. Nguyen, Y. C. Yeo, A. Geiger, et al., “Project autovision: Lo-
calization and 3d scene perception for an autonomous vehicle with a
multi-camera system,” in 2019 International Conference on Robotics

and Automation (ICRA). IEEE, 2019, pp. 4695–4702.
[22] S. Houben, J. Quenzel, N. Krombach, and S. Behnke, “Efficient

multi-camera visual-inertial slam for micro aerial vehicles,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2016, pp. 1616–1622.
[23] B. D. Lucas, T. Kanade, et al., “An iterative image registration

technique with an application to stereo vision,” 1981.
[24] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.

org.
[25] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based

framework for local odometry estimation with multiple sensors,” 2019.
[26] C. Won, J. Ryu, and J. Lim, “Sweepnet: Wide-baseline omnidirectional

depth estimation,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2019, pp. 6073–6079.
[27] ——, “End-to-end learning for omnidirectional stereo matching with

uncertainty prior,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2020.
[28] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A flexible technique

for accurate omnidirectional camera calibration and structure from
motion,” in Proceedings of the IEEE International Conference on

Computer Vision Systems (ICVS), 2006, pp. 45–45.
[29] S. Urban, J. Leitloff, and S. Hinz, “Improved wide-angle, fisheye and

omnidirectional camera calibration,” ISPRS Journal of Photogramme-

try and Remote Sensing, vol. 108, pp. 72–79, 2015.
[30] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,

“Extending kalibr: Calibrating the extrinsics of multiple imus and of
individual axes,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2016, pp. 4304–4311.
[31] N. Yang, R. Wang, X. Gao, and D. Cremers, “Challenges in monocular

visual odometry: Photometric calibration, motion bias, and rolling
shutter effect,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2878–2885, 2018.


