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Abstract— In this paper, we propose a novel coding architec-
ture for LiDAR point cloud sequences based on clustering and
prediction neural networks. LiDAR point clouds are structured,
which provides an opportunity to convert the 3D data to a
2D array, represented as range images. Thus, we cast the
LiDAR point clouds compression as a range images coding
problem. Inspired by the high efficiency video coding (HEVC)
algorithm, we design a novel coding architecture for the point
cloud sequence. The scans are divided into two categories:
intra-frames and inter-frames. For intra-frames, a cluster-based
intra-prediction technique is utilized to remove the spatial
redundancy. For inter-frames, we design a prediction network
model using convolutional LSTM cells, which is capable of
predicting future inter-frames according to the encoded intra-
frames. Thus, the temporal redundancy can be removed.
Experiments on the KITTI data set show that the proposed
method achieves an impressive compression ratio, with 4.10%
at millimeter precision. Compared with octree, Google Draco
and MPEG TMC13 methods, our scheme also yields better
performance in compression ratio.

I. INTRODUCTION

Advances in autonomous driving technology have widened
the use of 3D data acquisition techniques. LiDAR is almost
indispensable for outdoor mobile robots, and plays a funda-
mental role in many autonomous driving applications such
as localization , path planning [1], and obstacle detection [2],
etc. The enormous volume of LiDAR point cloud data could
be an important bottleneck for transmission and storage.
Therefore, it is highly desirable to develop an efficient coding
algorithm to satisfy the requirement of autonomous driving.

Octree methods have been widely researched for point
cloud compression. The main idea of octree-based coding
methods is to recursively subdivide the current data ac-
cording to the range of coordinates from top to bottom,
and gradually form an octree adaptive structure. Octree
method can hardly compress LiDAR data into very small
volumes with low information loss. The vehicle-mounted
LiDAR data is structured, which provides a chance to convert
them into a 2D panorama range image. Some researchers
focus on using image-based coding methods to compress
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the point cloud data. However, these methods are unsuitable
for unmanned vehicles. Traditional image or video encoding
algorithms, such as JPEG2000 , JPEG-LS [3], and HEVC
[4], were designed mostly for encoding integer pixel values,
and using them to encode floating-point LiDAR data will
cause significant distortion. Furthermore, the range image is
characterized by sharp edges and homogeneous regions with
nearly constant values, which is quite different from textured
video. Thus, coding the range image with traditional tools
such as the block-based discrete cosine transform (DCT)
followed by coarse quantization can result in significant
coding errors at sharp edges, causing a safety hazard in
autonomous driving.

In this research, we address the LiDAR point cloud
sequence compression problem. Learning from the HEVC
architecture, we propose a novel coding architecture for
LiDAR point cloud sequences, which mainly consists of
intra-prediction and inter-prediction technologies. For-intra-
frames, we utilize a cluster-based intra-prediction method
to remove the spatial redundancy. There are great structural
similarities between adjacent point clouds. For inter-frames,
we train a prediction neural network, which is capable of
generating the future inter-frames using the encoded intra-
frames. The intra- and inter-residual data is quantified and
coded using lossless coding schemes. Experiments on the
KITTI dataset demonstrate our method yields an impressive
performance.

In our previous paper [5], an efficient compression algo-
rithm for a single scan is developed based on clustering.
Based on this previous technique, we propose a novel coding
architecture for LiDAR point cloud sequences in this work.
The contributions of the paper are summarized as follows.

• Learning from the HEVC algorithm, we develop a novel
coding architecture for LiDAR point cloud sequences.

• For inter-frames, we design a prediction network model
using convolutional LSTM cells. The network model is
capable of predicting future inter-frames according to
the encoded intra-frames.

• The coding scheme is specially designed for LiDAR
point cloud sequences for autonomous driving. Com-
pared with octree, Google Draco and MPEG TMC13
methods, our method yields better performance.

II. RELATED WORK

The compression of 3D point cloud data has been widely
researched in literature. According to the types of point cloud
data, compression algorithms can be roughly classified into
four categories.
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Structured single point cloud compression: Some re-
searchers have focused on developing compression methods
for structured LiDAR point cloud data. Houshiar et al.
[6] propose an image-based 3D point cloud compression
method. They map the 3D points onto three panorama
images, and use an image coding method to compress the
images. Similar to their approach, Ahn et al. [7] introduce
an adaptive range image coding algorithm for the geometry
compression of large-scale 3D point clouds. They explore
a prediction method to predict the radial distance of each
pixel using previously encoded neighbors, and only encode
the resulting prediction residuals. In contrast, Zanuttigh et al.
[8] focus on efficient compression of depth maps of RGB-
D data. They develop a segmentation method to identify
the edges and main objects of a depth map. After that,
an efficient prediction process is performed according to
the segmentation result, and the residual data between the
predicted and real depth map is calculated. Finally, the
few prediction residuals are encoded by conventional image
compression methods.

Unstructured singe point cloud compression: Elseberg
et al. [9] propose an efficient octree data structure to store
and compress 3D data without loss of precision. Experimen-
tal results demonstrate their method is useful for an exchange
file format, fast point cloud visualization, sped-up 3D scan
matching, and shape detection algorithms. Golla et al. [10]
present a real-time compression algorithm for point cloud
data based on local 2D parameterizations of surface point
cloud data. They use standard image coding techniques to
compress the local details. Zhang et al. [11] introduce a
clustering- and DCT-based color point cloud compression
method. In their method, they use the mean-shift technique
to cluster 3D color point clouds into many homogeneous
blocks, and a clustering-based prediction method to remove
spatial redundancy of point cloud data. Tang et al. [12]
present an octree-based scattered point cloud compression
algorithm. Their method improves the stop condition of
segmentation to ensure appropriate voxel size. Additionally,
using their method, the spatial redundancy and outliers can
be removed by traversal queries and bit manipulation.

Structured point cloud sequence compression: Kam-
merl et al. [10] introduce a novel lossy compression method
for point cloud streams to remove the spatial and temporal
redundancy within the point data. Octree data structures
are used to code the intra point cloud data. Additionally,
they develop a technique for contrasting the octree data
structures of consecutive point clouds. By encoding struc-
tural differences, spatial redundancy can be removed. Tu et
al. [13] propose an image-based compression method for
LiDAR point cloud sequences. They convert the LiDAR data
losslessly into range images, and then use the standard image
or video coding techniques to reduce the volume of the
data. As image-based compression methods hardly utilize
the 3D characteristics of point clouds, Tu et al. propose
a SLAM-based prediction for continuous point cloud data
in their follow-up work [14]. Experimental results show
that the SLAM-based method outperforms image-based point

cloud compression methods. In [15], Tu et al. develop a
recurrent neural network with residual blocks for LiDAR
point cloud streams compression. Their network structure
is like a coding and decoding process. The original point
cloud data is encoded into low-dimensional features, which
is treated as encoded bit stream. The decoding process is to
decode these low-dimensional features to the original point
cloud data. In [16], Tu et al. present a real-time point cloud
compression scheme for 3D LiDAR sensor U-Net. Firstly,
some frames are choosen as key frames (I-frame), then they
use the U-net to interpolate the remaining LiDAR frames
(P-frames) between the key frames.

Unstructured point cloud sequence compression:
Saranya et al. [17] propose a real-time compression strategy
on various point cloud streams. They perform an octree-
based spatial decomposition to remove the spatial redun-
dancy. Additionally, by encoding the structural differences
of adjacent point clouds, the temporal redundancy can be
removed. Thanou et al. [18] present a graph-based compres-
sion for dynamic 3D point cloud sequences. In their method,
the time-varying geometry of the point cloud sequence is
represented by a set of graphs, where 3D points and color
attributes are considered as signals. Their method is based
on exploiting the temporal correlation between consecutive
point clouds and removing the redundancy. Mekuria et al.
[19] introduce a generic and real-time time-varying point
cloud coding approach for 3D immersive video. They code
intra-frames with an octree data structure. Besides this, they
divide the octree voxel space into macroblocks and develop
an inter-prediction method.

Generally, the aforementioned approaches can signifi-
cantly reduce the size of point cloud data, and are capable
for some specific applications. However, few of them are
specially designed for LiDAR point clouds data compression,
so using them to encode LiDAR point clouds is inefficient.
However, we can learn from their coding techniques, such as
prediction [14], clustering [11] and registration [19]. In this
paper, we propose a novel coding scheme for LiDAR point
cloud sequences. Our method can largely remove spatial and
temporal redundancy.

III. OVERVIEW OF POINT CLOUDS CODING SCHEME

In this paper, we propose a hybrid encoding/decoding
architecture (intra-prediciton, inter-prediction, and residual
data coding) for LiDAR point cloud sequences. Fig. 1 illus-
trates the encoding and decoding flowcharts of the proposed
method. The order arrangement of the intra- and inter-frames
is illustrated in Fig. 2. The number of I frames and P
frames can be defined by parameter m and n, respectively.
For instance, if m = 5 and n = 5, the input data, in
the form of a LiDAR data stream, will be formatted as
“IIIIIPPPPPIIIIIPPPPP...”.

The intra-frames will be coded using the intra-prediction
mode, which is a spatial prediction within the frame, to
remove the spatial redundancy. According to the encoded
intra-frames, the inter-prediction module, a prediction neural
network, is capable of inferring the future inter-frames [20].
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The residual signal of the intra- or inter-prediction, which
is the difference between the original and prediction data, is
encoded by lossless coding schemes. The coded control data,
coded residual data, coded contour map data, and network
parameters are packaged together in a certain way, forming
the final bitstream.

Decoding is the inverse process of encoding. This is done
by inverse scaling and decoding of the encoded data to
produce the decoder approximation of the residual signal.
This residual signal is then added to the prediction signal and
forms the decoded point cloud. The final data representation,
which is the duplicate of the possible output in the decoder,
will be stored in a ‘decoded point clouds buffer’ and will

be used for the prediction of subsequent point clouds. The
components in the codec are briefly described as follows.

(a) Convert to Range Image: The point clouds are captured
by Velodyne LiDAR HDL-64 sensors, which utilize 64 laser
beams covering a vertical field of view of 26.9°and horizontal
field of view of 360°. By coordinate system transformation,
the 3D point cloud data can be converted into 2D grid arrays,
known as panoramic range images.

(b) Outlier Removal Filter: To reduce the impact of
outliers, a filter named Radius Outlier Removal is used [21].
Radius Outlier Removal calculates the number of adjacent
points around each point and filters out the outliers.

(c) Point Cloud Clustering: For a single scan of a point
cloud, points belonging to the same object have a lot of
spatial redundancy. To eliminate the redundancy, a point
cloud clustering technique is exploited to segment the range
image into nonoverlapping clusters.

(d) Intra-Prediction: According to the clustering result, an
efficient intra-prediction technique is performed to remove
the spatial redundancy [5].

(e) Contour Map Coding: To recover the original point
cloud data, we also need to encode the contour map. We
divide the contour map into independent coding units and
encode each unit with an integer value.

(f) Network Parameter Setting: The parameters of the
neural network are configured according to the size of the
input point cloud and the order arrangement of intra- and
inter-frames.

(g) Inter-Prediction: A prediction neural network model
is designed using convolutional LSTM cells. The model
uses the encoded intra-frames to infer future inter-frames to
remove the temporal redundancy.

(h) Residual Data Coding: The difference between the



Algorithm 1 The update process of the Prediction Network. 
Require: The input t frames: I = {I0, I1, ..., Xt};
Ensure: 

The prediction k frames: P = (Pt+1, Pt+2, ..., Pt+k).
1: Assign the initial value: Et

l = 0 (l ∈ [0, L], t = 0).
2: for t = 0 to T do
3: for l = L to 0 do
4: if t = 0, l = L then
5: Ot

L = ConvLSTM(Einitial
L )

6: else if (t = 0) then
7: Ot

l = ConvLSTM(Einitial
l , UpSample(Ot

l+1))
8: else if (l = L) then
9: Ot

L = ConvLSTM(Et
l , O

t−1
L )

10: else
11: Ot

l = ConvLSTM(Et
l , O

t−1
l , UpSample(Ot

l+1))
12: end if
13: end for
14: for l = 0 to L− 1 do
15: if l = 0 then
16: P t

0 = Conv(Ot
0)

17: Et
l = P t

l − xt

18: else
19: P t

l = ReLU(Conv(Ot
l ))

20: Et
l = P t

l − F t
l

21: end if
22: F t

l+1 = MaxPool(Conv(Et
l ))

23: end for
24: end for

real and the predicted point cloud data is calculated as
residual data. The residual data is quantified and encoded
with lossless coding schemes.

(i) General Coder Control: The encoder uses pre-specified
codec settings, including the precision configuration for
module (b), cluster parameter configuration for module
(c), network parameters configuration for module (g), and
quantization parameter encoding method for module (h). In
addition, it also controls the intra- and inter- frames, order
arrangement.

(j) Header Formatting & Parameter Information: The pa-
rameter information, coded residual data, and coded contour
map data are organized in a predefined order and form the
final bitstream.

IV. INTER-PREDICTION USING CONVOLUTIONAL LSTM

In this paper, we develop a prediction neural network using
convolutional LSTM cells, which is capable of generating
future point clouds according to the encoded frames. Fig.
3 gives the architecture of the inter-coding process. The
prediction network obtains the encoded points clouds X =
{Xt=0, Xt=1, ..., Xt=T }, and generates the next frame point
cloud Pt=T+1. The difference between the real point cloud
Xt=T+1 and the predicted result Pt=T+1 will be calculated,
quantified and encoded as the inter-bitstream.

A. LSTM-based Inter-prediction Network
Deep learning algorithms have been widely used to solve

supervised learning tasks. However, point cloud prediction,
as unsupervised learning, remains a difficult challenge. Fig-
ure 4 illustrates the overall architecture of the proposed
prediction network using convolutional LSTM. The network
consists of a series of repeated convolutional LSTM modules
that attempt to locally predict the input and then subtract the
input from the actual input and pass it to the next layer.
X = {X0, X1, ..., XT } represents the input range images
from t = 0 to T , while the P = {P0, P1, ..., PT , PT+1}
denotes the predicted results. The network mainly consists
of three types of model: the error representation (Et

l ), the
convolutional LSTM layer (ConvLSTM t

l ), and the feature
extraction layer (F t

l ). Et
l represents the difference between

P t
l and F t

l ; F t
l revevies the Et

l and extracts high features;
and ConvLSTM t

l receives the Et
l , Ot−1

l , and Ot
l+1, and

makes a prediction.
When the network is constructed, point cloud prediction

is performed. Consider a series of range images converted
from point clouds. The lowest ConvLSTM level gets the
actual sequence itself, while the higher layers receive the
representative. The error is computed by a convolution from
the layer below. The update process is described in Algorithm
1. The status update is performed through two processes: a
top-down process in which the Ot

l and P t
l state are calculated

as described in the following formula; and then a forward
process is performed to calculate the error Et

l and higher-
level targets F t

l . The last noteworthy detail is that E0
l is

initialized to zero, which means that the initial prediction
is spatially consistent due to the convolutional nature of the
network.

Ot
l =


ConvLSTM(Einitial

L ) t = 0, l = L
ConvLSTM(Einitial

l , Up(Ot
l+1)) t = 0

ConvLSTM(Et
l , O

t−1
l ) l = L

ConvLSTM(Et
l , O

t−1
l , Up(Ot

l+1)) others
(1)

P t
l =

{
Conv(Ot

0) t = 0
ReLU(Conv(Ot

l )) others
(2)

The model is trained to minimize the weighted sum of
error cell activities. Explicitly, the training loss is formalized
in the following equation, represented by the weighting factor
λt for the time and λl for the layer. The loss per layer
is equivalent to the ||Et

l ||. The loss function is defined as
follows:

Loss =
t=T∑
t=0

l=L∑
l=0

λt · λl · ||Et
l ||. (3)

B. Training and Evaluation

We train and evaluate the proposed prediction model using
the KITTI dataset. The point clouds are converted to range
images with the resolution of 64×2000 pixels. After this, the
images are processed to be grayscale, with values normalized
between 0 and 1. We use 5K point clouds for training, 1K
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Fig. 4. Architecture of the point cloud prediction network.

for validation and 2K for testing. The point cloud data of the
four scenes is equally distributed. The Adam method is used
to train our model with a learning rate of 0.0001. We train
our model with entropy optimization within 150 epochs. The
batch size is set to 3, as limited by our GPU memory.

The model is capable of accumulating information over
time to make accurate predictions of future frames. Since the
representation neurons are initialized to zero, the prediction
of the first time step is consistent. In the second time step, in
the absence of motion information, the prediction is a fuzzy
reconstruction of the first time step. After further iterations,
the model adapts to the underlying dynamics to generate
predictions that closely match the incoming frame.

V. EXPERIMENTAL RESULTS

A. Evaluation Metrics

The main body of the proposed point clouds coding
scheme is implemented in C++ using OpenCV [22], and PCL
[23] libraries. The prediction network uses Keras 2.0.6 with
CUDA 9.0 and cuDNN 7.0 libraries. The whole framework
works on Intel 3.7GHz i7 CPU and a single GeForce GTX
1080Ti graphics card. We evaluated our framework on a
series of experiments in KITTI dataset [24] in different
scenes including campus, city, road and residuential, to
demonstrate the generalization ability of our model.

The performance of the proposed method was evaluated in
terms of compression rate (CR) and root mean square error
(RMSE). The CR is the ratio between the compressed data
size and the original one, defined in following formula [25].
The lower the value the better the performance.

Ratio =
Compressedsize
Originalsize

× 100%, (4)

The RMSE represents the square root of the corresponding
points between the original point cloud and the reconstructed
one. The original point cloud Pinput is a set of K points,
while Pdecoded represents the decoded point cloud with N

points. K and N do not necessarily need to be equal.

Pinput = {(pi) : i = 0, ...,K − 1}
Pdecode = {(pi) : i = 0, ..., N − 1}

. (5)

For each point in Pinput, we take the distance to the nearest
point pnn−decode in Pdecode. The pnn−decode is efficiently
computed via a K-d tree in the L2 distance norm. The RMSE
is defined as follows:

MSR(Pinput, Pdecode) =
1

K

∑
pl∈Pinput

||pl − pnn−decode||22

MSR(Pdecode, Pinput) =
1

N

∑
pl∈Pdecode

||pl − pnn−input||22

RMSE =

√
MSR(Pinput, Pdecode) +MSR(Pdecode, Pinput)

2
(6)

B. Coding Performance

Compression ratio for a single frame: Fig. 6 depicts
the average compression ratios for a single frame with our
proposed inter-prediction method combined with different
lossless compression schemes, including Zstandard, LZ5,
Lizard, Deflate, LZ4, BZip2, and Brotli. The point clouds
are also directly encoded with these lossless coding schemes
as the anchor. It should be noted that compared with coding
the point cloud directly with the lossless schemes, the
combination of the proposed inter-prediction method with
lossless coding schemes achieves better performance. The
best compression performance is achieved by the combina-
tion of the inter-prediction with the BZip2 method, with a
compression ratio of 3.06% for the campus scene. The worst
compression ratio is 6.92% for the residential scene coded by
the combination of the proposed method with LZ4 scheme.
Experimental results indicate that the inter-prediction method
using the prediction network can effectively remove the time
redundancy.
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Fig. 5. Point clouds prediction results (residential scene).
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Fig. 6. Compression ratios of different lossless compression methods: (a) stand-alone lossless compression, (b) combination of the inter-prediction with
lossless methods

Comparsion with recent methods: Table 1 describes
the compression ratio results of the proposed method com-
pared to the well-known octree method [28]. Considering
that octree algorithms can not directly encode point cloud
sequences, we assemble the point cloud sequence into a point
cloud map by transforming each single point cloud into a
global coordinate system. x̃

ỹ
z̃

 = Ryaw ×Rpitch ×Rroll ×

 x
y
z

+

 Cx

Cy

Cz

, (7)

where (x̃, t̃, z̃) represents the coordinates after transforma-
tion; (x, y, z) denotes current coordinates; Cx, Cy , and Cz

denote the translation matrix of the coordinates; and Ryaw,
Rpitch and Rroll represents the rotation matrix of the yaw,
pitch, and roll angle. These parameters can be obtained by
the iterative closest point (ICP) algorithm [29].

The coding accuracy of the octree method is set to 1 cubic
millimeter, 5 cubic millimeters, and 1 cubic centimeter, sep-
arately. In our experiments, we choose the BZip2 scheme to
encode the residual data. The order of intra and inter-frames
is formatted as IIIIIPPP...PPPIIIII.... Five intra-frames are
encoded firstly, followed by fifteen interframes. From Table
2, it can be seen that our method outperform octree algorithm
in compression ratio. However, octree method can process
more than 1.28 million points per second. The complexity

of our algorithm is higher than octree method. Additionally,
octree has the advantage in searching operations, which is
still indispensable for autonomous vehicle applications.

TABLE I
COMPRESSION RATE RESULTS COMPARED WITH THE OCTREE METHOD.

Scene
Proposed method Octree [28]

Quantization Accuracy Distance Resolution
1mm 5mm 1cm 1mm3 5mm3 1cm3

Campus 3.94 3.14 2.52 21.27 8.05 5.75
City 4.06 3.22 2.64 23.98 10.76 8.40
Road 3.85 3.11 2.61 23.56 10.35 7.99

Residential 4.55 3.74 3.16 22.94 9.72 7.37
Average 4.10 3.30 2.73 20.23 9.72 7.29

To further verify the generality of the proposed prediction
network, we also perform experiments using 32-lines LiDAR
data captured by Velodyne HDL-32E sensors. Compression
rate results are illustrated in Table 2. Experimental results
demonstrate that the inter-coding method can also be used
to encode 32-lines LiDAR data.

Figure 7 illustrates the performance of the proposed
method compared with the cluster-based method [5], Draco
[26], TMC13 [27], U-net-based method [16] and SLAM-
based method [14]. As Tu et al. did not publish their coding
performance for campus and city point clouds. For campus
and city scenes, we only compare our method with cluster-
based, Draco and TMC13 methods.
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Fig. 7. RMSE-bpp curves performance of our method in comparision with cluster-based method [5], Google Draco [26], MPEG TMC13 [27], U-net-based
method [16] and SLAM-based method [14]: (a) campus, (b) city, (c) road, (d) residential.

TABLE II
COMPRESSION RATE RESULTS ON 64-LINES AND 32-LINES LIDAR

DATA.

Quantization Accuracy 1mm 5mm 1cm 2cm
64-lines 4.10 3.30 2.73 2.16
32-lines 4.26 3.53 2.93 2.41

Before performing Draco algorithm, we have assemble
the point clouds into a point cloud map. After that, we use
the Google Draco method to compress the point cloud map
and calculate the compression ratio per frame. Comparison
results are given by RMSE-bpp curves, which reflect the rela-
tionship between the RMSE and bits per pixel (bpp). TMC13
is an emerging point cloud compression standard recently
released at the 125th MPEG meeting. We experiment on four
scenes of point clouds: campus, city, road and residential.
A smaller RMSE and bpp mean better coding performance
because they enable a lower RMSE with less bandwidth.
It can be observed that our method obtains smaller bbp
than Draco, TMC13 and cluster-based methods under similar
RMSE reconstruction quality.

TABLE III
AVERAGE ENCODING TIME FOR INTRA- AND INTER-FRAME (S).

Coding Time Conversion Prediciton Encoding Total
Intra-frame 0.110 0.071 0.023 0.204
Inter-frame 0.110 0.028 0.021 0.159

Speed performance: The intra-coding includes three
steps, namely range image conversion, intra-prediction, and
quantification & encoding. The inter-coding consists of range
image conversion, inter-prediction, and quantification & en-
coding. We test the average speed performance of the pro-
posed method with 500 frames. As illustrated in Tables 3, the
total encoding time for intra- and inter-frame is 0.204s and
0.159s, respectively. Tables 4 depicts the average encoding
and decoding time of the proposed method compared with
octree, Draco, and TMC13 methods. It can be seen that
the octree and Draco algorithm have low complexity. Our
algorithm needs to be further optimized to meet the real-
time requirement.



TABLE IV
ENCODING & DECODING TIME OF PROPOSED METHOD VERSUS OCTREE,

DRACO, TMC13 (S).

Time Intra-frame Inter-frame Octree Draco TMC13
Encoding 0.204 0.159 0.024 0.031 0.649
Decoding 0.013 0.034 0.009 0.010 0.337

VI. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a novel and efficient com-
pression architecture for the LiDAR point cloud sequence.
Learning from the HEVC algorithm, we divided the frames in
the point cloud sequence into intra-frames and inter-frames,
which were encoded separately with different techniques. For
intra-frames, we used the coding technique proposed in [5].
For inter-frames, we developed a prediction network using
convolutional LSTM cells. The network can infer future
inter-frames according to the encoded frames. Experimental
results demonstrated that our approach significantly outper-
forms state-of-the-art techniques.

The drawback is that the proposed method can not apply to
disordered point cloud compression, such as 3D human body
sequences. Besides, the coding scheme can not satisfy real-
time applications at present. Future studies will concentrate
on improving its applicability and reducing the algorithm
complexity with hardware acceleration.
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