
Real-time Fusion Network for RGB-D Semantic Segmentation
Incorporating Unexpected Obstacle Detection for Road-driving Images

Lei Sun1, Kailun Yang2, Xinxin Hu1, Weijian Hu1 and Kaiwei Wang3

Abstract— Semantic segmentation has made striking progress
due to the success of deep convolutional neural networks. Con-
sidering the demands of autonomous driving, real-time semantic
segmentation has become a research hotspot these years. How-
ever, few real-time RGB-D fusion semantic segmentation studies
are carried out despite readily accessible depth information
nowadays. In this paper, we propose a real-time fusion semantic
segmentation network termed RFNet that effectively exploits
complementary cross-modal information. Building on an effi-
cient network architecture, RFNet is capable of running swiftly,
which satisfies autonomous vehicles applications. Multi-dataset
training is leveraged to incorporate unexpected small obstacle
detection, enriching the recognizable classes required to face
unforeseen hazards in the real world. A comprehensive set of
experiments demonstrates the effectiveness of our framework.
On Cityscapes, Our method outperforms previous state-of-the-
art semantic segmenters, with excellent accuracy and 22Hz
inference speed at the full 2048×1024 resolution, outperforming
most existing RGB-D networks.

I. INTRODUCTION

Environment perception is a significant task for intelligent
robots and systems in object classification, autonomous driv-
ing, and localization. In recent years, this field has witnessed
remarkable progress thanks to deep Convolutional Neural
Networks (CNNs) based semantic segmentation methods [1]
[2] [3]. As an environment perception method to be applied
in autonomous driving, safety, accuracy, and efficiency are
the vital factors in semantic segmentation for upper-level
navigational tasks. However, unexpected road hazards like
debris, bricks, stones, and cargos become the most dangerous
and difficult elements to detect in autonomous driving im-
agery. According to the AAA Foundation for Traffic Safety,
debris on the road led to more than 200,000 crashes on U.S.
roadways between 2011 and 2014, resulting in approximately
39,000 injuries and more than 500 deaths [4]. These obstacles
are generally small in size but not fixed in shape and
type, making detecting them a challenging subject that has
aroused interest among the robotics and computer vision
community. For these reasons, it is desirable to develop a
semantic segmentation based method incorporating pixel-
wise unexpected obstacle detection.
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(a) SwiftNet

(b) RFNet

Fig. 1. Examples from the Lost and Found dataset and corresponding
results of the methods: (a) SwiftNet (unexpected obstacle wrongly classified
as car), (b) The proposed RFNet (clear and consistent segmentation).

Compared to expensive 3D sensors like LIDAR, RGB
camera is a much lower cost solution with higher resolution.
Based on RGB stereo camera, there have been some attempts
to detect small obstacles with the help of geometry cues and
CNNs [5], but only relying on apparent information in the
RGB image alone is not sufficient for obstacle detection [6].
For example, manhole covers, and small obstacles can both
cause gradient changes in the image. The traversable areas
and obstacles in the depth map vary vastly in depth maps.
Depth maps contain more location and contour information
that can be used as a critical indicator of objects in real-world
driving scenarios. In this sense, appropriately combining
of appearance and depth is promising to improving the
performance [6] [7] [8]. But most accuracy-oriented RGB-D
semantic segmentation works focus on indoor scenes [7] [9]
[10], without assuring a fast inference speed that is necessary
for autonomous vehicles.

On the other hand, the outstanding capacity of CNNs
is based on a large amount of annotated data, especially
for semantic segmentation tasks [11]. Current mainstream
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autonomous driving datasets generally assume only some
fixed categories of objects in the scene, ignoring unforeseen
hazards like unexpected small obstacles in the real world.
For instance, Cityscapes [12] only divides objects to 19
classes, without defining any unexpected class. Multi-source
training has been proven to effectively increase recognizable
semantics without having to relabel the dataset [13]. How-
ever, previous multi-source training frameworks have only
considered the heterogeneity in the label hierarchies of RGB
data, missing the opportunity to leverage complementary
depth information from different sources.

In this paper, we propose a framework that com-
bines RGB-D semantic segmentation and obstacle detection.
RFNet, a real-time fusion network for RGB-D semantic
segmentation is elaborately designed. With our multi-dataset
training strategy, our framework is able to classify 19 cat-
egories in Cityscapes incorporating pixel-wise unexpected
small obstacle detection (see Figure 1). An extensive set
of experiments shows the effectiveness and efficiency of the
proposed framework for the semantic segmentation task. The
main contributions of our work are threefold:

• We propose RFNet, a real-time fusion network for
RGB-D semantic segmentation incorporating detection
of unexpected obstacle, which achieves higher accuracy
with fast inference compared to other state-of-the-art
methods on the Cityscapes dataset.

• Depth complementary features are efficiently extracted
in the proposed network, which improves the accuracy
compared to the single RGB-stream architecture.

• Multi-dataset training and the depth stream in the archi-
tecture enable the network to work remarkably effective
in detecting unexpected small objects.

II. RELATED WORKS

A. RGB-D Semantic Segmentation

High-quality dense depth maps from depth sensors like
Kinect and RealSense boost the development of indoor
semantic segmentation. Early attempt like [14] simply con-
catenated RGB and depth channels as a four-channel input,
and fed it into a conventional RGB modal network. However,
such method can not exploit complementary information
from depth maps in most times [15]. Wang et al. [16]
introduced depth-aware CNN which augmented conventional
CNN with a depth similarity term, but it only works well
with dense depth maps. Schneider et al. [17] designed a
lightweight depth branch with GoogLeNet [18] and explored
different points for merging the depth and RGB networks.
In FuseNet [9] and RedNet [10], RGB images and depth
maps are fed into two separate neural network branches
respectively, which are fused before the upsampling. In [19],
depth maps are pre-processed as HHA features that encode
horizontal disparity, height above ground and angle. Park
et al. [20] proposed a multilevel feature fusion scheme
by introducing multi-modal feature fusion to the RefineNet
blocks. ACNet [7] achieved a breakthrough by proposing an
attention complementary module to exploit complementary

depth information efficiently. These studies prove that RGB-
D semantic segmentation can achieve better segmentation
results than single RGB-based methods. The major reason for
this is that compared to the single RGB images, depth maps
contain more location and contour information that benefit
the context-critical semantic segmentation.

Compared to indoor scene depth maps from Kinect or
RealSense, outdoor traffic scene depth maps are much more
sparse. Li et al. [21] simply stacked smoothed depth maps
with RGB images as a 4-channel input. Based on VGG [22],
Kreso et al. [23] introduced a scale selection layer and
used the depth maps as a guidance to produce a scale-
invariant representation to free appearance from the scale.
In [24], luminance information is used for depth map en-
hancement. Most recently, Deng et al. [25] proposed a Resid-
ual Fusion Block (RFB) to formulate the interdependencies
of the encoders to extract cross-modal features based on
ERFNet [26]. Low latency is crucial in autonomous driving
applications, but most of these methods cannot meet the real-
time constraint. In this paper, we propose a real-time fusion
network to achieve swift inference while retaining a highly
competitive performance among the state of the art for RGB-
D segmentation.

B. Unexpected Obstacle Detection for Self-driving Cars

Detecting unexpected small but potentially hazardous ob-
stacles on the road is a vital task for autonomous driving,
and this subject has always been a research hotspot. Gen-
erally these methods for detecting and localizing generic
obstacles are based on stereo cameras integrated on self-
driving cars. Among these methods, most are based on
the generic geometric criteria. The Stixel algorithm [27]
represents obstacles with a set of rectangular vertical obstacle
segments, providing a robust representation of the 3D scene.
Geometric point cluster methods like [28] and [29] exploit
geometric relation between 3D points to detect and cluster
obstacle points.

Because of the superiority in making use of visual appear-
ance and context of images, CNNs are adopted in contem-
porary researches. Ramos et al. [8] presented a principled
Bayesian framework to fuse the semantic segmentation pre-
dicted from a convolutional neural network and stereo-based
detection results from the Fast Direct Planar Hypothesis
Testing (FPHT) method. MergeNet [6] was proposed with
a multi-stage training procedure involving weight sharing,
separating learning of low and high level features from the
RGB-D input and a refining stage which learns to fuse the
obtained complementary features. But all these methods can
only predict three main classes: free-space, obstacle, and
background. To meet the demands of autonomous driving, we
need a more universal approach that can enrich the detectable
semantics beyond simple roads/obstacles separation. In this
work, we address unexpected obstacle detection by incorpo-
rating it in a multi-source semantic segmentation framework
to provide a unified pixel-wise scene understanding.



Fig. 2. Overview of RFNet: the proposed network architecture for real-time
fusion-based RGB-D semantic segmentation.

III. METHODOLOGY

A. Network Architecture

The entire network architecture of RFNet is shown in
Figure 2. In the encoder part of the architecture, we de-
sign two independent branches to extract features for RGB
and depth images separately—RGB branch as the main
branch and Depth branch as the subordinate branch. In both
branches, we choose ResNet-18 [30] as the backbone to
extract features from inputs because ResNet-18 has moderate
depth and residual structure, and its small operation footprint
is compatible with real-time operation. After each layer of
ResNet-18, the output features from Depth branch are fused
to RGB branch after the Attention Feature Complementary
(AFC) module. The spatial pyramid pooling (SPP) block
gathers the fused RGB-D features from two branches and
produces feature maps with multi-scale information. Finally,
referred to SwiftNet [31], we design the efficient upsampling
modules to restore the resolution of these feature maps with
skip connections from the RGB branch.

RGB-D fusion module. As discussed in the last part, the
depth maps contain more contour and location information
that benefit RGB semantic segmentation. In order to fuse
RGB and depth information effectively, we design an RGB-
D fusion module termed Attention Feature Complementary
(AFC) module (shown in Figure 3) to make the network
focus on learning more complementary informative features
from RGB and Depth branches. As shown in Figure 3,
in the AFC module, we leverage a SE block [32] as the
channel attention method. SE block can learn to use global
information to emphasize informative channels and suppress
less useful channels, which helps the AFC module exploit
informative features from both branches effectively.

With the multi-branch architecture, we have the RGB input
feature maps X = [x1, . . . , xC ] ∈ RC×H×W and depth
input feature maps Y = [y1, . . . , yC ] ∈ RC×H×W . First we
use global average pooling as a channel descriptor based on
channel attention mechanism, then we add a 1×1 convolution
layer with the same channels as input. This 1×1 convolution
layer is able to excavate correlations between channels.

Fig. 3. AFC: Attention Feature Complementary module to exploit cross-
model information from RGB and Depth inputs.

The followed sigmoid function is applied to activate the
convolution result and constrain the value of the weight
vector between 0 and 1. Next, we do outer product for
the weight vector and input feature maps in both branches.
Finally, by adding results from RGB branch and Depth
branch, we have the resulted feature map Z ∈ RC×H×W ,
expressed as:

Z = X ⊗ σ1 [φ1 (X)] + Y ⊗ σ2 [φ2 (Y )] (1)

Here, φ denotes global pooling and 1×1 convolution. ⊗
and σ denote outer product and sigmoid function respec-
tively. By applying such attention mechanism in RGB-D
fusion, more informative features obtain higher values of
weights, which helps us exploit complementary information
from depth maps more effectively.

After four ResNet blocks and AFC module, the fused
feature maps contain rich high-level semantic information.
In order to increase the receptive field to cover pixels of
large objects while maintaining a real-time speed, referred
to [31] [33] [34], we adopt Spatial Pyramid Pooling (SPP)
to average features over aligned grids with different granu-
larities before the upsampling.

Efficient upsampling module. The purpose of the de-
coder is to upsample semantically rich visual features in
coarse spatial resolution to the input resolution. We adopt
a simple decoder that contains three simple upsampling
modules with skip connections from the encoder. In the first
two upsampling modules, low-resolution feature maps from
the former block are upsampled with bilinear interpolation
to the same resolution as feature maps from skip connection,
then these two streams of feature maps are element-wisely
added and finally mixed with a 3×3 convolution. The third
upsampling module is slightly different because we add a
convolution layer and a 4-times bilinear interpolation at last
to restore to the same resolution as the input. More precisely,
the skip connection is routed before the second ReLU of
the residual block because the current study shows that skip
connection from any other stage impairs the accuracy [31].

B. Multi-Dataset Learning

As a data-driven technology, annotated labels are essential
for semantic segmentation, but we can not annotate all
classes in the real world. In order to utilize as much and



diverse training data as possible and increase the number of
recognizable classes from a few dozens to virtually anything
that a scene can contain, multi-source learning is an effective
method. However, simply mixing two or more datasets for
training may cause some problems. As shown in Figure 4,
the heterogeneity in the annotation type and sample amount
may cause overfitting to one of the data sources, leading to
incomplete segmentation when simply mixing the datasets.

(a) RGB (b) GT (c) Result

Fig. 4. RGB images and ground truth from Cityscapes (first row) and
Lost and Found (second row) respectively. The last column shows the
inference result if simply training on two datasets without consideration
of the heterogeneity in the annotation style.

This is because classes in different datasets may conflict
with each other. For example, the annotation type of these
classes is different, or a certain class is a subclass of a class in
another dataset. To facilitate multi-source learning with such
heterogeneity, we design some training strategies. Formally,
we have datasets D1, . . . , Dc, . . . , Dn. Class set A contains
classes that do not conflict with each other, and class set
B contains the rest. For these conflicted classes, we refer
to dataset Dc as a standard annotation. Let us denote an
image by x, and the corresponding human annotation for x
is provided and denoted by y, where y(m,n) ∈ 1, . . . , C
is the label of pixel x(m,n), and C is the total number of
classes. l denotes the total number of images in all datasets
and φ denotes the segmentation model. We train on the joint
multi-datasets with the loss function shown below:

loss =
1

l

l∑
i=1

[LA (φ (xi) , yi) + λLB (φ (xi) , yi)] (2)

where LA (., .) and LB (., .) denotes cross entropy loss
function for class set A and B respectively. λ is a hyper-
parameter balancing the weights of different classes, and in
our work we set λ as following:

λ =

{
1, xi ∈ Dc

0, xi /∈ Dc
(3)

For instance, in this work we leverage Cityscapes [12] and
Lost and Found [5]. Note that Cityscapes has annotations
on 19 classes except for those unexpected small obstacles.
We make some modifications to the loss function while
training. The road class in Cityscapes and small obstacle
class in Lost and Found do not conflict with classes in other
datasets, which belong to class set A. The rest classes in
Cityscapes are conflicted with the background class in Lost
and Found, so they are divided into class B. In this situation,

we assume Cityscapes as standard dataset Dc. In the training
stage, background class and free-space in Lost and Found
should not be counted in the loss function. In our situation,
the ignorance of background class makes coarse-annotated
free-space class in Lost and Found helpful for improving the
training data amount, so we also include free-space in the
final loss. With the presented multi-dataset training strategy,
our RFNet learns to predict 19 classes from Cityscapes and
the critical unexpected small obstacle class from the Lost
and Found dataset.

Although unexpected small obstacle is a generalized con-
ception, which is not limited to obstacle types in Lost and
Found, the definition of this particular set of classes allows
us to meet the demand by exploiting the power of deep
learning methods. For example, learning that all kinds of
obstacles have some common contextual property, being of
small dimensions and surrounded at least partly by free-
space. Thereby, the network is able to generalize far beyond
its training data with the multi-source learning strategy when
facing innumerable possible corner cases.

IV. EXPERIMENTS

A. Datasets

In this work, two RGB-D semantic segmentation datasets:
Cityscapes and Lost and Found are exploited.

Cityscapes [12] is a large-scale RGB-D dataset that
focuses on semantic understanding of urban street
scenes. It contains 2975/500/1525 images in the
training/validation/testing subsets, both with finely annotated
labels on 19 classes. The images cover 50 different cities
with a full resolution of 2048×1024.

The Lost and Found [5] dataset consists of 2014 annotated
frames from 112 stereo video sequences, along with coarse
annotations of free-space areas and fine-grained annotations
of the small obstacles on the road. Among them, train-
ing set and validation set contain 814 and 1200 images
with a resolution of 2048×1024, covering different small
obstacles present at long distance with non-uniform road
textures/appearances and pathways with many non-obstacle
class objects acting as distractors.

Both disparity images from Cityscapes and Lost and Found
are obtained by using the semi-global matching algorithm
[35], which is a sophisticated method for the estimation of
a dense disparity map from a rectified stereo image pair.

B. Implementation Details

The models were implemented on a single 2080Ti
GPU with CUDA 10.0, CUDNN 7.6.0, and PyTorch 1.1.
Adam [36] is used for optimization with the learning rate set
to 4×10−4, where cosine annealing learning rate scheduling
policy [37] is adopted to adjust learning rate with a minimum
value of 1×10−6 in the last epoch. The weight decay is
set to 1×10−4. We initialize the ResNet-18 in both RGB
branch and Depth branch with pre-trained weights from
ImageNet [38], and initialize the rest part of the model with
kaiming initialization [39]. More precisely, we average the
weights for RGB inputs to match the shape of one-channel



depth image in the Depth branch, as research works [7] [17]
show that RGB pre-trained weights also boost depth image
feature extraction. For pre-trained parameters, we update
them with a 4 times smaller learning rate and apply 4 times
smaller weight decay. Because the left and bottom part of the
disparity images are not applicable due to the restrictions of
semi-global matching algorithm, we crop these pixels and
resize images back to the original resolution with bilinear
upsampling. The rest of the data augmentation operations
consist of scaling with random factors between 0.5 and 2,
random horizontal flipping, and random cropping with an
output resolution of 768×768. We train all the models for
200 epochs with a batch size of 8.

C. Results and Analysis

Ablation Study. We perform the ablation study on our
RFNet to explore the influence of different architecture
variants and fusion schemes on the network accuracy where
the results are shown in Table I. Results in this section
are obtained by evaluating on the blended validation set of
Cityscapes and Lost and Found, which includes all images
from both validation datasets. All backbones in these models
are initialized with ImageNet pre-trained weights.

In the table, the single RGB method only exploits the
RGB branch of RFNet. Here, compared to SwiftNet [31],
the only difference is the SE block after each block of the
ResNet-18. It is a control group to determine if the depth
information helps improve the accuracy, which achieves a
mean Intersection over Union (mIoU) of 69.20%. In the
RGB-D-Stack method, we stack depth maps with respective
RGB images to form a 4-channel input to the single branch of
RFNet. The low accuracy of the method (65.20% in mIoU)
proves that depth information is not exploited effectively in
this way. We also design RGB-D-Fusion (concatenation),
where the only difference of this method to the RGB-D-
Fusion (element-wise add) in our RFNet is that RGB feature
maps and depth feature maps are concatenated to a higher
dimension feature maps and restore to the original dimension
after a 1×1 convolution. Results show that this method
(68.67%) performs clearly worse than RFNet (72.22%). This
is because in a compact network like RFNet, concatenation is
a more inefficient way to make use of the depth information.

To eliminate the cause that more parameters in two-
branch RFNet make it perform better, we design and train
the RGB-RGB-Fusion method. The difference of the RGB-
RGB-Fusion method to RFNet is that inputs are duplicate
RGB images instead of RGB-D images, and after each AFC
module, the element-wise added feature maps are divided
by 2. The accuracy (69.37%) is much lower than RFNet and
approximately the same as the single RGB method, proving
the benefit of fusion in RFNet is not simply owing to the
increased parameters. We also perform an experiment to
explore the influence of the proposed multi-dataset training
strategy. It turns out that without multi-dataset training
strategy, our RFNet gets nearly 20% lower IoU because of
the class conflictions in two datasets. Finally the proposed
RFNet with the proposed multi-dataset training strategy

achieves a mIoU of 72.22%, which is significantly better
than the baseline (single RGB architecture) and other fusion-
based variants, demonstrating the effectiveness of our fusion
scheme bridged by the designed attention complementary
modules.

Numerical Performance Comparison. Based on our
multi-dataset training, we create a benchmark to compare
our RFNet with the other two real-time networks: ERF-
PSPNet [33] (a light-weight network), SwiftNet [31] (whose
network architecture is very similar to our RFNet). The first
two networks only take RGB input. Table II shows IoU of
all 20 classes in the new multi-source setting. Our RFNet
achieves higher accuracy in most of the classes. Compared
to SwiftNet, RFNet improves accuracy remarkably in certain
classes like fence, traffic light, terrain, truck, bus, train, and
small obstacle, which is benefited from the depth comple-
mentary information. Figure 5 shows some examples from
the validation set of Cityscpaes and Lost and Found, which
demonstrates the excellent segmentation accuracy of our
RFNet in various scenarios with or without small obstacles.

To explore how the proposed RFNet improves precision
in different depth ranges, we perform analysis on mean IoU
and the IoU of small obstacle in different depth ranges for
RFNet and SwiftNet. We calculate the depth value of each
pixel from disparity value. The maximum depth value is
set to 100 and limited by the quality of disparity image,
while all the unmatched pixels are set to 100. Bar graph 6
shows that RFNet performs better in all depth ranges in
the case of mean IoU of 20 classes. Specifically, RFNet
boosts the accuracy of unexpected small obstacle recognition
in close and middle ranges remarkably. This is reasonable
because disparity images derived from semi-global matching
algorithm have higher accuracy at close range, and contribute
more to the prediction than pixels with greater depth values.

In Table III we also compare our RFNet with other
state-of-the-art networks on the Cityscapes validation set.
The column of speed reports the inference speed of a full
resolution image (2048×1024) on a single RTX 2080Ti.
Specifically, ERF-PSPNet and SwiftNet are implemented on
the same hardware. Compared to mainstream RGB semantic
segmentation networks, our RFNet achieves better results
while maintaining a real-time performance, which proves that
exploiting depth information helps improving accuracy. In
the table, we also list some other RGB-D fusion networks:
LDFNet [24] and RFBNet based on ERFNet [25]. Our RFNet
is both more accurate and faster than these multimodal
networks. Overall, rare multi-modal semantic segmentation
methods meet the real-time prediction speed, while our
method achieves the highest accuracy on the validation set
of Cityscapes to the best of our knowledge that meets
both demands including real-time inference, highly qualified
accuracy, and capacity to leverage complementary features
in cross-modal imagery.

Qualitative Performance Study. We present the qualita-
tive examples in Figure 8. In this paper, the main purpose of
exploiting depth information is to enhance the segmentation
accuracy in classes which are difficult for the RGB method,



TABLE I
PERFORMANCE OF RFNET ON THE CITYSCAPES AND LOST AND FOUND VALIDATION SET WITH DIFFERENT DESIGN CHOICES.

Method RGB-D Fusion Dual-branch Concatenation Element-wise add mIoU(%) Params
Single RGB 69.20% 12.17M
RGB-D-Stack X 65.20% 12.17M
RGB-D-Fusion (concatenation) X X X 68.67% 25.08M
RGB-RGB-Fusion (element-wise add) X X 69.37% 23.69M
RFNet (without multi-dataset training strategy) X X X 53.83% 23.69M
RFNet X X X 72.22% 23.69M

TABLE II
PER-CLASS IOU(%) RESULTS OF THREE NETWORKS ON THE BLENDED VALIDATION SET OF CITYSCAPES AND LOST AND FOUND DATASET. LIST OF

CLASSES(FROM LEFT TO RIGHT): ROAD, SIDEWALK, BUILDING, WALL, FENCE, POLE, TRAFFIC LIGHT, TRAFFIC SIGN, VEGETATION, TERRAIN, SKY,
PEDESTRIAN, RIDER, CAR, TRUCK, BUS, TRAIN, MOTORBIKE, BICYCLE AND SMALL OBSTACLE.

Network Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic SOb mIoU
ERF-PSPNet 89.3 65.1 82.1 43.4 39.8 46.9 48.2 46.1 86.4 45.2 88.4 68.5 57.2 90.1 55.6 62.1 65.6 56.9 64.8 60.3 63.1

SwiftNet 95.7 60.6 89.1 50.9 53.6 56.9 61.1 71.4 90.7 55.0 92.2 75.2 58.5 92.7 65.3 81.3 70.0 56.2 72.1 62.8 70.6
Our RFNet 96.0 60.6 90.8 50.2 59.9 60.0 62.6 72.8 91.1 57.3 92.5 76.1 57.9 93.3 73.8 82.3 73.2 54.0 72.7 67.9 72.2

TABLE III
COMPARISON OF SEMANTIC SEGMENTATION METHODS ON THE

VALIDATION SET OF CITYSCAPES.

Network Multimodal mIoU(%) Speed (FPS)
FCN8s [1] 7 65.3% 2.0 ∗

DeepLabV2-CRF [2] 7 70.4% n/a
ENet [40] 7 58.3% 76.9 ∗

ERFNet [26] 7 65.8% 20.8
ERF-PSPNet [33] 7 64.1% 20.4
SwiftNet [31] 7 72.0% 41.0
VGG-D (ScaleInvariant) [23] 3 64.4% n/a
LDFNet [24] 3 68.5% 18.4
GoogLeNet (NiN-2) [17] 3 69.1% n/a
RFBNet (ERFNetEnc) [25] 3 72.0% n/a
RFNet (Ours) 3 72.5% 22.2
∗ Speed on half resolution images.

(a) RGB (b) Disparity (c) GT (d) Results

Fig. 5. Predictions with additional unexpected obstacle class from RFNet.

including small obstacles. The appearance and surface tex-
ture of the small obstacles are not fixed, and it is easy to
be confused with graffiti, manhole covers, zebra crossings
on the road. Comparatively, in the depth map where texture
is ignored, the contour of small obstacles is clear. Graffiti,
manhole covers are flat, making it part of the road surface
in the depth map. All these features of depth maps enable to
reduce the chance of false alarm in detecting small obstacles.
We compare our RFNet with SwiftNet [31], which has a
similar network architecture with RFNet, where Figure 8
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Fig. 6. Mean IoU of 20 classes and IoU of Small Obstacle from SwiftNet
and RFNet respectively. RFNet improves precision in all depth ranges,
especially in close and middle ranges.

shows representative contrast results from the two networks.
As a purely RGB-based method, SwiftNet fails to predict
some small obstacles on the road and predicts manhole cover
as small obstacle. RFNet correctly detect small obstacles and
classifies the manhole as part of the road, which demonstrates
the superiority of our method for safety-critical road sensing.
RFNet also performs better in large-scale objects like bus and
truck because contours of these classes are much clearer in



(a) RGB feature maps (b) Depth feature maps(c) Merged feature maps

Fig. 7. Visualization of feature maps from the second block of RFNet.

depth maps compared to RGB images.
Furthermore, for the input image from Figure 1, Figure 7

shows the feature maps after the second block from RFNet,
in which the first two are feature maps from RGB and depth
branch respectively, and the merged feature maps are from
the output part of the AFC module. As it can be clearly
seen, compared to RGB feature maps, small obstacle is much
more clear and manhole cover disappears in depth feature
maps, while the feature map after AFC module takes the
advantages of both branches. In summary, the AFC module
enables RFNet to effectively exploit the depth features in
a complementary way, improving the accuracy of obstacle
detection evidenced by both numerical and qualitative results.

V. CONCLUSION

In this study, we propose RFNet, a real-time fusion
network for RGB-D semantic segmentation on road-driving
images. With the designed AFC module, RFNet exploits
complementary depth information effectively and signifi-
cantly improves the accuracy over purely RGB-based meth-
ods. With the presented multi-source training strategy, RFNet
can also detect unexpected small obstacles, enriching the
recognizable classes required to face the real world with un-
foreseen hazards. More importantly, RFNet operates at 22Hz
with full resolution Cityscapes images and 41.6Hz with half
resolution on a single Nvidia GTX2080Ti GPU, which makes
it ideally suitable for autonomous driving applications. Our
RFNet outperforms state-of-the-art RGB-D fusion methods
in terms of accuracy and speed. In the future, we plan to fur-
ther streamline RFNet and deploy it to portable TPU devices
with robustness augmented. The source code of our RFNet is
available at https://github.com/AHupuJR/RFNet.
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