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Abstract— Most of existing deep learning-based depth and
optical flow estimation methods require the supervision of a lot
of ground truth data, and hardly generalize to video frames,
resulting in temporal inconsistency (flickering). In this paper,
we propose a joint framework that estimates disparity and
optical flow of stereo videos and generalizes across various video
frames by considering the spatiotemporal relation between
the disparity and flow without supervision. To improve both
accuracy and consistency, we propose a loop consistency loss
which enforces the spatiotemporal consistency of the estimated
disparity and optical flow. Furthermore, we introduce a video-
based training scheme using the c-LSTM to reinforce the
temporal consistency. Extensive experiments show our proposed
methods not only estimate disparity and optical flow accu-
rately but also further improve spatiotemporal consistency. Our
framework outperforms the state-of-the-art unsupervised depth
and optical flow estimation models on the KITTI benchmark
dataset.

I. INTRODUCTION

Depth and optical flow estimation have been core tasks
in numerous robotics applications. With the recent advances
in deep learning, deep learning-based approaches [1]–[5]
have shown significant performance improvement on depth
and optical flow estimation. However, most existing deep
learning-based methods rely on supervised learning with
ground truth, requiring expensive annotation costs. Also, it is
often assumed that the testing data is similar to the training
data in supervised learning, which hinders the network from
generalizing to the unfamiliar data in the testing phase. To ad-
dress these issues, several researches have recently proposed
the unsupervised learning frameworks [4], [6]–[8]. However,
there is still room for improvement for stereo videos. In
supervised learning-based frameworks, the network learns
the similarity metric to find correspondences using ground
truth disparity and flow. On the other hand, in unsupervised
learning-based frameworks, instead of learning the similar-
ity metric, it is commonly assumed that the brightness of
the correspondence match is consistent. However, since the
stereo cameras are not identical in practice and the brightness
can vary due to motion and temporal illumination changes, it
is not desirable to strictly assume the brightness consistency
for the accurate disparity and flow estimation. In addition,
since most disparity and flow estimation networks take a
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single image pair as input, the temporal relations between
consecutive image pairs are not leveraged. For that reason,
simply extending existing frameworks for stereo videos re-
sults in poor generalization ability and temporal inconsis-
tency (flickering). Thus, multiple consecutive image pairs
containing rich temporal information need to be provided as
input to the network. To resolve aforementioned problems
in estimating disparity and optical flow for stereo videos,
we design a joint framework for training in consecutive
stereo sequence using the convolutional long short-term
memory (c-LSTM) and define a new spatiotemporal loop
consistency loss on account of the temporal inconsistency,
achieving accurate and temporally consistent disparity and
flow estimation. Furthermore, we propose the zero mean
normalized cross correlation (ZNCC)-based data loss in con-
sideration of brightness difference between the corresponding
pixels. We evaluate our framework on both stereo image
and video datasets, successfully verifying that our methods
help improve accuracy on both datasets and ensure the
spatiotemporal consistency. Our main contributions can be
summarized as follows: First, we propose a loop consistency
loss to reinforce the spatiotemporal consistency. The loop
consistency loss exploits spatiotemporal relation between
consecutive frames and improves the accuracy. Second, we
design a joint framework for unsupervised estimation of
disparity and optical flow of stereo videos. The framework
makes better use of the temporal information of the pre-
vious input frames provided by the c-LSTM. Finally, our
framework generalizes to both a single image pair and video,
showing state-of-the-art performance in disparity and optical
flow estimation on both datasets.

II. RELATED WORK
Traditional stereo depth estimation methods often measure

the similarity between two images by exploiting the low-
level features of image patches around each pixel to compute
disparity maps. Fookes et al. [9] compared several similarity
measures such as sum of absolute differences(SAD, ZSAD)
and normalized cross correlation(NCC, ZNCC) for window-
based stereo matching. Meanwhile, optical flow estimation
aims to optimize the sum of a data term based on brightness
constancy and a regularization term to obtain smooth dis-
placement fields [10]. By coupling the estimated depth and
optical flow maps, several early works [11], [12] recover
scene flow given a sequence of stereo images.

A. Supervised Depth and Optical Flow Estimation
With the development of deep learning, CNNs have been

utilized to compute matching cost between two sampled
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patches in a stereo image pair. For accurate depth esti-
mation in ambiguous regions, Kendall et al. [2] leverage
context information with the encoder-decoder architecture
by incorporating cost aggregation and disparity refinement.
Chang et al. [3] make better use of context information,
utilizing spatial pyramid pooling module and 3D-CNN. In
optical flow, Dosovitskiy et al. [13] propose FlowNet based
on U-Net architecture and is further improved by Ilg et
al. [14]. Ummenhofer et al. [15] make use of [13] to iterate
over optical flow, depth, and camera motion estimation.
Afterwards, Sun et al. [5] introduce a lightweight architecture
using the warped feature to construct cost volume.

B. Unsupervised Depth and Optical Flow Estimation
Numerous unsupervised learning methods have been pro-

posed to alleviate the dependency on ground truth data.
Early unsupervised approaches in optical flow estimation [6],
[16] introduce smoothness loss and image reconstruction
loss between the warped reference image and the target
image. Some methods [4], [17] take occlusion into account to
further improve flow estimation. In depth estimation, some
works [7], [8] have proposed to learn disparity maps con-
strained by left-right consistency without supervision. Later,
Chen et al. [18] suggest to use a patch-based ZNCC loss
rather than a pixel-wise loss as a photometric loss, demon-
strating it helps network converge to the global minimum.
Zhan et al. [19] design a novel feature-based reconstruction
loss utilizing the dense features as an alternative to the
standard image reconstruction loss. Meanwhile, Zhong et
al. [20] apply the c-LSTM [21] to the stereo video depth
estimation to achieve the generalization ability to the open-
world scenarios. Most recently, various approaches have
proposed a joint learning framework for depth and optical
flow estimation. Wang et al. [22] propose a joint framework
for estimating camera pose and depth from monocular video
using the c-LSTM, achieving temporally coherent results
regardless of the length of input video sequences. Lai et
al. [23] propose 2-Warp operations that warp an input
image twice through both spatial and temporal axis. Wang
et al. [24] further propose a unified framework for optical
flow, depth, and camera pose estimation with various training
losses to leverage the geometric consistency of each task
jointly. Ranjan et al. [25] suggest to combine various task
to constrain them by introducing a framework where the
networks act as a competitor and a moderator.

C. Scene Flow Estimation

Scene flow estimation is a task of estimating dense flow
in 3D given a pair of images, by jointly taking account
of depths and optical flow given consecutive frames. As
an early approach, Huguet et al. [11] suggest to jointly
estimate both the 3D reconstruction and the scene flow
by coupling the depth and optical flow. Later, Vogel et
al. [26] propose to simultaneously estimate the depth and 3D
motion field such that the estimation is view-consistent by
enforcing consistency of the scene flow with respect to its all
neighboring views rather than a reference frame. Along with

the development of deep neural networks, Luo et al. [27]
estimate scene flow with various consistency loss terms to
supervise three parallel networks which estimate optical flow,
depth, and camera pose, respectively. Most recently, Saxena
et al. [28] propose to learn occlusion in a self-supervised
manner, pointing out the importance of occlusion in scene
flow estimation.

III. DEFINITION

For a stereo image sequence, S, consisting of N pairs
of stereo images as S = {

(
IL(t), IR(t)

)
|1 ≤ t ≤ N}, we can

compute disparity and forward/backward motion fields as

{
(
DL(t),DR(t)

)
|1≤ t ≤ N},

{(WF(t),WB(t +1))|1≤ t ≤ (N−1)},
(1)

respectively. We call a set of the disparity and for-
ward/backward motion fields of a stereo image sequence a
total field set. DL(t) and DR(t) are the disparity fields of IL(t)
and IR(t). Here, we assume that the stereo image pairs are
all rectified. WF(t) and WB(t+1) are the forward/backward
motion fields of I(t) and I(t+1), representing displacements
of corresponding points from I(t) to I(t+1) and from I(t+1)
to I(t), respectively. Then, we define a loop in a stereo image
sequence with the total field set.
Definition Loop A loop from one point at (x, t,s), where
s∈ {L,R}1, to another point at (x′, t,s), denoted as L (x, t,s),
is an any ordered set of distinct points as {(xi, ti,si)|0≤ i≤
n}, where (x0, t0,s0) = (x, t,s) and (xn, tn,sn) = (x′, t,s), and
(ti,si) 6= (t,s) for 1 ≤ i ≤ (n−1). Two adjacent coordinates
in a loop, (xi, ti,si) and (xi+1, ti+1,si+1), represent two corre-
sponding points in different images defined by the disparity
or motion field at (xi, ti,si).

We call x′ a terminal point of L (x, t,s) and represent it
as x′ = E (L (x))2. We then define the spatial and temporal
consistency of disparity and motion fields, respectively.
Definition Two disparity fields

(
DL(t),DR(t)

)
are spatially

consistent up to ε iff they satisfy the condition,

‖E (L (x))−x‖ ≤ ε, (2)

where L (x, t,L) is defined as

L (x, t,L) ={(x, t,L),(x+DL(x), t,R),
(x+DL(x)+DR(x+DL(x)), t,L)}

(3)

for all points visible from the both images. And two motion
fields (WF(t), WB(t + 1)) are temporally consistent up to
ε iff they satisfy the condition Eq. (2), by replacing the
notations in Eq. (3) with those of motion fields.

We then define the spatiotemporal consistency of a total
field set by combining the spatial and temporal consistency.

Definition Spatiotemporal Consistency A total field is said
to be spatiotemporally consistent up to ε iff the disparity and
motion fields in it satisfy the condition Eq. (2) for any point
at x with any arbitrary loop of x in a stereo image sequence.

1For example, (x, t,L) represents a point at x in IL(t).
2Here, we drop t and s since x and x′ are in the same image, Is(t).
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Fig. 1: Overview of our framework. Our network consists of two subnetworks, ConDispNet and ConFlowNet, that estimate the disparity
and the optical flow, respectively. Please note that ConDispNet and ConFlowNet share the same architecture, but not weights. Using the
estimated dense correspondence map from each subnetwork, the reference image is warped to the target image. DIs and WI(t) denote the
warped image corresponding to the target image Is and I(t), respectively.

IV. PROPOSED APPROACH

In this section, we first present an overall framework,
elaborating on each component enforcing spatiotemporal
consistency in the framework. Then, we propose the loss
functions for robust joint estimation of accurate and con-
sistent disparity and optical flow estimation. Finally, we
introduce a way to reason the occluded region.

A. Overall Framework

Network Architecture As illustrated in Fig. 1, our network
consists of two subnetworks, ConDispNet and ConFlowNet,
that estimate the disparity and the optical flow, respectively.
Each subnetwork takes consecutive stereo image sequences
as input and adopts PWC-Net [5] as the backbone ar-
chitecture, as it is computationally light and shows good
performance, though any other networks can be used. With
the PWC-Net, ConDispNet estimates left and right disparity
fields for two consecutive stereo pairs, and ConFlowNet cal-
culates forward/backward flow, for left and right views, given
a sequence of images. Since the PWC-Net was originally
designed for optical flow estimation, we set the dual channel
result of the PWC-Net to be the left and right disparity
fields respectively for ConDispNet. Then, we modify our
subnetwork architecture to be trained in the video domain
by adding the c-LSTM module to the final estimation layer
to leverage temporal features for consecutive estimation. In
our subnetwork architecture, two pairs of images are fed
into the siamese feature extractors. Then, the disparity/flow
estimation layer estimates the disparity/motion field with the
help of the c-LSTM module that is integrated into the final
estimation layer.
Training Losses Our network is trained to optimize the total
loss Ltotal consisting of three losses; the disparity loss Ldisp,
the flow loss L f low, and the loop consistency loss Lloop. The
disparity and flow losses are defined as follows:

Ldisp = λrec,dLrec,d +λsm,dLsm,d +λlrLlr (4)
L f low = λrec,wLrec,w +λsm,wLsm,w +λ f bL f b (5)

DL(t+1)  

WF
L(t)  WB

R(t+1)

DR(t)

Loop Starting Point Loop End PointLoop Loss
LL(t , L)

LL(t , L) LL
inv(t , L)

LL(t+1 , R) LL
inv(t+1 , R)

Fig. 2: Concept of the loop consistency loss. x denotes the starting
position of loop and x′ denote the end positions of the loops.

where Lrec and Lsm terms represent the image recon-
struction loss and the edge-aware smoothness loss respec-
tively, and the subscripts d and w indicate whether each
term belongs to the disparity and flow loss. The hyper-
parameters [λrec,d ,λrec,w,λsm,d ,λsm,w,λlr,λ f b] are set to be
[1,1,5,5,0.5,0.5]. Llr and L f b represent the spatial and
temporal consistency loss of the disparity and motion field,
respectively. Each loss term is detailed in the following
subsections. Our total loss is then defined as

Ltotal = λdispLdisp +λ f lowL f low +λloopLloop (6)

where [λdisp, λ f low, λloop] are set to be [1, 1.5, 1.5].

B. Spatiotemporal Consistency Loss

Our network learns the spatiotemporal consistency among
stereo image sequences and leverages the relations for more
accurate and consistent optical flow and disparity estimation.
In order to enforce consistency in each task, we apply
temporal and spatial consistency losses. In addition to these
two losses, we design a novel loop consistency loss as
illustrated in Fig. 2 to enforce the spatiotemporal consistency
for both optical flow and disparity estimation.
Spatial and Temporal Consistency Losses We apply tem-
poral consistency loss L f b so that the network estimates a
more consistent motion field. It is defined as

L f b = ∑
x
||WF(x)+WB(x+WF(x))|| (7)



(a) L1 norm (b) Patch similarity

Fig. 3: Distribution of (a) L1 norm and (b) SSIM/ZNCC scores for
corresponding pixels, computed by using ground truth correspon-
dence maps of the KITTI 2015 dataset. The arrows indicate the
peak values.

By Sec. III, this loss enforces the motion field to be tempo-
rally consistent by aiming to make the forward motion fields
and the corresponding backward motion fields reversed. By
replacing the motion field with a disparity field, the temporal
consistency loss L f b becomes a spatial consistency loss Llr.
We apply two losses to each subnetwork ConFlowNet and
ConDispNet, respectively.
Loop Consistency Loss We design a new loop consistency
loss to reinforce the spatiotemporal consistency between
consecutive stereo image pairs. By definition, the loop con-
sistency loss LL(t,s) is defined as the displacement from the
starting point x to the terminal point x′:

LL(t,s) = ∑
x

αxU(‖u′−u‖−T )+αyU(‖v′− v‖−T ) (8)

In this equation, the displacement both on the x-axis and
y-axis are considered in optical flow estimation while only
x-directional displacement is considered in disparity esti-
mation. We alleviate the directional imbalances by setting
balancing parameters αx and αy to be 1 and 0.2. U denotes
the heaviside step function, and we set threshold T as 3
throughout experiments. To compute the loop consistency
loss, we pick up the starting point x among two consecutive
stereo image pairs and form a loop in two different directions,
clockwise and counter-clockwise. For efficiency, we select
the starting points only in two images (e.g., (t,L), (t+1,R)).
The total loop consistency loss is then defined as

Lloop = ∑
(t,s)

(LL(t,s)+Linv
L (t,s)) (9)

where ∀(t,s) ∈ {(t,L),(t + 1,R)}. LL(t,s) and Linv
L (t,s) de-

note loop consistency losses applied to Is(t), where the
superscript inv denotes the loop in the inverse direction from
the same starting point as illustrated in Fig. 2.

C. ZNCC-based Data Loss and Smoothness Loss

ZNCC-based Data Loss In unsupervised learning-based
correspondence search, it is crucial to adopt a proper image
reconstruction loss to compute the dissimilarity between the
target image and the reconstructed one, since no ground truth
correspondence maps are available. The combination of the
L1-norm and the structural similarity index (SSIM) [29] has
been commonly used as an image reconstruction loss. How-
ever, we demonstrate it is desirable to adopt the ZNCC rather
than the SSIM as an unsupervised image reconstruction loss

by experiments. Figure 3(a) shows the distributions of L1-
norm of the brightness differences of stereo and optical flow
pairs given by ground truth data. They have average values
far from 0 (16.3 for stereo, 9.8 for flow), which is because
stereo cameras are not identical in practice and the brightness
can vary due to motion and temporal illumination changes.
This indicates that correspondences may have intensity dif-
ferences and the brightness constancy assumption with L1
norm alone can lead to performance degradation. On the
other hand, Fig. 3(b) illustrates the distributions of the SSIM
and ZNCC scores between stereo and optical flow pairs.
The ZNCC score shows better tendency (clear peak closer
to 1 and higher average) than the SSIM, since the ZNCC
compensates the affine brightness changes and compares
structural similarity more strictly. We therefore choose the
ZNCC instead SSIM and consider the absolute brightness
for the robust image reconstruction by adding the L1 norm
to it. Final image reconstruction loss Lrec is defined as:

LZNCC =
1
2 ∑

x
1−

(Y (x)−µY )(Ŷ (x)−µŶ )

(σY +κ)(σŶ +κ)
(10)

Lrec = λ ||Ŷ −Y ||1 +(1−λ ) ·LZNCC (11)

where Y and Ŷ denote the original and the reconstructed
frame, respectively. A small number κ (set to 10−5) is added
to each term in the denominator to avoid division by zero.
λ is a balancing parameter, empirically set to 0.1 and 0.05
for motion and disparity estimation, respectively.
Edge-aware Smoothness Loss Since the motion boundary
usually coincides with the image edge, we apply the edge-
aware smoothness loss introduced in [8].

Lsm(I,W,α) = ∑
pi

∑
d∈(x,y)

‖∇2
dW (pi)‖e−α‖∇d I(pi)‖

(12)

I, W , and α denote the image the loss is applied, the motion
or disparity fields, and the image edge weight, respectively.

D. Occlusion Estimation
When applying the aforementioned loss functions, oc-

cluded or invisible pixels should be excluded during compu-
tation. To handle the occlusion and visibility issues during
training loss computation, we estimate the possibly occluded
pixels by checking the spatial or temporal consistency as
in [4], [23]. For example, pixels are considered occluded in
the optical flow estimation when they violate the forward-
backward constraint as below:

‖WF(x)+WB(x+WF(x))‖2 < α1(‖WF(x)‖2

+‖WF(x)+WB(x+WF(x))‖2)+α2
(13)

where α1 = 0.005, α2 = 1.0. Then we define the occlusion
mask Ox filtering out the possibly occluded pixels from data
loss, which is set to be 1 to the occluded pixels, and 0 other-
wise. This can be also regarded as a set of occluded pixels.
The left-right consistency check is conducted in the same
way by replacing the motion fields with the disparity fields.
We perform this occlusion estimation for every consecutive
input pair as a baseline for both optical flow and disparity
estimation. We apply this occlusion mask to all the losses.



TABLE I: Quantitative evaluation of stereo depth estimation task on the KITTI 2015 stereo dataset. “R” and “P” denote the ResNet and
PWC-Net [5] version implementations, respectively, in [23]. The boldface and underscore denote the best and second best performances,
respectively. The same notation and typography are applied to the following tables.

Method Train
Stereo

Test
Stereo

Use
Flow

Use
Ego-motion

Lower the better Higher the better
Abs rel Sq Rel RMSE RMSE log D1-all δ < 1.25 δ < 1.252 δ < 1.253

Zhou et al. [7] X X - - - - 9.41% - - -
Monodepth [8] X X 0.068 0.835 4.392 0.146 9.194% 0.942 0.978 0.989
Zhong et al. [30] X X 0.075 1.726 4.857 0.165 6.424% 0.956 0.976 0.985
Bridging-R [23] X X X 0.062 0.747 4.113 0.146 - 0.948 0.979 0.990
Bridging-P [23] X X X 0.058 0.694 4.020 0.152 - 0.952 0.979 0.990
UnOS [24] X X X X 0.049 0.515 3.404 0.121 5.943% 0.964 0.984 0.992
Ours(Full w/o c-LSTM) X X X 0.048 0.451 3.470 0.122 6.484% 0.963 0.984 0.992
Ours(Full) X X X 0.049 0.443 3.404 0.119 6.721% 0.963 0.984 0.992

Optical Flow Stereo Disparity

Fig. 4: Qualitative comparison of our method with other SOTA methods on the KITTI 2015 dataset. First row: Input image. Second row:
Ground truth. Third row: Estimated result of Bridging [23]. Fourth row: Estimated result of UnOS [24]. Last row: Estimated result of
ours.

TABLE II: Quantitative evaluation of the stereo depth estimation
task on the sampled KITTI raw video clips.

Method Unsuper
vised

Test
Stereo

Lower the better Higher the better
Abs Rel Sq Rel δ < 1.25

Monodepth X X 0.0712 0.6877 0.947
Bridging-R [23] X X 0.0683 0.6885 0.951
Bridging-P [23] X X 0.0627 0.5857 0.954

UnOS [24] X X 0.0592 0.4707 0.954
Ours(Full) X X 0.0561 0.4432 0.962

TABLE III: Quantitative evaluation of the optical flow task on the
KITTI 2015 dataset. “noc” denote non-occlusion regions.

Method Joint
learning

Use ego-
motion

EPE
-all

F1
-all

EPE
-noc

UnFlow-C [4] 8.80 28.94% -
GeoNet [31] X X 10.81 - 8.05

Wang et al. [32] 8.88 - -
Janai et al. [33] 6.59 - 3.22

DFnet [34] X X 8.98 26.01% -
CC [25] X X 6.21 21.50% -

Bridging-R [23] X 7.02 27.34% 4.26
Bridging-P [23] X 6.66 21.05% 3.60

UnOS [24] X 5.58 - 3.79
Ours

(Full w/o c-LSTM) X 6.55 19.47% 3.11
(Full) X 6.34 19.19% 3.38

V. EXPERIMENTAL RESULTS

We evaluate our framework on the KITTI 2015 and KITTI
raw dataset, and compare with state-of-the-art unsupervised
learning-based methods both quantitatively and qualitatively.

A. Implementation Details

We implement our framework using PyTorch v.0.4.1.
During training, the video clip is randomly sampled with
the temporal window size 3 and each frame is fed into the
network after scaled to the size of 1280×384. We use Adam
optimizer with the parameters β1 = 0.9 and β2 = 0.999. The
initial learning rate is set as 10−4 and we apply learning rate
decay. We randomly shift gamma, brightness, and color with
50% probability as a way of data augmentation.

B. Datasets

Datasets for Training We train our network with the
KITTI raw dataset [35] to jointly learn both stereo disparity
and optical flow. Following an evaluation protocol with
previous work [8], [23], [24], we sample the training dataset
excluding the scene included in the training set of the KITTI
2015.
Datasets for Single Image Pair Evaluation To evaluate
the accuracy of disparity or flow estimation on a pair of
correspondence maps, we use the KITTI 2015 dataset that
consists of 200 pairs of the ground truth optical flow and
disparity maps.
Datasets for Video Evaluation To evaluate the performance
in stereo video depth estimation, we randomly sample two
video clips from the KITTI raw dataset that are not included
in the training dataset.



C. Evaluation Metrics

Accuracy Metrics We evaluate our network using standard
evaluation metrics for depth evaluation as follows: Absolute
relative error(abs rel), squared relative error(sq rel), root
mean squared error(RMSE), root mean squared logarithmic
error(RMSE log), D1-all, and δ < [1.25, 1.252, 1.253]. δ is
defined as max( di

gi
, gi

di
) and the percentage of di is measured.

di and gi are the estimated and ground truth depths of pixel
i, respectively. To evaluate optical flow estimation, we use
two widely-used metrics: average endpoint error (EPE) and
percentage of erroneous pixels(Fl-all).
Spatiotemporal Consistency Metrics Based on the defini-
tions in Sec. III, the spatiotemporal consistency is measured
as the displacement from the starting point x to the terminal
point x′ in a loop, while each of spatial and temporal consis-
tency is measured only between the two motion or disparity
fields. Therefore, simply combining the two consistencies is
far from the general concept of the spatiotemporal consis-
tency itself. To quantify the spatiotemporal consistency, we
design a new metric, loop consistency (LC), defined as:

LC =
1
N

N

∑
k=1

∑
x∈(u,v)

||x′−x||1 (14)

where x and x′ follow the notation explained in Sec. III.
Please note that the occlusion mask is not taken into account
in the evaluation since there is no dataset with ground truth
occlusion mask between the consecutive stereo sequence.

D. Experimental Evaluation

Stereo Disparity Estimation We evaluate the stereo dis-
parity estimation of our network on both stereo images and
stereo videos and compare the results with those of state-
of-the-art models. Please note that both UnOS [24] and
Bridging-P [23] use the PWC-Net [5] as a baseline architec-
ture, same as ours. As shown in the Table. I, ours outperforms
Bridging-P [23] since their 2-warp loss is ineffective in the
photometrically homogeneous regions. In contrast, our loop
consistency loss, which is based on the displacement on the
spatial and temporal axis, helps accurate depth estimation in
such regions. In Table. II, ours outperforms other state-of-
the-art unsupervised methods on the video dataset since we
take advantage of the temporal features from the sampled
video clip during training via the c-LSTM and loop con-
sistency loss. The qualitative depth estimation comparison is
shown in the third and fourth columns of Fig.4. Our network
yields sharper boundaries and more detailed background than
other approaches, as indicated by the ellipse. Furthermore,
ours yields accurate depth estimation in the shadowed areas
since the ZNCC-based data loss compensates for the affine
brightness difference in such areas.
Optical Flow Estimation We conduct the evaluation of the
optical flow estimation on the KITTI 2015 training dataset
and compare it with that of state-of-the-art methods. In
Table. III, our model records the lowest F1 score and the
second-lowest EPE in non-occluded regions. Ours shows
much lower EPE-noc than Bridging-P [23], which is because
the proposed loop consistency loss has the significant effects

TABLE IV: Ablation study on the KITTI 2015 dataset.

Patch
Similarity

Loop
loss c-LSTM Stereo matching Optical flow

Abs rel Sq rel EPE-all EPE Noc EPE-occ
SSIM 0.0537 0.6152 7.442 3.837 20.73
ZNCC 0.0528 0.5778 7.308 3.801 20.73
ZNCC X 0.0481 0.4509 6.551 3.109 20.11
ZNCC X X 0.0489 0.4432 6.338 3.384 17.62

in non-occluded regions. Compared to UnOS [24], ours
shows lower EPE-noc but larger EPE-all. We reason the
use of ego-motion in UnOS [24] improves the estimation
in occluded regions. When qualitatively compared to [23],
[24], ours shows a more detailed flow estimation at object
boundaries, as shown in the first and second columns of
Fig. 4. In particular, the first column indicates other SOTA
methods with SSIM as an image reconstruction loss are
almost incorrect when the illumination condition is extremely
bad. We can infer our network is trained to find correspon-
dence using structural similarity that compensates for abrupt
illumination change.
Spatiotemporal Consistency To evaluate the spatiotem-
poral consistency, we use consecutive frames of stereo pair
as mentioned in Sec. V-B. We evaluate the ratio of true-
positive/positive case and mean/median of LC. Here, true
indicates the error of optical flow and disparity comes within
3 pixels based on the reference image, and the positive case
represents the LC comes within a specific threshold. For
a fair comparison, we conduct an evaluation with the pre-
trained model specified in the original papers [23], [24].
In Table VII, Bridging-P [23] shows higher LC than that
of UnOS [24] since it considers spatiotemporal consistency
from the 2-Warp consistency loss in table VII. In true-
positive case, the overall result of Bridging-P is lower than
UnOS [24]. The reason is the ratio of true in UnOS is
higher than bridging-P [23] since the accuracy of UnOS
is impressive. On the other hand, ours records the highest
in all consistency metrics among other methods. It means
our framework enforces the spatiotemporal consistency more
effectively than [23], [24] through the c-LSTM and loop
consistency loss. We can infer our network shows good
results when evaluating accuracy and consistency through
the evaluation of the true-positive ratio.

E. Ablation Study

Patch Similarity Function We demonstrate the result of
ablation study on patch similarity function in Table. IV.
Comparing the first two rows in the stereo matching column,
we demonstrate the model trained with the ZNCC-based data
loss shows more accurate disparity estimation than that with
the SSIM. We attribute this improvement to the ZNCC-based
data loss compensating for affine brightness changes from the
different stereo camera settings. In optical flow, the ZNCC-
based data loss also helps resolve the brightness difference
arising from the motion and temporal illumination changes.
Loop Consistency Loss Comparison of the second and
the third row in stereo matching column indicates the model
trained with the loop consistency loss shows an significant
performance improvement on square relative error; this sug-
gests that some of the larger disparity errors are reduced. We



Fig. 5: Our qualitative results of stereo disparity estimation results
on Middlebury dataset(2014): First row: left input image, Second
row: ground truth disparity, Third row: estimated disparity results

DL(t+1)  

WF
L(t)  WB

R(t+1)

DR(t)

Starting Point End Point

Loop consistency loss

DL(t+1)  

WF
L(t)  WF

R(t+1)

DL(t)
Symmetric consistency Loss

Fig. 6: Two types of consistency loss. The same notation are applied
as fig. 2

also see that the loop consistency loss significantly improves
the precision of depth estimation from the results. In the
case of optical flow estimation, the loop loss corrects flow
fields that do not fit in the loop, reducing the overall error
range and giving consistency. However, it improves the EPE-
occ marginally since it is applied only to the non-occluded
region obtained by the method in Sec IV-B.
Video-based Training Scheme and c-LSTM We also con-
duct ablation study on the c-LSTM module which helps learn
temporal dynamics in the video. The effect of the c-LSTM,
temporal smoothing, is apparent as the last two rows of the
metric “Sq rel” shows, which reflects the significant errors.
Similarly, EPE-occ has improved in optical flow estimation
thanks to the c-LSTM module. However, pixel accuracy “abs
rel” in stereo and “EPE-noc” in flow are not improved. We
reason the c-LSTM is effective for alleviating large errors
while the performance is dominantly determined by the main
loss functions(ZNCC-based loss, loop consistency loss).
Temporal window size At the training phase, we randomly
sample the video clips by the given temporal window size.
We experiment to find out the aspect of the performance
according to the different temporal window sizes. As you
can see in the table V, the performances show that feeding
batch with large temporal windows(> 10) to network quickly
cause over-fitting since generalization ability in various sce-
narios is lower than without the small number of temporal
windows. On the other hand, the result shows our network
can successfully handle arbitrary temporal window size less
than seven since there is a slight performance difference both

TABLE V: Ablation study on temporal window size. For a fair
comparison, we apply both proposed loop consistency loss and
ZNCC-based data loss to all models. The boldface denotes the best
performance.

Temporal
window size

Optical flow Stereo matching
EPE-all F1-all(%) EPE-noc Abs rel Sq rel RMSE

3 6.338 19.19 3.380 0.0478 0.4432 3.404
7 6.378 19.62 3.307 0.0509 0.5461 3.614

10 6.775 19.72 3.639 0.0527 0.5864 3.631
15 7.431 20.73 4.033 0.0520 0.6608 3.485

TABLE VI: Ablation study on two types of consistency losses.

Consistency loss Stereo matching Optical flow
Abs rel Sq rel EPE-all EPE-noc F1-all(%)

Loop 0.049 0.443 6.338 3.380 19.19
Symmetric 0.050 0.527 6.762 3.442 19.67

TABLE VII: Quantitative evaluation of spatiotemporal consistency
on the KITTI 2015 dataset. ξ is a set of LC(loop consistency).
µ , med denote mean and median, respectively. The boldface and
underscore denote the best performances of positive samples and
true-positive samples, respectively.

Method True
Positive

Posi-
tive

Higher the better Lower the better
ξ < 2 ξ < 3 ξ < 4 µ(ξ ) med(ξ )

Bridging-R [23] X 0.5916 0.6300 0.6484 - -
X 0.7027 0.7655 0.8017 4.9295 1.3659

Bridging-P [23] X 0.6720 0.6955 0.7085 - -
X 0.7412 0.7868 0.8150 4.4213 0.9652

UnOS [24] X 0.6789 0.7088 0.7242 - -
X 0.7156 0.7703 0.8011 6.3182 1.2234

Ours(Symmetric) X 0.7091 0.7290 0.7390 - -
X 0.7468 0.7952 0.8262 4.3221 0.9601

Ours(Loop) X 0.7129 0.7346 0.7451 - -
X 0.7526 0.8017 0.8322 3.5098 0.8554

in optical flow and in stereo matching.
Various type of consistency loss In addition to loop
consistency loss, we can formulate various type of spatio-
temporal consistency loss for each edge. As illustrated in
Fig. 6, we conducted an ablation study on two types(loop,
symmetric) of consistency loss for comparison. As table VI
indicates, our loop consistency loss helps to estimate both
depth and optical flow more accurately although a symmetric
consistency loss seems simpler. Moreover, the result of table
VII shows our proposed consistency loss is better in terms
of consistency as well as accuracy.

F. Generalization ability to different dataset

To experiment with the generalization ability of unfamiliar
data, we test conDispNet to open stereo datasets different
from the training dataset. Since the training domain of our
framework is the driving scene, we performed qualitative
evaluation using the Middlebury(2014) [36], not driving
scene. Please note that our conDispNet has never seen data
from the test set.
Datasets for finetuning For better generalization, we
finetuned the network pretrained in the KITTI dataset [35] to
the sceneflow dataset(Flyingthing3D) [37] for 1 epoch. We
don’t use ground truth and only use the consecutive stereo
image of the flyingthing3D dataset in the finetuning process.
Middlebury dataset The Middlebury dataset [38] are in-
door dataset with various scenes. We illustrate our qualitative
examples in Fig. 5. Despite different locations, cameras,
conDispNet produced visually good results.



VI. CONCLUSION

In this paper, we presented unsupervised learning frame-
work for accurate and consistent optical flow and disparity
estimation of stereo videos. We demonstrated that the novel
loop consistency loss and the proposed video training scheme
using network architecture with the c-LSTM module not
only improve accuracy but also maintain spatiotemporal
consistencies. Experimental results on the KITTI benchmark
datasets show that our framework successfully maintains
temporal consistency and also achieves the significant ac-
curacy improvement both in optical flow and disparity esti-
mation.
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