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Abstract— Estimating 6D poses of rigid objects from RGB
images is an important but challenging task. This is especially
true for textureless objects with strong symmetry, since they
have only sparse visual features to be leveraged for the task
and their symmetry leads to pose ambiguity. The implicit
encoding of orientations learned by autoencoders [31], [32] has
demonstrated its effectiveness in handling such objects without
requiring explicit pose labeling. In this paper, we further
improve this methodology with two key technical contributions.
First, we use edge cues to complement the color images
with more discriminative features and reduce the domain gap
between the real images for testing and the synthetic ones for
training. Second, we enhance the regularity of the implicitly
learned pose representations by a self-supervision scheme to
enforce the geometric prior that the latent representations of
two images presenting nearby rotations should be close too.
Our approach achieves the state-of-the-art performance on the
T-LESS benchmark in the RGB domain; its evaluation on
the LINEMOD dataset also outperforms other synthetically
trained approaches. Extensive ablation tests demonstrate the
improvements enabled by our technical designs. Our code is
publicly available for research use∗.

I. INTRODUCTION

Detecting rigid objects and estimating their 6D poses from
images is fundamental in robotics and computer vision and
critical for applications like robotic grasping and augmented
reality. While object detection has seen great advancements
due to the emergence of deep neural networks that recognize
and locate objects robustly from diverse surroundings, the
object pose estimation problem remains challenging due to
the complexity introduced by rotational symmetries of the
objects. It is further complicated by the lack of visual salient
textures to distinguish different rotations, as can be seen in
many common objects, e.g. water bottles in daily life [14]
or bolts and nuts at manufacturing sites [15].

To handle the textureless inputs with rotational ambigui-
ties, a common approach taken by previous works is to pre-
define the symmetries manually and solve a perspective-n-
point (PnP) problem [21] for detected 2D/3D keypoint pairs
while modulating the symmetry-induced ambiguities [26]–
[28], [33].

A drastically different approach proposed by [31] learns a
latent space to encode rotations by an autoencoder such that
the symmetric poses are implicitly aligned in the encoding
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space, thus avoiding the prohibitive manual labeling of object
symmetries. However, learning a regular and robust encoding
space requires a large amount of training data to cover
diverse real environments, which is impractical to capture. To
solve this problem, [31] instead synthesizes training images
by rendering the objects in diverse augmented environments
to reduce the gap between the rendered images and those
captured from real scenarios, thus naming their approach the
augmented autoencoder (AAE).

While AAE shows impressive robustness against texture-
less and symmetric objects, we propose two key designs to
further reduce the domain gap between real and synthetic
data and improve the implicit orientation learning, thereby
establishing new state-of-the-art performances. First, we ob-
serve that the augmented synthetic training images exhibit
significant domain gap from real test images, due to the
diverse conditions of real lighting, material, occlusion, etc.
that are hard to simulate by synthetic images. On the other
hand, sharp features (i.e. edges) of the images of textureless
objects are generally invariant across different conditions,
thus providing a robust cue for pose estimation. Therefore,
by combining the edge cues with the color images we
achieve enhanced discriminative learning of different poses
(Sec. V-C). Second, the latent space learned by AAE that
encodes orientations generally lacks regularity, in the sense
that changes of the pose are not mapped to corresponding
changes in latent code (Fig.3), which is a common problem
with autoencoders [1]. To address this issue, we propose
a geometric prior for the self-supervised learning of latent
codes to impose a regularity constraint: we sample a sparse
set of reference rotations, and enforce that for any rotation
of the object its latent code should be close to the code of its
nearest reference rotation. The geometric prior applied leads
to further performance improvements as shown in Sec. V-C.

Our network is trained solely on synthetic data, and
combined with 2D detection backbones for evaluation on
the real benchmarks of T-LESS [15] and LINEMOD [14]
containing textureless objects with various symmetries.

To summarize, our main contributions are:
• We combine the color cue with the edge cue to reduce

the domain gap between real images for inference and
synthetic ones for training.

• We introduce a self-supervision scheme with the geo-
metric prior imposed on the implicit orientation learning
that maps input images into latent representations.

• As a result of the two technical contributions, by train-
ing on synthetic data only, our method achieves the
state-of-the-art performance for 6D pose estimation on
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Fig. 1. The pose estimation process at test time. Given a query RGB image and the object of interest as input, the object in the image is detected by a 2D
detector. The detected object region is cropped and resized to feed to the trained encoder. Using the offline generated codebook consisting of encodings of
the representative rotations, we estimate the rotation of the query instance via nearest code retrieval, and infer the translation based on the bounding box
scale ratio between the retrieved pose template and the detected 2D bounding box.

T-LESS [15] in the RGB domain, and outperforms other
synthetically trained approaches on LINEMOD [14].

II. RELATED WORK

In this section, we briefly review the most related works
on 6D pose estimation and self-supervised learning methods
that share similarities with our geometric prior regularization.

A. 6D Pose Estimation Based on RGB Images
6D pose estimation is an active research area with a large

body of literature [16]. As our network solely consumes
RGB data, making it essentially different from the RGBD ap-
proaches that fuse RGB and depth data via networks for pose
estimation (e.g. PointFusion [40] and DenseFusion [37]), we
briefly review the RGB-based methods from the aspect of
the general paradigm taken, and focus on the works most
relevant to our approach.
Keypoints matching. This approach detects for a sparse set
of 3D keypoints their corresponding 2D image points, and
use the perspective-n-point(PnP) algorithm [21] to estimate
the rigid transformation from these 2D-3D correspondences.
While [28] and [33] use bounding box corners as keypoints, a
recent work [27] explores using designated surface keypoints
for more robust 2D keypoint localization.
Dense matching. Methods in this category regress the 3D
object points for each 2D image pixel within the object
mask, and then estimate the object pose with the dense
2D-3D correspondences using e.g. PnP with RANSAC [8]
to obtain robustness against noisy correspondences. For
example, [3] uses an auto-context network to regress the
pixel-wise distribution of 3D coordinates. Pix2Pose [26] is
a very recent work that trains an autoencoder and outputs
the dense object coordinates with a GAN loss to hallucinate
the occluded parts, as well as a predicted confidence map to
filter unreliable correspondences.
Direct pose regression. PoseCNN [39] uses a CNN to di-
rectly regress the rotations represented as quaternions as well
as depths for translation. Similarly, SilhoNet [2] regresses
the rotation quaternion by first predicting a silhouette repre-
sentation that is invariant across synthetic and real images,
which shares similarities with our edge cue. However, [42]
shows that the quaternion representation of rotations has a
non-Euclidean topology and is challenging to learn directly.
SSD-6D [18] instead represents rotation as the combination
of sampled viewpoints on the bounding sphere and in-plane

rotation, and directly regresses orientation by classification
into the samples.

We note that for all these different approaches, the prior
labeling of symmetry is required for training against pose
ambiguity, which can be tedious and impractical for objects
with complex symmetries.
Template matching. These methods discretize the rotation
space into sampled templates, and retrieve the closest tem-
plate for a given object image, thus bypassing the explicit la-
beling of pose ambiguity. E.g., [41] extracts edgelets from the
object image, utilizes the directional chamfer distance [17]
to retrieve pose templates, and conducts further refinement.
But the handcrafted feature computation is time-consuming.

AAE [31] uses an autoencoder trained with synthetically
augmented data to map the images to a latent space, where
pose ambiguity is implicitly handled through similar latent
codes for symmetric poses. However, limitations still exist
such as the domain gap between real and synthetic data and
regularity of the latent embedding space (Sec. I).

Our approach inherits the merit of the implicit rotation
representation learned by an autoencoder and avoids the
labeling of pose ambiguity. Meanwhile, we introduce edge
cues to narrow down the domain gap between real and
synthetic data, and a self-supervision scheme of geometric
prior to regularize the implicit rotation representation.

B. Unsupervised/Self-supervised Representation Learning
Autoencoders [10, Chapter 14] are standard for unsu-

pervised representation learning, which suits the need for
orientation representation without labeling pose ambiguity
for our 6D pose estimation. The naive autoencoders are
known to lack regularity for the latent encoding [1], and
numerous improvements have been made to address this
problem in general. For example, the denoising autoencoder
[36] forces the recovery of clean data from noisy input
to better capture the inherent low-dimensional structure of
the training data. Variational autoencoder [20] encourages
the latent embedding space to follow a regular Gaussian
distribution. Vector-quantized autoencoders [29], [35] quan-
tize the latent code against a codebook to enhance the
regularity of the learned embedding space while avoiding
space degeneracy associated with variational autoencoders.
Different from these general enhancements, our geometric
prior is a regularization of the latent encoding that is tailored



for the rotation representation, and utilizes the contrastive
loss to enforce its geometric structure.

Contrastive losses have shown great promise for self-
supervised representation learning [5], [11], [34], [38]. Our
geometric prior uses the contrastive loss to relate the input
rotations to nearby reference poses, which is shown to be an
effective self-supervision for rotation representation learning.

III. METHOD

A. The Autoencoder Framework
As shown in Fig. 2, the autoencoder framework [31],

[32] has a pair of encoder and decoder convolutional neural
networks, denoted as E and D respectively. The encoder
E takes as input an RGB image Ix ∈ RW×H×3 at pose x,
and maps it to a low dimensional code E (Ix) ∈ Rd in the
latent space (d�W×H×3). The decoder recovers an image
D(E (Ix))∈RW×H×3 via an inverse mapping. By minimizing
the reconstruction loss

∑
x∈R
||D(E (Ix))− Ix||2 (1)

with respect to the parameters of E ,D on the corresponding
images of a set of rotations R, we expect the latent code
E (Ix) to capture the pose information that solely distin-
guishes x from the other poses in R. One can immediately
see that for symmetric rotations x and x′, since their cor-
responding images are similar Ix ≈ Ix′ , so are their latent
codes E (Ix) ≈ E (Ix′). This automatically handles the pose
ambiguity problem without manual labeling (c.f. [31, Fig.
3-(3)] and Fig. 3-(c)).

To apply the trained networks to pose estimation, as shown
in Fig. 1, a dense set of template poses R are sampled
and a corresponding codebook C = {E (Ix)|x ∈R} is built.
Given an input real image I bounding the detected object, we
then search for x∗ = argminx∈R d(E (I),E (Ix)) as the closest
matching pose, where d(·, ·) is the angle between two code
vectors. With the retrieved rotation, one can estimate the
translation by comparing the relative scaling of the image
and the template [18], [31], [32], or by sampling the depth
image, if available, at the corresponding region.

Several problems arise in the process that affects its effec-
tiveness. First, a large set of training images {Ix|x ∈R} are
needed to train the autoencoder. While the training images
can be synthesized by rendering the object model in arbitrary
poses, they may be visually different from the real input
images, since conditions such as lighting and occlusion are
hard to simulate. AAE [31], [32] tries to resolve this issue by
augmenting the training images, e.g. by changing the lighting
conditions, random scaling and cropping, overlaying to a
random background, etc. Denoting the random augmentation
operator as G(·), the reconstruction loss function in (1)
becomes

∑
x∈R
||D(E (G(Ix)))− Ix||2. (2)

In Sec. III-B, we propose to reduce this domain gap by using
edge cues which are well known to be discriminative features
and consistent across the synthesized and real images.

Second, the latent space learned by a regular autoencoder
is known to lack regularity even with a large amount of
training data [1]. However, we expect the latent space to
be regular and represent rotations with a strong geometric
structure. We enforce this structure through a self-supervised
learning scheme detailed in Sec. III-C.
B. Combining Color and Edge Maps

We use the Canny operator [4] C(·) to compute the binary
edge map of an image, but other edge detectors may well
be applied. As shown in Fig. 2, given an input image I, we
compute its edge map C(I) ∈ RW×H×1, concatenate the two
images as I = [I;C(I)], and feed I to our encoder. Meanwhile,
our decoder has two branches, with Dc recovering the color
image and De the edge map. We adopt a single encoder
architecture instead of using two separate encoders for en-
coding color and edge images, respectively. In this way, we
can achieve efficient computation at test time and circumvent
the additional design of a combination scheme to fuse the
outputs from two encoders. As a result, the autoencoder loss
function for color image reconstruction becomes

Lcolor = ∑
x∈R
||Dc(E (G(Ix)))− Ix||2. (3)

The loss function for the edge map reconstruction is

Ledge = ∑
x∈R

BCE
(
De(E (G(Ix))),C(Ix)

)
, (4)

where BCE(·) computes a weighted binary cross-entropy
between the reconstructed edge map and the input one.
Denoting De(E (G(Ix)) as Ex, we define

BCE(Ex,C(Ix)) =−β ∑
C(Ix)(i, j)=1

logEx(i, j)

− (1−β ) ∑
C(Ix)(i, j)=0

log(1−Ex(i, j)),
(5)

where C(Ix)(i, j) = 1 when the pixel (i, j) is an edge pixel,
and β is the fraction of the number of non-edge pixels over
the total number of pixels in C(Ix).

The total reconstruction loss for training the autoencoder
therefore is

Lrecon = Lcolor +Ledge. (6)

By providing the autoencoder with the edge map as input
and forcing it to recover the edge map, we expect the latent
pose encoding to be more aware of the discriminative edge
cues that are robust across synthesized and real images, thus
minimizing the domain gap.
C. Regularization via Geometric Prior

The geometric prior aims to impose the structure of
the rotation space SO(3) on the latent encoding space by
requiring images presenting nearby rotations to be mapped
to nearby latent codes, while repelling the codes for images
presenting rotations that are far away.

To implement the geometric prior during network training,
we evenly sample a set of reference rotations Rc = {xq ∈
SO(3)|q = 1,2, · · · ,k} to serve as anchors spanning the
rotation space. Meanwhile, we maintain a corresponding



Fig. 2. Overview of the training process. Given a pair of the augmented color image and its edge map, the encoder maps the concatenated image pair to a
code in the latent space. The code is compared against a set of reference codes to impose the geometry prior of the rotation space (Sec. III-C). Meanwhile,
the code is passed through the color and edge decoders to reconstruct the canonical color image (lower branch) and edge map (upper branch), respectively
(Sec. III-B). The reconstruction loss and the geometric prior loss together help the autoencoder to learn an implicit orientation encoding that is more aware
of the discriminative edge cues and closer to the rotation space geometry.

latent codebook C = {cq ∈ Rd |q = 1,2, · · · ,k}, where cq is
the latent code for the reference rotation xq.

For any given rotation x and its latent code zx = E (G(Ix)),
we expect zx to approximate cq if x and xq are close, or
be different from cq if x and xq are far away, thus fulfilling
the geometric prior. To this end, we use a contrastive loss
to achieve the geometric prior. In particular, we define a
probability distribution for zx to measure its proximity to cq
as

p(cq|zx) =
exp(ċq

T żx/t)
∑ j exp(ċ j

T żx/t)
, (7)

where t controls the sharpness of proximity (usually called
temperature in a contrastive loss), and ȧ = a/||a||2 denotes
vector normalization. Meanwhile, we define a target prob-
ability distribution over the reference rotations as wx =
[wx

1, · · · ,wx
k] ∈ Rk, where wx

q∗ = 1 for the closest rotation
q∗= argmin∠(xq,x), and wx

q = 0 otherwise. The target distri-
bution represents the closeness between x and the reference
rotations. Finally, the contrastive loss is defined as the cross-
entropy between the two distributions:

Lprior =− ∑
x∈R

∑
q

wx
q log p(cq|zx). (8)

While the network parameters are trained by a stochastic
gradient descent (SGD) solver, the reference codebook C is
updated by exponential moving average to stabilize training.
Specifically, for each cq, there are two accumulated variables
nq ≥ 0 and mq ∈ Rd ; they are initialized as 0 and a random
unit vector, respectively, and later updated in each SGD
iteration following the rules:

nq := γnq +(1− γ)∑
x

wx
q,

mq := γmq +(1− γ)∑
x

wx
qzx, (9)

cq := mq/nq,

where x iterates over the training samples in a mini-batch.
Here γ = 0.99 is the exponential decay weight.

To summarize, the final loss for training our autoencoder
combines the geometric prior and reconstruction losses:

L = Lrecon +λLprior, (10)

where λ is a hyper-parameter weighing the two terms.
IV. IMPLEMENTATION

A. Data Generation
To prepare training data, we randomly sample 20,000

rotations as R for an object. The reference codebook C
has k = 8020 rotations formed by combining 20 in-plane
rotations with 401 quasi-equidistant views sampled from the
Fibonacci lattice on a unit sphere [9]. For pose query at
the test stage, we prepare a larger codebook C with k =
92232 evenly sampled rotations. They are formed by 2562
equidistant spherical views based on refining the icosahedron
[13] and further multiplied by 36 in-plane rotations for each
view.

With the sampled rotations, for generating the non-
augmented Ix used as the training ground-truth or in com-
puting the codebook C , we center and rotate the object and
render it under a fixed lighting with a black background. For
generating the input training images, the image augmentation
operator G(·) follows [31] and consists of 1) randomizing
lighting conditions, 2) applying random 2D translation and
scaling to the rendered mesh model, 3) combining rendered
images with random background images from [7], 4) varying
the color values, and 5) adding partial occlusion. In addition,
the edge map operator with Canny C(·) uses a fixed threshold
parameters t1 = 50, t2 = 150, but we randomize (t1, t2) with
t1 ∼U(30,100), t2 = rt1, and r ∼U(1.2,2) to augment edge
maps extracted from the augmented training color images,
where U(a,b) is the uniform distribution in range [a,b].
B. Network Details

Fig. 2 illustrates the structure of the convolutional neural
networks. We empirically set the dimension of the latent
space d = 128, λ = 0.004 and t = 0.07 for the network
training, and also introduce a bootstrap factor of 4 for
Lcolor [31]. The Adam optimizer [19] is adopted to train
the autoencoder with a fixed learning rate of 0.0002. The
batch size is set to 64 and the maximum number of iterations
is 30k. During testing, given the 2D bounding box of an
object detected by a backbone detector, the input image is
cropped and resized to 128× 128 and fed to the encoder.
We use different detectors in various experiments for a fair
comparison, as detailed in Sec. V.



(a) Projected latent codes for three local orientation changing trajectories
by rotating an arbitrary pose around three axes.

(b) Projected latent codes for two local orientation changing trajectories
by rotating two opposite poses with similar appearances around the same
axis.

(c) Projected latent codes for two local orientation changing trajectories
by rotating two different but symmetric poses around the symmetry axis.

Fig. 3. Plotting the top three principal component projections
(pc1, pc2, pc3) of latent codes for different orientation transition trajectories.
PCA bases are computed from the codes of reference poses Rc. The
trajectories are obtained by rotating around given axes for 20 degrees with
step size 0.5◦. Views 1 and 2 are two different views of a same plot in each
sub-figure respectively, to better visualize the 3D embedding. (a) and (b)
show that with geometric prior, similar orientations are better distinguished
by their latent codes than without the geometric prior. (c) shows that for
highly symmetric poses, the geometric prior does not prevent the latent
codes from getting nearly identical.

V. EXPERIMENTS

A. Dataset
We evaluate our approach and compare with previous

methods on two most widely used datasets, T-LESS and
LINEMOD, for 6D pose estimation. The T-LESS dataset [15]
contains 30 CAD objects. These objects are highly symmet-
ric and have similar shapes, but have very limited texture
information. Moreover, most test images have significant
occlusions and/or clutters, which presents further difficulty.
Therefore, the dataset is a challenging test for 6D pose
estimation. For all the experiments presented, we use the
textureless CAD meshes provided by the dataset to prepare
the synthetic training images, and leave the real images only
for testing.

The LINEMOD dataset [14] contains 15 objects that are
more common in daily scenarios. These objects also lack
detailed and discriminative textures. For each object, we use
its reconstructed mesh provided by the dataset to prepare

the synthetic images for network training, and use the real
images for testing only.

Compared with T-LESS, most objects in LINEMOD are
free from pose ambiguity. Moreover, due to the quality of the
3D models, the inaccurate intrinsics, and sensor registration
errors between the RGB and depth images of LINEMOD
noted in [25], the pinhole camera model is deeply affected
and thus cannot provide an accurate depth estimation, as
noticed in [18], [31], [32]. In comparison, networks trained
with real data can take advantage of the strong correlation
between the real training and testing sets. Taking together
these factors, we consider the T-LESS dataset to be more
indicative for evaluating our method, as we focus on han-
dling rotation estimation for textureless objects with strong
symmetry. In addition, to eliminate the large biases caused
by inaccurate depth estimation on LINEMOD and better
evaluate our rotation estimation, we refer to the depth image
for post-process refinement, using either mean depth or
point-to-plane ICP [6]. During the refinement, as commonly
done in registration, we eliminate the outlier pixels from
consideration. To find the outlier pixels in the depth images,
we first measure the maximum distance ε between pixel
depths and the average depth for the synthetic depth map
rendered under the estimated pose, and consider a pixel of
real depth map as an outlier if its depth from the average
exceeds 2ε .

B. Evaluation Metrics
Visible Surface Discrepancy [16], denoted as eV SD, com-
putes the difference of the visible depth values between
models transformed by the estimated 6D pose and by the
ground-truth pose:

eV SD = avg
p∈Vest∪Vgt

{
0, p ∈Vest ∩Vgt ∧|Vest(p)−Vgt(p)|< τ

1, otherwise
(11)

where Vest ,Vgt are the visible depth maps for the estimated
and ground-truth poses, respectively. Therefore eV SD is not
sensitive to pose ambiguity because of object symmetry or
partial occlusion. We adopt the criterion proposed in [16] that
an estimated pose is correct when its eV SD < 0.3 with thresh-
old τ = 20mm. We follow [26] and use the reconstructed
meshes for error computation.
Average Distance [14], eAD{D|I}, computes the mean mesh
vertex distances as the model M is transformed by the
ground-truth pose (Rgt ,Tgt ) and by the estimated pose
(Rest ,Test ), respectively:

eADD = avg
v∈M
||(Rgtv+Tgt)− (Restv+Test)||. (12)

For symmetric objects, the distance to the nearest vertex is
calculated instead:

eADI = avg
v∈M

min
v′∈M
||(Rgtv+Tgt)− (Restv′+Test)||. (13)

Following [14], an estimated pose is considered correct if the
error eAD{D|I} is less than 0.1dM , where dM is the diameter
of the given model.



C. Ablation Tests
We evaluate the effectiveness of the different components

proposed in our method. We compare the four alternatives:
1) the original autoencoder approach proposed by AAE, 2)
the edge enhanced autoencoder, 3) the original autoencoder
with geometric prior, where λ is halved to 0.002 due to the
missing edge term (Eq. 6), and 4) the edge enhanced au-
toencoder with geometric prior. We test for all 30 objects on
all Primesense test images provided by the TLESS dataset.
To control the inaccuracies introduced by the backbone
detection network, we use the ground-truth bounding boxes
of each object instead, and report on all instances whose
visible portions are larger than 10%.

Tab. I reports the average recall rate with respect to
eV SD for all instances in the testing set. Compared with
the baseline network using only color images as input and
reconstruction target, the introduction of either edge cue for
domain gap reduction or geometric prior to latent encoding
regularization improves the recall rate by a large margin. On
top of that, the combination of them brings the most benefits.

TABLE I
ABLATION STUDY ON DIFFERENT COMPONENTS. AVERAGE RECALL

RATE OF eV SD < 0.3 FOR ALL INSTANCES OF TLESS OBJECTS WITH

VISIBLE PORTION OVER 10% IS REPORTED. OUR TWO NOVEL

COMPONENTS BRING SIGNIFICANT IMPROVEMENTS.
Color cue Edge cue Geometric prior Ave.

X × × 64.19
X X × 67.59
X × X 68.13
X X X 70.77

Fig. 3 further visualizes the benefits of introducing ge-
ometric prior to the edge enhanced autoencoder, where we
use principal component analysis (PCA) to project the latent
space into R3 with the top three principal components.
Specifically, we use the code set {E (Ix)|x ∈ Rc} for the
reference rotations Rc to compute the PCA bases, and
inspect the latent code transitions for three representative
cases:
(a) Three different orientation changing transition trajecto-

ries around an arbitrary view.
(b) Two local transition trajectories around two opposing

orientations that have similar views.
(c) Two local transition trajectories around two different

orientations that have nearly perfect symmetry.
As shown in Fig. 3, in the first two cases, without

geometric prior, the trajectories have codes that are mixed
up. In contrast, with geometric prior, the trajectories are well
distinguishable. In the last case, even with geometric prior
the codes of two trajectories are very close due to the very
negligible differences of the two views, although they are
still slightly distinguishable. The three cases indicate that the
geometric prior induces regularity of the latent orientation
encoding space, in the sense that subtle pose differences are
well distinguished while strong symmetries are preserved.
D. Comparison

In this part we compare our method with the state-of-the-
art methods on both T-LESS and LINEMOD datasets. Unlike

in Sec. V-C where all instances for an object are considered,
here we follow the single instance for one object protocol
specified in the SIXD challenge [16] to compare fairly with
existing works, and use the detected 2D bounding boxes
instead of the ground truth ones. Some qualitative results are
shown in Fig. 4. Our pipeline was also applied in a grasping
task, with setting and a sample result shown in Fig. 4; the
demo video is provided in the supplemental material.

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS OF THE FULL

DETECTION+POSE ESTIMATION PIPELINE. REPORTED ARE THE RECALL

RATES OF eV SD < 0.3 WITH τ = 20mm USING ALL PRIMESENSE TEST

IMAGES IN THE T-LESS DATASET [15].

obj id AAE Zhang Pix2Pose Ours Ours
[31], [32] [41] [26] +RetinaNet +GT 2D

01 12.67 7.32 38.4 37.01 65.22
02 16.01 12.31 35.3 29.78 73.44
03 22.84 14.55 40.9 44.42 87.34
04 6.70 5.94 26.3 26.71 65.50
05 38.93 38.43 55.2 56.22 72.07
06 28.26 18.35 31.5 47.49 65.73
07 26.56 19.44 1.1 26.88 53.19
08 18.01 21.34 13.1 22.98 56.49
09 33.36 39.46 33.9 33.84 74.87
10 33.15 9.54 45.8 35.79 78.80
11 17.94 10.34 30.7 23.27 73.17
12 18.38 9.59 30.4 26.25 76.46
13 16.20 6.83 31.0 27.70 64.31
14 10.58 5.63 19.5 16.76 69.81
15 40.50 35.59 56.1 35.81 75.03
16 35.67 29.32 66.5 59.31 74.83
17 50.47 58.82 37.9 55.20 89.34
18 33.63 50.15 45.3 60.11 85.77
19 23.03 27.45 21.7 7.49 73.62
20 5.35 4.39 1.9 9.83 57.31
21 19.82 14.35 19.4 13.77 78.94
22 20.25 20.57 9.5 12.4 77.11
23 19.15 15.98 30.7 24.19 70.79
24 27.94 8.34 18.3 37.37 77.73
25 51.01 23.30 9.5 33.98 73.43
26 33.00 10.23 13.9 42.54 76.54
27 33.61 18.94 24.4 28.14 66.70
28 30.88 19.45 43.0 56.06 81.36
29 35.57 35.54 25.8 49.30 73.35
30 44.33 37.45 28.8 59.43 92.21

Mean 26.79 20.96 29.5 34.67 73.35

T-LESS. Following the previous Pix2Pose [26], we use a
fine-tuned RetinaNet [23] as the backbone object detector
which was pretrained on the MS-COCO dataset [24]. Tab. II
presents the recall rate with respect to eV SD and compares our
method to other approaches with corresponding detectors:
AAE [31] and Pix2Pose [26] with RetinaNet [23], and Zhang
et al. [41] with YOLO [30]. Objects with visible portion
over 10% on all Primesense scenes are considered. Note that
the results of AAE are derived from the latest version [32].
The results show that our method not only brings significant
improvements to AAE [31] (by 7% in recall rate) and [41]
which uses edge cues in a hand-crafted manner, but also
outperforms the state-of-the-art Pix2Pose by more than 5%.

In addition, we argue that should a more accurate 2D
detection be provided, the recall rate can be further improved.
This is demonstrated by the results produced with ground-
truth bounding boxes in Tab. II, where we only process the
instance of the highest visible portion for each object in



TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS OF THE FULL DETECTION+POSE ESTIMATION PIPELINE. REPORTED ARE THE RECALL RATES OF

eAD{D|I} WITH REGARD TO 10% OF OBJECT DIAMETER ON LINEMOD DATASET [14]. OBJECTS WITH SYMMETRY ARE IN BOLD NAME.
Synthetic RGB + Depth Refinement Real RGB Real RGBD

AAE [31]
[32]+ICP

SSD-6D
[18]+ICP

Ours
+Mean Depth

(+MaskR-CNN)

Ours
+ICP

(+MaskR-CNN)

Brachmann
[3] w/ Ref.

BB8 [28]
w/ Ref.

Tekin
[33]

Pix2Pose
[26]

PoseCNN [39]
+DeepIM [22]

PointFusion
[40]

DenseFusion
[37] w/ Ref.

Ape 24.35 65 72.90 87.38 33.2 40.4 21.62 58.1 77.0 70.4 92.3
B.Vise 89.13 80 92.83 96.13 64.8 91.8 81.80 91.0 97.5 80.7 93.2
Cam 82.10 78 69.28 91.01 38.4 55.7 36.57 60.9 93.5 60.8 94.4
Can 70.82 86 85.28 89.46 62.9 64.1 68.80 84.4 96.5 61.1 93.1
Cat 72.18 70 91.52 96.61 42.7 62.6 41.82 65.0 82.1 79.1 96.5

Driller 44.87 73 70.29 77.95 61.9 74.4 63.51 76.3 95.0 47.3 87.0
Duck 54.63 66 52.95 69.38 30.2 44.3 27.23 43.8 77.7 63.0 92.3
E.box 96.62 100 100.00 100.00 49.9 57.8 69.58 96.8 97.1 99.9 99.8
Glue 94.18 100 99.02 99.02 31.2 41.2 80.02 79.4 99.4 99.3 100.0

HoleP. 51.25 49 55.86 66.45 52.8 67.2 42.63 74.8 52.8 71.8 92.1
Iron 77.86 78 96.09 98.78 80.0 84.7 74.97 83.4 98.3 83.2 97.0

Lamp 86.31 73 91.44 94.38 67.0 76.5 71.11 82.0 97.5 62.3 95.3
Phone 86.24 79 83.51 93.48 38.1 54.0 47.74 45.0 87.7 78.8 92.8
Mean 71.58 79 81.61 89.23 50.2 62.7 55.95 72.4 88.6 73.7 94.3

each image. This serves as idealized upper-bounds on the
performances of our approach under the single object single
instance protocol, although significant occlusions still exist.
LINEMOD. Following Pix2Pose, we use a fine-tuned Mask
R-CNN [12] as the detector. We report the recall rate
with respect to eAD{D|I} on 13 of 15 objects in Tab. III,
where comparing methods are divided into three domains
by considering whether real data are used to train the pose
estimation network and how depth data are used. We mainly
focus on the comparison with SSD-6D [18] and AAE [31],
[32], which are similar to ours by training the rotation
estimation network solely on synthetic images and estimating
the translation by the pinhole model. Both AAE and SSD-
6D use depth images for full 6D pose refinement by ICP at
the inference stage.

First, we coarsely refine the translation of our results by
calculating the mean depth, i.e. “Ours+Mean Depth”. Under
this setting our results are already comparable to SSD-6D,
although SSD-6D samples only a limited range of poses
from SO(3) which eases rotation estimation, and refines
both rotation and translation by ICP. Meanwhile, our method
outperforms the baseline AAE and even an RGBD-based
method trained on real data, i.e. PointFusion [40], by over
10% and nearly 8%, respectively. Compared with most of
the RGB-based methods which are trained on the real data,
our method can also achieve a comparable recall rate with
the translation refinement by mean depth only. We further
conduct point-to-plane ICP to refine the full 6D pose of our
results, shown as “Ours+ICP”. This achieves a recall rate that
exceeds SSD-6D by a significant margin and is comparable
to PoseCNN [39] refined by DeepIM [22].

E. Runtime
The inference time of our method is measured with T-

LESS images of size 720×540 as input, on a machine with
i7-6700K 4GHz CPU and Nvidia GTX 1080 GPU.

While the RetinaNet [23] takes around 105ms to detect
objects, our pose estimation for a single instance takes about
11ms. In comparison, Pix2Pose [26] uses 25-45ms for a
single instance, more than twice of ours.

VI. CONCLUSION
In this paper, we have introduced a new method to perform

6D pose estimation from RGB images, which handles tex-

Fig. 4. Visualization of estimated poses of several testing images from
T-LESS and LINEMOD (Row 1&2), and a grasping task (Row 3). The
grasping setting is shown on the left. The green boxes and blue boxes are
ground truth poses and our estimation, respectively. Our network works
robustly in these diverse environments.

tureless objects with strong symmetry. Based on the implicit
orientation encoding framework, we propose two key designs
for improvement. Specifically, we show that combining the
color images and edge maps can help bridge the domain gap
between the synthetic training images and the real testing
data. In addition, the geometric prior designed to impose the
rotation space geometry onto the latent space enhances the
regularity of the learned orientation encoding, thus further
improving the performance. Extensive evaluations on the
challenging T-LESS and LINEMOD datasets demonstrate the
effectiveness of our method.

Limitations and future work. While our approach works
well with symmetry and pose ambiguity, it does not explicitly
address the issues caused by occlusion or cluttered back-
grounds. In the future, we would like to take these factors
into consideration and make our approach more robust for
complex 6D pose estimation scenarios.
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