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Abstract—Robots are usually programmed for particular
tasks with a considerable amount of hand-crafted tuning work.
Whenever a new robot with different dynamics is presented,
the well-designed control algorithms for the robot usually have
to be re-tuned to guarantee good performance. It remains
challenging to directly program a robot to automatically learn
from the experiences gathered by other dynamically different
robots. With such a motivation, this paper proposes a learning
algorithm that enables a quadrotor unmanned aerial vehicle
(UAV) to automatically improve its tracking performance by
learning from the tracking errors made by other UAVs with
different dynamics. This learning algorithm utilizes the relation-
ship between the dynamics of different UAVs, named the target
and training UAVs, respectively. The learning signal is generated
by the learning algorithm and then added to the feedforward
loop of the target UAV, which does not affect the closed-
loop stability. The learning convergence can be guaranteed
by the design of a learning filter. With the proposed learning
algorithm, the target UAV can improve its tracking performance
by learning from the training UAV without baseline controller
modifications. Both numerical studies and experimental tests
are conducted to validate the effectiveness of the proposed
learning algorithm.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) such as quadrotors have
been widely used to perform various tasks [1]-[4]. Many
of these tasks are conducted in a cluttered environment
which requires accurate trajectory tracking. As such, exten-
sive efforts in control area have been made to guarantee
UAV’s tracking performance. These methods include feed-
back control (e.g., proportional-integral-derivative control
[5], linear quadratic regulator [6], disturbance observer [7],
and sliding mode control [8]) and feedforward control such
as iterative learning control (ILC) [9], [10]. In practice, the
design of these model-based controllers usually encounters a
considerable amount of hand-crafted tuning work for almost
every distinct UAV. Whenever a new UAV with different
dynamics is presented, the well-designed control algorithms
usually have to be re-tuned to guarantee satisfactory tracking
performance. It remains challenging to enable a UAV to
automatically learn from the experiences gathered by another
with different dynamics.

This paper presents a new learning algorithm that en-
ables knowledge transfer for trajectory tracking between
UAVs with different dynamics, i.e., heterogeneous UAVs.
This learning algorithm utilizes the relationship between the
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dynamics of heterogeneous UAVs, named the target and
training UAVs, respectively. The target UAV automatically
improves its tracking performance by learning from the
tracking errors made by the training UAV. The learning signal
is generated by the learning algorithm and is added to the
feedforward loop of the target UAV. This learning algorithm
is motivated by ILC that allows the UAV to learn from
its own historical data in repetitive operations. Compared
with standard ILC, the proposed learning algorithm here
augments the learning between different UAVs and is not
limited to repetitive systems anymore. It is worth mentioning
that this learning algorithm is not to replace or modify the
existing baseline controller; it is an add-on algorithm to
further improve the target UAV’s tracking performance.

The contributions of this work are summarized as follows.
(1) It develops a systematic model-based learning frame-
work for knowledge transfer in terms of trajectory tracking
between UAVs with different dynamics. (2) The learning
algorithm removes the requirement of repetitive operations
in standard ILC. (3) The learning algorithm is an add-on
algorithm which does not affect the stability of the closed-
loop system. This learning algorithm is particularly useful
(1) when the baseline control is not easy or not allowed
to modify, (2) prior training for the target UAV is not
possible, and (3) experience from another UAV with different
dynamics is available. For example, the proposed algorithm
can be used when two different UAVs are flying in a leader-
follower mode to execute certain tasks, in which the follower
could utilize the flight data of the leader to improve its
tracking performance. In summary, this learning algorithm
can improve the tracking performance of the target UAV
without modifying the baseline control by learning from the
experience gained by the training UAV.

II. RELATED WORK

This section summarizes related existing work in learning
control. These methods are mainly classified into three cat-
egories that leverage ILC, adaptive control, and data-driven
methods, respectively.

A. ILC-based methods

ILC is a feedforward control technique that enables a
repetitively operated system to learn from its previous it-
erations [11] and has been developed and applied to UAVs
[12], [13] to improve the trajectory tracking performance.
Traditional ILC requires that the system operates in a repet-
itive way, which means the following conditions need to
be satisfied: (1) the system has an identical initial state for
each iteration [14]; (2) the system has no iteration-varying



modeling uncertainties [15]; (3) the system performs each
iteration with a fixed trial length [16]; and (4) the reference
trajectory for each iteration is identical [17]. Moreover,
whenever the reference is changed, the learning process has
to start from the first iteration. Many efforts have been made
to relax these conditions in order to have broader applications
(e.g., [17]-[19]). For example, a linear map method [19] has
been designed such that the prior tracking knowledge can
be used to reduce the initial tracking error for an unseen
trajectory. Similar methods have been proposed in [20],
[21] as well. Nevertheless, these ILCs and their variants are
limited within the same systems.

B. Adaptive control-based methods

While adaptive control has been widely applied to UAVs
to address unknown parameters (e.g. , [22]-[24]), here we
focus on the ones that leverage adaptive control to enable
learning between different systems (e.g., [25], [26]). An
L; adaptive controller is incorporated into ILC to enable
the learning between different UAV systems [25], in which
adaptive feedback control is purposely designed to make
different systems behave as the same reference model, while
the feedforward ILC improves system performance over
iterations. Nevertheless, the learning is conducted via the
same “reference model” over iterations. Another work that
leverages adaptive control to enable learning between differ-
ent systems is presented in [26], in which the baseline control
is adapted to compensate the model difference between the
two systems. The above-mentioned methods need baseline
feedback control being adapted during the flight to conduct
the learning, which may affect the stability of the systems.
Alternatively, the proposed learning algorithm in this paper
is an add-on algorithm which does not modify baseline
feedback control.

C. Data-driven methods

Data-driven methods, which usually do not explicitly rely
on the dynamic models, have been utilized to develop control
and learning algorithms for UAVs as well. By training and
learning processes, UAVs can make high-level decisions
(e.g., generating desired paths) and execute low-level tasks
(e.g., trajectory tracking). For example, reinforcement learn-
ing and deep learning techniques have been proposed for
UAV’s control [27]-[30]. Reinforcement learning has also
been utilized to transfer task information among multiple
manipulator systems [31]. While these data-driven methods
provide additional flexibility to the control of robotic system-
s, they are usually highly dependent on the training data and
do not explicitly consider UAV’s dynamics in the learning
algorithm design.

III. LEARNING ALGORITHM

A. Quadrotor dynamics

Quadrotor UAV’s dynamics is highly nonlinear and the
system’s baseline controller design is not trivial. Before a
quadrotor is ready to fly, the baseline controllers for both
attitude and position loops have to be carefully designed

and tuned to guarantee the desired trajectory tracking per-
formance. More detailed introduction of quadrotor dynamics
can be referred to [32].

It is worth noting that the proposed learning algorithm
does not require baseline control modification, so the learn-
ing algorithm is not explicitly dependent on the baseline
control. Alternatively, we assume that both UAV systems are
already stabilized by their baseline feedback controllers, and
treat the plant and the baseline control as a whole closed-
loop system. Therefore, there is no particular constraint on
which type of the baseline control (e.g., cascaded position-
attitude control or full-state model predictive control) should
be implemented in the actual UAV system. Furthermore,
considering that the bandwidth of the attitude control loop
is much higher than that of the position loop, the closed-
loop trajectory tracking dynamics can be approximated as a
linear time-invariant (LTT) system [32], [33]. In this study, the
proposed learning algorithm is only for the position loop of
the UAV while its attitude loop is not explicitly considered.

B. Overview of the proposed learning algorithm
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Tracking error
Learning
module
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Fig. 1: Overview of the proposed learning algorithm. The trajectory tracking
experience of the training UAV is learned by the target UAV. The training
UAV and the target UAV are with different dynamics.

Reference

The proposed learning algorithm is illustrated in Fig. 1.
There are two UAVs involved: one target UAV and one
training UAV. The two UAVs are with different physical
properties (e.g., mass, size, propellers) such that their dy-
namic models are different. A desired reference trajectory
is provided to both UAVs. The training UAV tracks the
reference first; no matter how the tracking performance is,
the tracking error is recorded and sent to the learning module
(learning filter). The learning module generates the learning
signal that will be sent to the target UAV when it tracks
the same reference. The goal is to improve the tracking
performance of the target UAV by learning from the tracking
error made by the training UAV.

C. Learning algorithm: mathematical details

This subsection presents mathematical details of the learn-
ing algorithm. Assume both UAV systems are stabilized by
their baseline controllers. Denote Py (and P) as the position-
loop dynamics of the training (and target) UAV with the
baseline controller incorporated. As explained in Subsection
A, Py and P are approximated as LTI systems. The proposed
learning algorithm is given in Fig. 2, where L is the to-be-
designed learning filter, r; is the reference trajectory, v is
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Fig. 2: Proposed learning algorithm. The tracking error of the training UAV
goes through the learning filter to generate the learning signal, and the
learning signal is added to the feedforward loop of the target UAV.

the output of Fy; ep and & are the input and output of L,
respectively; define y; (and y;) as the output, and e; (and
ep) as the tracking error of the target UAV when it tracks
ry without (and with) the learning signal. Denote k as the
discrete-time index. Assume Py has the following state-space
realization

xo(k+1) = Ayxo(k) + Byry(k)
v(k) = Cyxo(k) (1)
eo(k) = rq(k) —v(k)
where (A, B, C,) are the system matrix, input matrix and
output matrix of Py, respectively; xq is the state variable of

Py. Assume the learning filter L has the following state-space
realization

X] (k + 1)

h(k)

where x; denotes the state variable of L, i denotes the output
of the learning filer, and (4;, B;, C;, D;) are the system

matrix, input matrix, output matrix, and feedforward matrix
of L, respectively. Assume P has the following state-space

realization
A|B
P~ { cTo } 3)

where (A, B, C) are the system matrix, input matrix, and
output matrix of P, respectively. When there is no learning
signal /4 injected to P, the system can be represented as
xi1(k+1) = Ax (k) + Bry(k)
Y1 (k) = Cx1 (k) (4)
e1(k) = ra(k) —yi (k)
where x; is the state variable of P without 4 injected, i.e.,
without learning. When the learning signal 4 is added to the
feedforward loop of P, the system can be represented as
x2(k+1) = Axy (k) + B(rq(k) +h(k))
y2(k) = Cxz (k) &)
ea(k) = ra(k) — y2(k)

where x; is the state variable of P with % injected.

= Ax; (k) + Bjeg (k)

2
= Crx(k) + Dyeo (k) @

As mentioned above, the goal of this learning algorithm
is to design a learning filter L which can improve the
tracking performance of the target UAV by learning from
the experience (e.g., the tracking error) of the training UAV.
To relate the tracking errors e; with e, which are tracking
errors made by the target UAV without and with learning,
we define the system 7, such that

er=T{e1} 6)

where the operator {-} describes the system response, that
is, with an input e; to the system T7,, the output is e;. The
system 7, can be represented as

Ae Be
T, ~ {Jﬁc B ] @)

where (A,, B., C., D,) are the system matrix, input matrix,
output matrix, and feedforward matrix of T, respectively.

System T, lumps the system dynamics of Py, P and L. To
obtain T, explicitly for further system analysis, we introduce
the following variable

(k) = x2 (k) —x1 (k) (8)

By selecting x1, xp, x;, X as the state variables, we derive the
state-space realization of 7, as follows.
From (4) we have

ra(k) = e (k) +y1(k) = e1 (k) + Cx; (k) 9
and
x1(k+1) = Ax; (k) + B(e; (k) + Cx; (k)) (10)
Plug (9) into (1) to have
xo(k+1) = Ayxo(k) + Byry(k) (1n
= A,xo(k) + By (e1(k) +Cx; (k)

Plug (1) into (2) to cancel the ey(k) term and re-organize (2)

xi(k+1) = A (k) + By (ra(k) — v(k))
= Ax;(k) + By (e1 (k) +Cx; (k)

From (8), we have

12
oy P

fk+1)=x2(k+1)—x1(k+1)
= [Axa (k) + B(ra(k) + h(k))] — [(Axi (k) + Bra(k))]
= A(x2(k) —x1(k)) + Bh(k)

13)

Plug (2) into (13) to cancel the A(k) term, and re-organize
(13) as

F(k+1) = A%(k) + B(Cix; (k) + Dieo(k))
= Af(k) + B(Cpx; (k) + Dy (ra(k) — ( )
= Ax(k) + B(Cpx (k) + Dy (e1 (k) + Cx1 (k) — Cyxo(k)))
(14)
With (4), (5) and (8), we have
ex(k) —ei1(k) = (ra(k) —ya(k)) — (ra(k) = y1(k))
= —(y2(k) —y1(k)) (15)

= —C(x2(k) —x1(k))
= —Ci(k)



With (10), (11), (12), (14) and (15), the state-space realiza-
tion of T, can be presented as

xi(k+1) A+ BC 0 0 07 [xi (k)
xok+1)| | BuC Ay 0 0] [xo(k)
xk+1)| — | BC -B;C,, A 0 | x(k)
F(k+1) BD,C —BD,C, BC, A] | (k)
B
B
+ BIWC e (k) (16)
BD,
X1 Ek;
_ 1 |Xo(k
e (k) = [O 0 0 C} (k) +ey (k)
(k)
Then (7) can be presented as
A+BC 0 0 0 B
B,C A 0 0 | B,
T, ~ B,C —B,Cy, A; 0 B,C 17)
BD,C —BD,C, BC, A |BD
0 0 0 —C| 1

and the system T, from e; to e, is obtained. To improve the
target UAV’s tracking performance, that is, to make ||ez|| <
[le1]|, the following conditions should be satisfied

« (a) all the eigenvalues of the system matrix of 7, are
within the unit circle, i.e.,

Ai(Ad)| <1, Vi (18)
where 2;(A,) is the i’ eigenvalue of A,.
¢ (b) The minimum Y is less than 1 where 7 satisfies

{D.+Co(ni—A.) 'B.} <y Vn|>1 (19

and G6{-} denotes the maximum singular value of a
matrix.

D. Learning algorithm: design guidelines and analysis

It is worth noting that it is very challenging to directly
design (A;, B;, C;, D;) such that the above conditions in (18)
and (19) are satisfied. To simplify this design procedure, we
compactly use the {-} operator, and re-derive the dynamic
system T, and represent it in terms of dynamic systems (P,
P, L) explicitly as follows.

As illustrated in Fig. 2, we have

eo =rq—Po{rq} (20)
ey =rq—P{rg} 21
€2=rd—P{rd+h} (22)

in which all the signals (eg, e1, e», ry, h) are time series.
The reference r; can be represented as

ra=(1—-PR) e} =(1-P) Her} (23)

and we have

ex =rq—P{rs} —PL{eo}
=Tq —P{rd} —PL{I’d —Po{rd}}
=e] —PL(I —P()){rd}
=e —PL(1—PRy)(1—-P) e}
=[1=PL(1—Py)(1—P) "{e1}

Considering (6), it is worth noting that the dynamic system
in (24) is equivalent to the one in (16). In the following,
we utilize the representation of (24) to design the learning
filter L and check whether the conditions of (18) and (19)
are satisfied.

Ideally, if L can make the system of PL(1— Py)(1—P)~!
close to 1, then ||ez|| would be close to zero. Therefore, we
target to design a L such that

(24)

PL(1-P)(1-P) 'x1 (25)
which implies
Lx=P '(1-P)(1-PRy)! (26)
With (3), the state-space realization of 1—P is
A | B
1_p~[c 1} e
Similarly, with (1) we have
AW BM)
I_PON{—CW i } (28)
and the system (1—Py)~! can be represented as
(1 —P0)71 ~ Aw +BuCy ‘ By, (29)
c, |1

While it is easier to directly obtain the state space realization
for (1 —P)(1—Py)~", the remaining design part P~! will be
manually tuned such that (4;, B;, C;, D) satisfy the two
conditions in (18) and (19).

Stability: The learning signal is generated by the learning
algorithm and then added to the feedforward loop of the
target UAV. Therefore, the learning signal only modifies the
reference and does not affect the closed-loop stability of the
target UAV. The target UAV system remains stable when the
learning algorithm is added.

Learning convergence: The learning convergence can be
guaranteed by designing the learning filter such that condi-
tions (18) and (19) are satisfied.

IV. VALIDATION

This section presents both numerical studies and exper-
imental tests to validate the proposed learning algorithm.
We (1) conduct the system identification for the target and
training UAVs, (2) simulate the UAVs’ tracking performance
based on the identified models, and (3) conduct the experi-
mental tests to validate the proposed learning algorithm.



A. Test platform

Two quadrotors are customized and assembled for ex-
perimental tests: one as the target UAV and the other as
the training UAV. The two UAVs are different in terms
of body dimension, motor to motor distance, net mass,
frame structures, etc., as shown in Table I. These physical
specifications will result in different dynamics of UAVs. The
experimental platform, which consists of two UAVs and a
Vicon motion capture system used to capture the pose of the
UAVs, is shown in Fig. 3.

| Target UAV | Training UAV

Frame Brand | F450 | S500
Body 363 %363 382x382
Dimension x 120 mm x82 mm
Motor to Motor 455 480
Distance (diagonal) mm mm
Net mass | 12kg | 0.9 kg

TABLE I: Basic specifications of the target and training UAVs

tion Capture Syg?ﬁlll, |

B

—

Target UAV _| Training UAV_I

Fig. 3: Experimental platform: Vicon motion capture system, Target and
Training UAVs. Both UAVs fly with a thin and light power cable attached
to them. The cable is wrapped with a light protective film. The influence
of this cable to the system dynamics is negligible.

B. System identification

We first conduct the system identification for both UAVs.
Since the proposed learning algorithm does not require the
modification of the baseline controllers, the system iden-
tification has been conducted to estimate the closed-loop
dynamics of both UAVs with their baseline controllers incor-
porated. Therefore, the dynamic models from the reference
trajectory to the actual one are identified. Here we use the
recursive least square based parameter adaptation algorithm
[34]-[36] for system identification. In particular, an LTI
model structure with unknown parameters is selected, and
the actual input and output data of each UAV are collected.
The objective function is chosen as the norm of the model
prediction error, which is minimized via recursive least
square method to obtain the optimal parameters [35]. In
this study, since we test the learning algorithm for trajectory
tracking in the vertical direction (z-direction) and the heading
direction (x-direction), the UAVs’ dynamic models in both
directions are identified. The system identification for the
training and target UAVSs in the vertical direction is provided

in Figs. 4 and 5 respectively. Both figures show that the
output of the identified model fits the output measurement
of the actual UAV, which indicates that the identified model
properly represents the UAV’s dynamic model. It is noted
that since system identification is an approximation method,
small estimate errors are acceptable. The same system identi-
fication procedure is applied to estimate the UAVs’ dynamic
models in the heading direction.
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Fig. 4: System identification of the training UAV in the vertical direction.
The top shows the input (given trajectory) and output (actual trajectory)
measurements of the training UAV when it tracks the given trajectory in the
vertical direction. The bottom shows the actual trajectory and the trajectory
generated from the identified model when it is given the same reference
trajectory.
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Fig. 5: System identification of the target UAV in the vertical direction.
The top shows the input (given trajectory) and output (actual trajectory)
measurements of the target UAV when it tracks the given trajectory in the
vertical direction. The bottom shows the actual trajectory and the trajectory
generated from the identified model when it is given the same reference
trajectory.

The bode plots of the identified dynamic models for
both UAVs in the vertical direction are given in Fig. 6.
Though the two UAVs share the same flying mechanism,
it shows that their dynamic models in the vertical direction
are quite different. Similar differences between the identified
dynamic models of the two UAVs in the heading direction
are observed, and the corresponding bode plots are not shown
here to avoid redundancy.
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Fig. 6: Bode plots of UAV’s trajectory tracking dynamics in the vertical
direction

C. Numerical verification

In this study, we consider two scenarios: (1) the two UAVs
track an aggressive step input in the vertical direction, and
(2) the two UAVs track a square reference in the 2D space
(x-z plane). Numerical studies are performed based on the
identified models for both training and target UAVs. In each
scenario, the training UAV tracks the reference trajectory
first, and its tracking error is recorded and sent to the learning
filter to generate the learning signal. The learning signal
is then added to the feedforward loop of the target UAV
when the target UAV tracks the same reference trajectory.
Both UAVs track the same reference trajectory only once
and there is no repetitive training for each UAV. It is worth
noting that: (1) no matter whether the tracking performance
of the training UAV is better or worse than that of the target
one, its tracking error will be sent to the proposed learning
algorithm to improve the target UAV’s tracking performance;
(2) the two UAVs are not necessary to fly simultaneously or
consecutively. As long as the flight data of the training UAV
is recorded and stored, it can be utilized by the target one
for performance enhancement.

Scenario 1: Target UAV tracks a step reference in the
vertical direction. Fig. 7 provides the reference trajectory
(i.e., the target reference), the tracking performance of the
training UAYV, the learning signal generated by the proposed
learning algorithm, and the tracking performance of the target
UAV with and without learning. It shows that the target
UAV’s trajectory tracking performance has been improved
with the proposed learning algorithm.

Scenario 2: Target UAV tracks a square reference in the
2D space. The tracking performance is given in Fig. 8. It
shows that the tracking performance of the target UAV has
been improved in both directions with the learning algorithm.
The improvement in the z-direction is more obvious than
the improvement in the x-direction, which is because the x-
direction baseline control of the target UAV is better than
the z-direction baseline control.

D. Experimental validation

We also conduct experimental tests. In order to be con-
sistent with the numerical studies, the same two scenarios
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Fig. 7: Numerical study: trajectory tracking in the vertical direction

——Tartget

1.6
—+—Target UAV without learning
2 L4+t -+ -Target UAV with learning
N2 B Start point
g 1.2}
g1 S previan s
3
o
2 08F Y
8 ?
S 0.6 'S
3 {
£ 047 b
o
>
0.2 _.‘_,._...o"“"
*
*
Or = -
0 0.5 1

Heading direction position (m)

Fig. 8: Numerical study: trajectory tracking in 2D space

are performed in the experimental tests. In each scenario,
both training and target UAVs hover at an altitude of 0.5
meters as the initial condition and then track the given
references. While the training UAV is tracking the reference,
the motion capture system captures the pose of the training
UAV. The training UAV’s tracking error is calculated and
used to generate the learning signal which is then added to
the feedforward loop of the target UAV. The detailed step-
by-step implementation of the proposed learning algorithm is
described in Algorithm 1, where the weighting factor wy is a
scalar to scale down the learning signal before being injected
to the target UAV. Such a factor is to make the learning pro-
cess robust and less aggressive in consideration of modeling
uncertainties in actual experimental tests. In each scenario,
the trajectory tracking of the target UAV without learning is
also conducted for performance comparison purpose.
Scenario 1: Target UAV tracks a step reference in the
vertical direction. Fig. 9 shows the tracking performance of
the target UAV with and without learning, as well as the
learning signal generated by the proposed learning algorithm.
It shows that the transient tracking performance (0 ~ 4s) of
the target UAV is greatly enhanced by the learning algorithm,



Algorithm 1 Learning algorithm

Inputs:

1. Dynamic models P, Py
2. Weighting filter w;
3. Learning filter L
Initialization: Set trajectory r, for training and target UAVs
if t < T, then

| Training UAV is flying while Target UAV is waiting.
else
while Training UAV is flying do

1. Calculate Training UAV’s tracking error eq(?)
2. Training UAV sends ep(f) to Target UAV
3. The learning algorithm makes eo(¢) go through L
and generates the learning signal h: h= L{eo(t)}
4. Target UAV weights the learning signal by w;: h
= wi{h}
5. The learning signal % is added to the feedforward
loop of the target UAV

end
Target UAV learns from Training UAV’s experience and
tracks the same reference r,.

end

which validates the effectiveness of the proposed learning
method. It is noted that the target UAV reaches the reference
signal around 4s, and stays around with small variations in
an acceptable range.
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Fig. 9: Experimental test: trajectory tracking in the vertical direction

Scenario 2: Target UAV tracks a square reference in
the 2D space. The tracking performance is given in Figs.
10-12. Fig. 10 shows that the z-direction baseline con-
troller is not good, and the tracking error has been signif-
icantly reduced by using the proposed learning algorithm.
Fig. 11 shows that the x-direction baseline controller is
good, and still, the tracking performance in the x-direction
can be further enhanced by using the learning algorith-
m. Fig. 12 compares the 2D trajectory tracking without
and with learning. The experimental video is available vi-
a the following link: http://zh.eng.buffalo.edu/

PaperDemo/KnowledgeTransfer.mp4.

——Target
257 ——Target UAV without learning| |
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Fig. 10: Experimental test: trajectory tracking in the vertical direction with
a time-varying reference signal
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Fig. 11: Experimental test: trajectory tracking in the heading direction with
a time-varying reference signal
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Fig. 12: Experimental test: trajectory tracking in 2D space.

V. CONCLUSIONS

This paper presents a new learning algorithm that can
transfer the trajectory tracking experience from one UAV



to another with different dynamics. It aims to automatically
improve the target UAV’s trajectory tracking performance
by learning from another UAV without modifying the target
UAV’s baseline controller. This learning algorithm gener-
ates a learning signal which can be directly added to the
feedforward loop of the target UAV and enhances its track-
ing performance. Essentially, this learning algorithm is an
augmented ILC: it extends the property of “learning from
its own experiences” in standard ILC to the property of
“learning from the experience of others even with different
dynamics”. It establishes a learning mechanism that can be
conducted among heterogeneous systems, i.e., systems with
different dynamics. This paper provides detailed formulation,
derivation, and analysis for the proposed learning algorithm
and validates its effectiveness via both numerical studies and
experimental tests.
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