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Abstract— Flapping-wing micro air vehicles (FWMAVs) in-
spired by the nature are interesting flight platforms due to
their efficiency, concealment and agility. However, most studies
have been conducted in indoor environments where external
disturbance is excluded because these FWMAVs are susceptible
to disturbance due to their complex dynamics and small size.
In order for these bio-inspired robots to perform various tasks
outside, a capability to react robustly to external disturbance
is essential. In this paper, we propose an algorithm that allows
a FWMAV to fly well even under external disturbance. First,
we derive the attitude dynamics of the FWMAV based on flight
data. Then, we design a robust attitude controller using DOBC
based on the dynamics. Also, we add a flight mode selector to
recognize disturbance autonomously and switch to the robust
control mode. Finally, we experiment outdoor flight of the
FWMAV with wind disturbance. The FWMAV recognizes the
existence of disturbance autonomously, and produces additional
control inputs to compensate the disturbance. The proposed
algorithm is validated with experiments.

I. INTRODUCTION

Recent years have seen a great interest in diverse forms of
Micro Air Vehicles (MAVs) that can perform various tasks
in a confined space. These MAVs usually operate in a low
Reynolds number region because they are small in size and
low in speed. In this region, it is known that the flapping-
wing MAVs (FWMAVs) are more efficient than other flying
vehicles and also able to achieve good maneuverability and
agility [1]. Such advantages and pursuit of bio-inspiration
have led to various experiments such as hovering [2], [3],
tracking [4], [5], autonomous takeoff [6], obstacle avoidance
[7], acrobatic movement [8] using FWMAVs. However,
these experiments in common were conducted in an indoor
environment where effects of disturbance such as wind are
excluded. FWMAVs are susceptible to disturbance because
they can only produce limited forces and moments due to
their complex dynamics and small size. Despite the necessity
to design a controller that can respond robustly to external
disturbance, there are very few researches on this topic.

Researchers at Harvard university [9] tried to design an
adaptive controller that can resist to wind disturbance with
an insect-size FWMAV. The robot, lighter than 100 mg, has
to be tethered for power and control, and the fragile nature of
the robot restricts it from performing various missions. The
authors acknowledge its limitation that the control strategy is
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Fig. 1: Overlapped snapshots of a robotic bird flying in the
presence of wind disturbance.

based on debatable equations of force and moment generated
by wind disturbance. Researchers at Purdue university [10]
proposed a robust control algorithm that can detect the
environmental changes such as grounds, walls or obstacles
using the motor feedback data. The robot can fly even though
it collides with obstacles, but it has to be tethered to external
actuation and sensing devices. Also, the proposed algorithm
has not been tested in windy environments.

One method to improve robustness is disturbance-
observer-based control (DOBC). It estimates the disturbance
or the influence of the disturbance, and makes an action
to compensate the effect of the disturbance based on the
estimation. It not only compensates external disturbance,
but also model uncertainties such as unmodeled dynamics
and parameter perturbation. Also, with DOBC, a nominal
controller that is designed with classic control theory in the
absence of disturbance can be used directly. All we have
to do is to estimate the disturbance and add a feedforward
control term in the inner loop of the nominal controller.
By doing this, both the tracking performance and robust-
ness can be achieved unlike most robust control theories
such as H −∞ control, where the nominal performance is
sometimes sacrificed to obtain better robustness. Because of
these advantages, DOBC has been successfully applied to
various platforms, such as fixed-wing aircraft [11], rotary-
wing aircraft [12], missile [13], aerial manipulator [14].

Although there have been many attempts to identify the
dynamics of FWMAV in various ways, the exact phenomena
caused by the flapping motion are not still well understood
[15]. Also, complex fluid analysis is inevitable for precise
modeling because the wings of FWMAV often consist of
flexible thin-film. These problems make it very difficult to
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Fig. 2: Experimental setup for attitude dynamics modeling.

analyze forces and moments due to flapping motion, so many
researchers who design and study FWMAVs assume simpli-
fied movements [16]. By applying DOBC to the FWMAV, the
influence of this unmodeled dynamics could be minimized,
and we can design a controller that can respond to external
disturbance robustly.

In this paper, we propose an algorithm that allows the
FWMAV to fly well even under external disturbance. First,
we derive attitude dynamics of a FWMAV based on ex-
perimental data. In order to simulate flight of a FWMAV,
we fix the robotic bird and generate a wind corresponding
to the robotic bird’s translational velocity in a laboratory
condition to derive attitude dynamics of the FWMAV. Then
we design a robust attitude controller using DOBC based
on the dynamics. Also, we add a flight mode selector to
recognize disturbance autonomously and switch to the robust
control mode. The flight mode selector recognizes distur-
bance with anomaly detection algorithm based on sparse
gaussian process regression. This algorithm does not assume
the specific model of an aircraft, and applicable to various
vehicles including FWMAV, unlike many previous anomaly
detection algorithms [17], [18].

Most previous studies [2]–[7] usually design the controller
assuming stable flight, and it is difficult to guarantee their
flight performance when disturbance exists. There have been
studies based on model-based robust control [10], [19].
However, their controller also is applicable only during stable
maneuver, and only deals with model uncertainty. Also,
the control input from the controller severely chatters and
gets frequently saturated. There also have been attempts to
achieve aggressive maneuver for a FWMAV. A predeter-
mined feedforward control is used in [8] and deep learning
is employed in [20]. But such approaches are applicable only
to a limited set of prearranged tasks. This paper contains one
of the first attempts to implement an algorithm that allows a
palm-sized FWMAV to fly in a disturbance environment.

To validate our algorithm, we perform both tethered flight
experiments and free flight experiments. In the tethered
flight, to simulate a situation where the flying robotic bird
encounters an external disturbance, we generate wind cor-
responding to the sum of the robotic bird’s velocity and

Fig. 3: Free body diagram of the robotic bird.

external wind disturbance to the tethered robotic bird. In the
free flight, we apply wind disturbance to the actual platform.
We can see that the robotic bird observes the disturbance
and generates control inputs to maintain stable attitude by
the proposed DOBC algorithm.

Our contributions are summarized as:
• Modeling of moments acting on a flying FWMAV
• Design of a robust controller for a FWMAV to maintain

stable attitude
• Anomaly (disturbance) detection algorithm generally

applicable to various vehicles including FWMAV
• Application of the proposed algorithm to a flying bird

and performance validation
The rest of the paper is organized as follows. In Section

II, we cover the attitude dynamics model of the robotic
bird. Based on experimental data, we propose a simple
model describing the moments that occur when the robotic
bird is flying. In Section III, we propose a robust control
algorithm to deal with unknown external disturbance and
model uncertainty, and find a disturbance situation. The
results of experiments are displayed in Section IV. Section
V concludes the paper.

II. MODELING ATTITUDE DYNAMICS
The FWMAV used in this paper is shown in Figure 2, and

the detailed descriptions of the robotic bird can be found in
our previous work [4]. It has two pairs of flapping wings and
a rudder in the tail wing. For weight consideration, there is
no onboard device other than the actuators and transceiver. In
this section, we derive the data-driven longitudinal attitude
dynamics of the robotic bird.

Various studies have been conducted on the longitudinal
movement of the FWMAV [21]–[23]. In tailed FWMAVs, the
tail wing provides internal stability in a cruise condition, i.e.,
when a small perturbation in a equilibrium state causes the
robot to vibrate in the pitch direction, and the tail wing can
dampen this vibration passively. However, if the gust blows
and the robot loses its attitude, this vibration can become so
big that it is difficult to restore the flight performance by the
passive damping of the tail wing only. The robot controls
the flapping frequency through robust control based on the
model in this section so that the robot can recover from such
perturbation.

The flapping wing has three independent rotational move-
ments around the body: flapping motion around the body



axis, feathering motion around the axis of the wing, and
deviation motion up and down on the plane of the wing. But
it is difficult to consider all these rotational movements, and
experimental data shows that flapping motion is the most
dominant motion in our platform. In this paper, we only
consider the effects of flapping motion. Also, all dynamics
in this paper is cycle-averaged.

The free body diagram of the robotic bird in flight is shown
in Figure 3. In this paper, we use ZXY-Euler angle sequence
to avoid singularities since our robotic bird operates at high
pitch angles in disturbance region. V is the velocity of the
robotic bird, θ is the pitch angle, γ is the flight path angle,
and α is the stroke plane angle defined by the angle between
the velocity and the stroke plane. We assume free forward
flight (γ ≈ 0) and α can be calculated by

α = θ −π/2 (1)

When the robotic bird is flying, we assume that the moments
applied to the bird can be classified into four:
• moment generated by the flapping motion itself, M1
• moment generated by the translational motion like fixed-

wing aircraft, M2
• moment generated by collaborative effects of both trans-

lation motion and flapping motion, M3
• moment generated by natural damping induced by an-

gular motion, M4

These moments can be parameterized as follows:

M1 = f1(ω)

M2 = f2(V,α) =
1
2

ρV 2Cm(α)Sc

M3 = f3(V,ω)

M4 = f4(θ̇) (2)

where ω is the flapping frequency, ρ is the density of air,
Cm is the pitching moment coefficient of the robotic bird
and it is a nonlinear function of α , S is the area of the wing,
and c is the chord length of the wing. We model each of
the moments M1,M2,M3,M4 based on experimental data as
described below. We treat the robotic bird as a black box with
the data-driven modeling process which can cause modeling
error, but the robust controller to be described in Sec III-B
can stabilize the system even with this data-driven model.
Physical models of other FWMAV can be found in [24],
[25].

A. Modeling without translational motion

First, we model the moments M1 and M4 in the absence of
translational movement of robotic bird (i.e. V = 0). As shown
in Figure 2, we fix the robotic bird so that it could rotate
in pitch direction only. The axis of rotation is set to pass
through the center of gravity of the robotic bird to eliminate
the gravitational effects. We apply random control signals
generated by a human to the robotic bird through the RC
controller. Then the robotic bird rotates around the center
of gravity point (tethered axis), and we collect the pitch
angle and flapping frequency data with a motion capture

Fig. 4: Optimized attitude dynamics model when the robotic
bird moves at a speed of V = 1.4 m/s and θ̇ = 0

system for 10 minutes. Acceleration and velocity information
is estimated from Kalman filter [26] The attitude dynamics
of the robotic bird when there is no translational motion is
as follows, where I is the moment of inertia of the robotic
bird, and it is a known constant.

Iθ̈ = M1 +M4 (3)

Based on the above training data, we can estimate the
moments M1 and M4 minimizing the following loss function
L1. We assume that the moment due to the flapping itself
M1 is proportional to the flapping frequency and M4 is
proportional to the pitch rate. In fact, the force and moment
due to flapping motion is quadratic to the flapping frequency
[27]. However, even if the moment is treated to be linearly
proportional to the flapping frequency, the regression is
effective enough practically [28]. The weighted least square
(WLS) method is used for optimization.

L1 = Iθ̈ − (M1 +M4)

M1 = k1ω

M4 = k4θ̇ (4)

where k1, k4 are constants to be optimized.

B. Modeling with translational motion

In this subsection, we model moments generated by trans-
lational motion. The basic data collection setup is same as
in Section II-A. In addition to the previous setup, we add
a multiple-fan wind tunnel to make the free stream velocity
as if the robotic bird is flying in the air. The wind generator
consists of an array of twenty 12V DC fans and its dimension
is 40×32 cm. An arduino board controls the speed of wind
by pulse-width modulation (PWM) singal between 0 and 4.8
m/s. The tested free stream velocities range from 0.5 m/s
to 2 m/s, with an increment of 0.3 m/s. In the same way
as Section II-A, we measure the pitch angle and flapping
frequency for every 10 minutes. The attitude dynamics of
the robotic bird with translational motion is as follows.



Iθ̈ = M1 +M2 +M3 +M4 (5)

We can model M2 and M3 so that the loss function L2
defined below is minimized using the dynamic parameters
calculated in Section II-A. We model Cm as a N-th order
fourier series because it is a periodic function with period 2π .
M3 is assumed to be proportional to the flapping frequency
ω and proportional to the square of free stream velocity V
with our heuristic knowledge. WLS is used for optimization
as before.

L2 = (Iθ̈ −M1−M4)− (M2 +M3)

Cm(α) =
N

∑
n=0

(ansin(nα)+bncos(nα))

M2 =
1
2

ρV 2Cm(α)Sc

M3 = k3V 2
ω (6)

where an, bn, k3 are constants to be optimized. The overall
optimized results in Section II are shown in Figure 4, where
a vertical bar at each point represents the ±σ interval.

III. ROBUST CONTROL ALGORITHM
We use the disturbance-observer-based controller (DOBC)

[29] for robust attitude control of a FWMAV. From Section
II, the attitude dynamics of the robotic bird with velocity V
is represented as follows.

θ̈ = F(θ , θ̇ ,ω,V ) (7)

The velocity of our robotic bird does not change signif-
icantly in cruise condition, so we treat the velocity V as a
constant. Then, the attitude dynamics can be considered as
a nonlinear system whose state is θ and control is ω . We
design a robust controller of the FWMAV that can maintain
stable attitude in spite of external disturbance based on the
DOBC. Also, we design a flight mode selector to recognize
disturbance and switch to the robust control mode.

A. Nominal controller
Before designing a disturbance observer and compensator,

we design two nominal controllers. The nominal controllers
are designed with assumption that there is no external
disturbance and model uncertainty. One is the controller for
tethered flight, and it is designed to maintain a desired pitch
angle. The other is the controller for free flight, and it is
designed to follow the desired path.

1) Tethered flight: We use model predictive control
(MPC) to maintain a desired pitch angle. The following
optimization problem is solved with iLQR [30].

Ω = argmin
H

∑
i=0

c(θi, θ̇i,ωi)

subject to θ̈i = F(θi, θ̇i,ωi,V ) (8)

where Ω is a sequence of the optimal flapping frequency,
H is the MPC time horizon, and the subscript i denotes the
value at the i-th time step. The cost function c(θ , θ̇ ,ω) is

c(θ , θ̇ ,ω) = kθ (θ −θr)
2 + k

θ̇
θ̇

2 + kω(ω−ωr)
2 (9)

Fig. 5: Block diagram of the proposed DOBC method for
the FWMAV with nonlinear dynamics.

where kθ ,kθ̇
,kω are the weight factors for each cost term, θr

is the desired pitch angle, and ωr is the equilibrium flapping
frequency corresponding to the given desired pitch angle θr,
i.e.,

0 = F(θr,0,ωr,V ) (10)

When we obtain the optimal sequence of flapping frequency
Ω by the above optimization process, only the first com-
ponent of Ω is used as a control input. Then, the optimal
frequency sequence is recalculated at the next time step and
this process is repeated.

2) Free flight: We use a simple PID controller to follow
the desired path. Longitudinal control is achieved by the
flapping motion, and the lateral control is achieved by the
rudder. The gains of the controllers are experimentally tuned.

B. Disturbance and uncertainty compensator

Here, we design a robust controller based on DOBC
to maintain the desired attitude. The dynamics (7) can be
expressed in the following form:

ẋ = f (x)+g1(x)u+g2(x)d

y = h(x) (11)

where x = [θ , θ̇ ]T , u = ω , d ∈ R2, y = θ denote the state,
input, disturbance and output vectors, respectively. f (x),
g1(x) and g2(x) are smooth functions in terms of state x.
We can design the following disturbance observer for this
system to estimate the unknown disturbance d [29].

ż =−∂ p
∂x

(x)g2(x)z−
∂ p
∂x

(x)( f (x)+g1(x)u+g2(x)p(x))

d̂ = z+ p(x)
(12)

where d̂ is the estimated disturbance, z is an auxiliary vector
and p(x) is the observer gain function to be designed. The
disturbance estimation error is defined as

ed = d̂−d (13)



(a) θr = 50◦ (b) θr = 60◦

Fig. 6: Results from the tethered flight experiments of the
robotic bird with translational velocity V . Light-colored lines
are individual flight trajectories and thick solid-colored lines
are representative trajectories.

Combining the system dynamics (11), disturbance observer
(12), and error (13) yields

ėd = ˙̂d− ḋ = ż+ ṗ(x)− ḋ

=−∂ p
∂x

(x)g2(x)ed− ḋ (14)

This system is asymptotically stable under the assumption
that the disturbance d varies slowly compared to the observer
dynamics (ḋ ≈ 0) and if we select p(x) properly. Then,
the estimated disturbance from the disturbance observer
can follow the actual disturbance. The disturbance-observer-
based control law is proposed to compensate the effect of
disturbance as

u = un +ud

= un +Kd d̂ (15)

where u is the total control input, un is the control input from
the nominal controller in Section III-A, Kd is the disturbance
compensation gain. The details of calculation of Kd and the
stability analysis are in [29].

C. Flight mode selector

We design two flight modes. One is the nominal mode
where the nominal controller operates. With DOBC, it is
inevitable to sacrifice the altitude maintenance performance
during flight. Therefore, when there is no disturbance, only
the nominal controller operates to achieve the maximum
tracking performance. The other is the robust control mode,
which prioritizes a stable attitude to avoid falling, losing
some tracking accuracy. DOBC is used in the robust control
mode. Despite we set the desired angle in DOBC as the
attitude value in the cruise condition of the robotic bird to
regulate the altitude, the tracking accuracy must be sacrificed.
This mode is only activated when disturbance exists to max-
imize the tracking performance. This approach provides the
ability that the FWMAV maximizes the tracking performance
while flies robustly in response to disturbance.

To determine which flight mode to use during the flight,
we add a flight mode selector that checks the existence of the

(a) θr = 50 (b) d̂d

Fig. 7: Results from the tethered flight experiments of the
robotic bird with translational velocity V , when there is
unknown wind disturbance Vd . (a) Attitude trajectories. (b)
Estimation results of pure external disturbance on the angular
velocity channel and the corresponding wind disturbance.

disturbance. It is implemented through sparse gaussian pro-
cess regression (GPR). This flight mode selector is designed
as follows.

We collect flight trajectory of FWMAV τ =(
s0, a0, · · · , sT−2, aT−2,sT−1

)
of length T in the

disturbance-free environment. The state vector
st =

[
θθθ

T ,vvvT ,ωωωT
]T includes the euler angle, body velocity,

body angular velocity of FWMAV, and the action at is
control signal of actuators. We parameterize our nominal
dynamics function f̂ (st ,at) = (st+1 − st) as GPR off-line.
Then, we can predict the mean m and variance µ of next
state st+1 with this GPR on-line. If the Z-score during
the flight Z = (st+1−m(st ,at))/µ(st ,at) is bigger than the
threshold T , it is determined that there is disturbance and
DOBC is turned on. We use the threshold of Z-score as 4,
which corresponds to the 99.994% confidence interval.

The total control structure of the proposed algorithm is
shown in Figure 5. In the nominal mode, only the nominal
controller operates and the robotic bird follows the desired
path (free flight case). However, when there is a disturbance,
our flight mode selector recognizes it and activates the robust
control mode. In this mode, the inner loop of DOBC compen-
sates both model uncertainty and external disturbance, and
the control input is generated to maintain the stable attitude
and make a stable flight.

IV. EXPERIMENT

We validate the proposed algorithm through experiments.
The experimental setup is illustrated in Figures 1 and 2. The
MPC time horizon H is set to 60, and the sampling time
∆t is 0.01 second. The control system is implemented on a
laptop computer with an Intel Core i7-8550U CPU running
at 4.0 GHz. Motion capture camera was used to measure the
flight states of the bird.

θrθrθr(
◦) Nominal(◦) DOBC(◦)

Experiment A 60 5.4355 3.8162
50 17.2901 2.0522

Experiment B 50 22.7178 2.6822

TABLE I: RMS error with the nominal controller and DOBC



A. Tethered flight

1) Experiment without external disturbance: The first set
of experiments aims to maintain a desired pitch angle while
the robotic bird flies at the constant velocity of V = 1.4 m/s.
The test setup was devised to imitate such condition in an
indoor laboratory by fixing the robotic bird and blowing a
constant wind Vwind =V using the wind generator. The cor-
responding experiment results are presented in Figure 6. To
analyze the effect of model uncertainty, two different desired
pitch angles θr were selected. Six flights were performed
with the nominal model-based control and the disturbance-
observer-based control at each desired pitch angle.

It is difficult to model accurately the complicated move-
ments of the flapping, and there exists modeling error. In
our setup, the more stable pitch angle is, the more amount
of regression data are collected in Section II. Therefore, as
the pitch angle is close to the unstable region (low pitch), the
model accuracy decreases. We notice the performance of the
nominal controller when the desired pitch angle θr = 50◦ is
poor than θr = 60◦. On the other hand, with DOBC, we can
compensate this model uncertainty and follow the desired
pitch angle regardless of the value.

2) Experiment with external disturbance: In the second
experiment, unknown wind disturbance is added to the
previous experiment. To test the robustness against the dis-
turbance, wind with velocity Vwind = V +Vd is blown from
the wind generator, where the unknown time-varying wind
disturbance Vd is designed as

Vd = Asin(
2π

T
t) (16)

where A = 0.6 m/s is the amplitude of disturbance and the
T = 15 s is the period of disturbance. Six flights were
performed with each controller.

The corresponding flight trajectories are shown in Figure
7a. Despite the sinusoidal disturbance, the DOBC follows the
desired trajectory just like the previous results in Section IV-
A.1, while the nominal controller shows oscillation according
to the velocity of wind.

In Section IV-A.1 we estimate and compensate the influ-
ence of model uncertainty d̂m, and we estimate and com-
pensate the influence of both model uncertainty and external
disturbance d̂ in Section IV-A.2. With these two results, we
can measure the influence of the pure external disturbance,
d̂d . The effect of pure disturbance is the influence of both
model uncertainty and external disturbance minus the aver-
age effect of model uncertainty:

d̂d = d̂− 1
|D| ∑

d̂m∈D

d̂m (17)

where D is the dataset obtained in Section IV-A.1. Time
histories of the influence of the pure disturbance d̂d and the
external wind disturbance Vd are shown in Figure 7b. We can
check that our estimated disturbance d̂d follows the Vd with
a small time delay. Such time delay is explained by two
reasons. One is the slow multiple-fan dynamics. Vd is the
command to the fans, and the actual wind disturbance has

Fig. 8: Overview of the free flight experiments.

the latency because of the actuator delay and the distance
between the robotic bird and the multiple-fan. Also, we
design a low-pass filter to estimate the disturbance on-line,
and there is an associated delay.

As the external disturbance Vd becomes more powerful, its
influence on the attitude dynamics of the robot will increase,
and the actual estimation results from DOBC match our
physical insight. Also, the Figure 7 and Table I confirm that
the proposed control can estimate and compensate external
disturbance and model uncertainty well, and significantly
reduce the RMS error.

B. Free flight

After the tethered flight experiments, we perform free
flight experiments. An overview of the experiment is shown
in Figure 8. First, the robotic bird takes off in a disturbance-
free region, and it enters the disturbance region. In the
disturbance region, the center of the wind fan with a diameter
of 1 m is located at (x,y) = (1.5,2) and it generates a
constant wind of 2 m/s. Such wind speed is equivalent to
150% of the equilibrium speed of the robotic bird, and
especially given that our robot weighs only 16 grams, the
2 m/s wind is very strong. When the robot enters the wind
region, the wind causes a severe pitch-down motion which
makes the robot to oscillate in the pitch direction. With
DOBC, the robot regulates this oscillation and restores the
flight performance. Ten flights were performed with each
controller.

In the equilibrium state (i.e. no-disturbance region), the tail
wing regulates pitch angle passively, and the attitude control
is less important than the altitude. In order to maintain
desired altitude, the robotic bird adjust flapping frequency
with the PID controller described in Section III-A.2. On the
other hand, in the disturbance region, maintaining the stable
attitude is more important than path following, so the DOBC
controller is designed to maintain the equilibrium pitch angle,
not the altitude. Because there is the trade-off between the
control performances in altitude vs. attitude, the flight mode



selector is used to determine which control mode should be
employed.

At the beginning of the flight, there is no disturbance
and the robotic bird is in the contact with another object
(e.g. hand or launcher) for takeoff, and its dynamics is very
different from the attitude dynamics derived in Section II.
Therefore, the flight mode selector is not activated immedi-
ately after takeoff, and the bird is on nominal mode. Also,
the control input of DOBC ud is not applied to the robotic
bird, but the state variables used in DOBC such as z, d̂ are
being updated internally for fast adaptation.

A few seconds after takeoff, the robot activates the flight
mode selector. Anomaly detection results of the flight mode
selector during free flight are shown in Figure 9. The robotic
bird enters the disturbance region x> 1 m at 5 seconds. After
about 0.2 seconds, the Z-score of the flight mode selector
exceeds the anomaly threshold because the flight trajectories
of the robotic bird are beyond the previously learned stable
flight trajectories due to the disturbance. Then, our robot
detects danger and enters the robust control mode to ensure
the flight stability. In the early stage of the robust control
mode, the Z-score is slightly larger than the stable flight
due to disturbance. However, after 8 seconds, our DOBC
regulates the flight attitude and the Z-score is reduced to the
level similar to before entering the disturbance region. It is
shown in Figure 9a. On the other hand, with only the nominal
controller, the robot loses flight stability and becomes out of
control, so it cannot reduce the Z-score. Finally, the robot
crashes to the ground. It is shown in Figure 9b.

The attitude trajectories of free flight are shown in Figure
10. When entering the disturbance region at 5 seconds, the
disturbance causes the pitch-down motion of the robotic
bird. In Figure 4, the pitch-down motion produces a pitch-
up moment, which generates a pitch-down moment again.
Therefore, the robotic bird oscillates in the pitch direction,
which should be regulated for stability. When we use only
the nominal controller, the robotic bird oscillates aggressively
and finally it loses stability and crashes. On the other hand,
DOBC helps the robotic bird to maintain the stable attitude,
and it can fly even in the disturbance region.

V. CONCLUSIONS

This paper proposes one of the first attempts to design an
algorithm that allows a palm-sized FWMAV to fly in a distur-
bance environment. We build a simplified attitude dynamics
model of a FWMAV based on experimental flight data. With
this dynamics, we construct a robust attitude controller for a
FWMAV using a disturbance observer. Unlike the previous
studies on disturbance rejection of a FWMAV, we estimate
the effects of disturbance based on the actual plant behavior,
without a debatable explicit equation of wind disturbance.
Also, to determine when to perform robust control, we
add an anomaly detection algorithm using GPR. With our
flight mode selector, the robotic bird detects disturbance
and selects flight mode. The proposed anomaly detection
algorithm is based on supervised learning. Therefore, if
an appropriate input-output dataset of the aircraft can be

(a) Proposed control algorithm

(b) Nominal control algorithm

Fig. 9: Anomaly detection results of flight mode selector
during free flight. When the Z-score is larger than the
threshold T , the robot detects disturbance and switches to the
robust flight mode. (a) With the proposed control algorithm,
the robot can stabilize its attitude, and the Z-score is reduced
despite the disturbance. (b) With nominal control algorithm,
the robot becomes out of control due to the disturbance, and
the Z-score in disturbance region fluctuates widely.

obtained, the proposed algorithm can be generally applied
to various platforms, unlike the existing anomaly detection
algorithm. The proposed robust control algorithm is validated
in the flight control experiments.

We use a multiple-fan wind tunnel to determine the
attitude dynamics of a FWMAV. Although there is some
modeling error due to the assumption in the moments of fly-
ing robotics bird, we can regulate the attitude of the FWMAV
with DOBC even under the external disturbance. Also, with
proposed anomaly detection algorithm, we are able to specify
when the disturbance affects the flight performance during
the flight. When the disturbance is detected, the robotic bird
changes the flight mode to ensure stable flight, and can fly
stably with robust control. It is expected that this research
will contribute to the development of FWMAVs which can
perform various outdoor missions.



Fig. 10: Results from the free flight experiments. Light-
colored lines are individual flight trajectories and thick solid-
colored lines are representative trajectories. At 5 seconds,
the robot enters the disturbance region and our flight mode
selector recognizes it. With the proposed algorithm, the robot
can stabilize its attitude even under wind disturbance, unlike
the nominal algorithm.
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