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Abstract— One of the key factors for extended autonomy and
resilience of multi-robot systems, especially when robots operate
on batteries, is their ability to maintain energy sufficiency
by recharging when needed. In situations with limited access
to charging facilities, robots need to be able to share and
coordinate recharging activities, with guarantees that no robot
will run out of energy. In this work, we present an approach
based on Control Barrier Functions (CBFs) to enforce both
energy sufficiency (assuring that no robot runs out of battery)
and coordination constraints (guaranteeing mutual exclusive
use of an available charging station), all in a mission agnostic
fashion. Moreover, we investigate the system capacity in terms
of the relation between feasible requirements of charging cycles
and individual robot properties. We show simulation results,
using a physics-based simulator and real robot experiments to
demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Long term autonomy is considered one of the key
ingredients for the practical application of multi-robot
system. When performing missions out of the comfort of
the lab, limited battery capacity and the recharging ability of
robots are one of the most important obstacles to deployment.

Many approaches can be found in literature that deal with
this issue. Early efforts took directions as energy aware
path planning [1] and node scheduling in wireless sensor
networks. Later ideas have been integrated in multi-robot
systems, as in [2] in which a mission was split in real time
among participating agents depending on their energy level.

Another solution for energy maintenance is through the
use of charging stations, whether being static or mobile.
In [3], a group of charging robots plans routes to deposit
batteries on predefined paths for robots doing surveillance
so as to eliminate detours and assure energy sufficiency.

Notomista et al. [4] propose using static charging stations
and a control barrier function (CBF) framework to assure
energy persistence in a group of robots. This framework
provides a constraint based behavioral layer that guarantees
the survivability of robots by driving each robot to a
dedicated charging station in a minimally invasive way
(affecting their original mission as little as possible).

In this paper, we extend [4] by considering a group
of robots doing a mission (e.g. coverage or waypoint
navigation), but having a single charging station that they
need to share. The contribution of this paper is twofold:
1) Augmenting the results in [4] with a CBF-based
coordination framework that assures mutually exclusive use
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of the charging station, and 2) introducing some sufficient
conditions that describe the system’s capacity and assure the
overall feasibility of the coordination.

II. PRELIMINARIES

A. Control Barrier Functions (CBF)

A control barrier function (CBF) [5] is a tool that can
be used to assure safety of control systems. In this context,
safety means guaranteeing that the states of the system stay
in a “safe set” and never wander off to “unsafe” regions.

The safe set is defined to be the superlevel set of a
continuously differentiable function h(x) such that [5]:

C = {x ∈ Rn : h(x) ≥ 0}
∂C = {x ∈ Rn : h(x) = 0}

Int(C) = {x ∈ Rn : h(x) > 0}
(1)

which means that assuring that h(x) > 0,∀t > t0 implies
the safe set C is positively invariant and the system is safe.
For a control affine system of the form

ẋ = f(x) + g(x)u

having a control action u that achieves

Lfh(x) + Lgh(x)u︸ ︷︷ ︸
ḣ(x)

≥ −α(h(x)) (2)

where α(h(x)) is an extended type K function, assures that
C is positively invariant. In this paper we use zeroing control
barrier functions (ZCBF) [6] owing to their robustness and
asymptotic stability properties [7].

Definition 1: [6] For a region D ∈ C a continuously
differentiable function h(x) is called a zeroing control barrier
function (ZCBF) if there exists an extended class K function
α(h(x)) such that

sup
u∈U

(Lfh(x) + Lgh(x)u+ α(h(x))) ≥ 0 ∀x ∈ D (3)

We can also define the set Kzcbf [6] for the ZCBF h(x) as

Kzcbf = {u ∈ U : Lfh(x) +Lgh(x)u+α(h(x)) ≥ 0} (4)

which is the set containing all the “safe” control inputs.
Choosing a Lipschitz continuous controller u from Kzcbf is
sufficient to ensure that the safe set C is forward invariant [6].

Equation (2) represents a basic requirement on the
control action to assure safety, but this control action
is not necessarily that of an arbitrary mission. Quadratic
Programming (QP) can be used to enforce (2) as a constraint
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that has to be respected by the mission’s nominal control
action unom in the following manner [4]:

u∗ = min
u

||u− unom||

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))
(5)

B. Problem statement

Given a group of n robots, we:
• Ensure that the battery voltage of each robot never goes

below a certain desired level (safety).
• Ensure that there is no more than one robot at the

charging station at any time (coordination).
• Investigate the number of robots that can be

accommodated by one charging station (capacity).
For the sake of simplicity of analysis, we use a robot

model similar to [4]:

ẋ = u, Ė =

{
−ke, ||x− xc|| > δ

kch, otherwise
(6)

where x ∈ R2 is the robot’s position, E is the battery voltage,
ke > 0 and kch > 0 are discharging and charging coefficients
respectively and δ is an effective charging distance away
from the charging station. To be conservative, we take ke as
the worst case discharge rate of the battery. The charging
model in (6) is a linear approximation of a continuous
charging process that can be obtained from wireless pads [8].

C. Overview of the strategy

We build an energy sufficiency layer that ensures that the
voltage of each robot stays higher than a given minimum
level (to ensure sufficiency) and lower than a certain
upper bound (to avoid overcharging). We also implement a
coordination layer that ensures mutually exclusive use of the
charging station through proper manipulation of the robots’
arrival times to the charging station. Moreover, we describe
the system’s capacity, namely the relationship between the
battery discharge characteristics and the number of robots
that can be served by a single charging station, to ensure the
overall feasibility of the system.

III. ENERGY SUFFICIENCY FRAMEWORK

A. Energy sufficiency CBF

The candidate CBF we use for energy sufficiency is taken
from [4] and is defined as

hs = E − Emin − kc log
||x− xc||

δ
(7)

where Emin is the desired minimum voltage, δ is the
effective radius of the charging station and kc > 0 is
a constant such that the last expression approximates the
amount of voltage needed to return back to the charging
station.

Theorem 1 and 2 from [4] show that the CBF in (7) is a
ZCBF if ||x−xc|| > δ and that u ∈ U = R2 (no restrictions
on the control action moving the robots). We investigate the
relation between the choice of the α(h) in (2) and the voltage

level at the arrival at the charging station. In the following,
we use a linear α(h) function of the form

α(h) = βh (8)

Lemma 1: Given a robot with dynamics described in (6),
and for the the QP in (5) using the ZCBF in (7), the voltage
difference E−Emin is bounded by zero from below and by
a quantity inversely proportional to β from above.

Proof: After some time T > t0, the nominal control
input unom won’t be able to satisfy the constraint in (5), in
which case the output of the QP problem will be a control
input u that satisfies

ḣs = −βhs ⇒ hs(t) = hs(T )e−β(t−T ) (9)

but from (7)

E − Emin − kc log
||x− xc||

δ
= hs(T )e−β(t−T ) (10)

and on arrival at the charging station at time t = ta we have
||x− xc|| = δ thus

E(ta)− Emin = hs(T )e−β(ta−T ) (11)

to show that E(ta) − Emin is bounded from below, it
suffices to mention that if the robot starts in the safe set
(i.e. hs(t0) ≥ 0,∀t ≥ t0), then respecting the constraint in
(5) for hs assures that hs(T ) ≥ 0 as well (by virtue of the
fact that hs is a ZCBF [4]), so the right hand side in (11) is
not smaller than zero.
E(ta) − Emin is bounded from above by equation(11),

which shows that the bound on this difference decays
exponentially with β.

Remark 1: It is worth noting that Lemma 1 shows that the
ZCBF hs has a tracking property in the sense that the voltage
at the time of arrival at the charging station is close to Emin
with a margin, the tightness of which can be manipulated.

Since the battery discharge is constant with time and that
the difference E − Emin is bounded (i.e. by proper choice
of β the robot arrives at charging station with E ≈ Emin),
we can conclude that the arrival time at the charging station
is approximately the time it takes the battery to discharge
from its current voltage to Emin

TL ≈
E − Emin

ke
(12)

with TL being the arrival time at the charging station.
To recharge the battery, the robot needs to stay for a

sufficient time inside the charging region:
Lemma 2: Given a robot with dynamics described in (6),

and for the the QP in (5) using the ZCBF in (7), choosing
the α(hs) function

α(hs) =

{
βhhs , ||x− xc|| > δ

βlhs , otherwise
(13)

with 0 < βl � βh, leads to having D → ∞ as t → ∞
inside the charging region, where D = ||x− xc||.
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Proof: When a robot heads back to the charging station
at t ≥ T , the control action fulfilling (9) is

Lfhs + Lghsu = −βhs ⇒ −ke −
kc
D2

(x− xc)Tu = −βhs

This equation can be written as

(x− xc)Tu =
βhs − ke

kc

D2︷ ︸︸ ︷
(x− xc)T (x− xc)

⇒ u =
βhs − ke

kc
(x− xc)

(14)

plugging this control action into the robot dynamics, and
noting that d

dtD = (x−xc)
||x−xc|| ẋ, we have

Ḋ =
βhs − ke

kc
D (15)

Inside the charging region, β = βl and E − Emin =
∆Ea+kch∆t, with ∆Ea = E(ta)−Emin and ∆t = t− ta,
thus

Ḋ =
1

kc

(
βl

(
∆Ea + kch∆t− kc log

D

δ

)
− ke

)
D (16)

then if we substitute βl = 0 , which is the lowest value of
β, in (16) we get

Ḋ = −ke
kc
D ⇒ D(t) = δe−

ke
kc

∆t (17)

which means that D → 0 as t→∞.
Lemma 3: For the same conditions of Lemma 2, the

choice of (13) assures that the robot stays inside the charging
region for a sufficiently long period.

Proof: When the robot approaches the charging station,
Ḋ < 0. However, there is a point at which Ḋ = 0 as the
battery recharges and starts to move out of the charging
region. The time until this reversal point can be calculated
by setting Ḋ = 0 in the above equation so

∆tr =
1

kch

(
ke
βl

+ kc log
Dr

δ
−∆Ea

)
(18)

where Dr is the distance from xc at the reversal time. Since
D → 0 as t→∞ this means that that Dr 6= 0 in finite time
so log D

δ > −∞ and thus it can be seen that the reversal
time can be set arbitrarily high by setting a low value for
βl, which in turn means that using the proposed switching
in the value of β, the robot can stay for an arbitrary amount
of time inside the charging region.

B. Overcharge protection CBF

The purpose of this CBF is to ensure that the robot
“escapes” the charging region before it overcharges (i.e.
keeps charging beyond a desired maximum voltage) in a
similar way to what was done in [9]. To this end we propose:

hov = Emax − E + kov log
D

δ
(19)

The main intuition behind this choice is that when Emax −
E decreases as the robot recharges, the kov log D

δ tends to
become more positive (or rather less negative since the robot

is inside the charging region during recharging) by escaping
away from the charging region. In the following, we show
that this proposed CBF is indeed a ZCBF, in a very similar
way to Theorem 1 in [4].

Theorem 1: The function hov = Emax − E + kov log D
δ

is a ZCBF if U = Rm
Proof: Since we are considering the case where U =

Rm (i.e. no saturation on the control action), then showing
that hov is a ZCBF follows from showing that Lghov 6= 0.
For the proposed function hov

Lghov =
kov
D2

(x− xc)T (20)

so we need ||x−xc|| > 0 to have Lghov defined and not equal
to zero which was shown in Lemma 2, and since recharging
from Emin to Emax happens in a finite time, then x 6= xc
in included in this period.

Remark 2: The CBFs for energy sufficiency and
overcharge protection may be in conflict since one slows
down the robot for it to recharge (i.e. hs), while the other
tries to push it outside the charging region (i.e. hov). To
avoid infeasibility of the QP, the next two conditions have
to be satisfied

−ke −
kc
D2

(x− xc)Tu ≥ −βhc (21a)

−kch +
kov
D2

(x− xc)Tu ≥ −βovhov (21b)

and eliminating u we get

βhs − ke
kc

− kch − βovhov
kov

≥ 0, (22)

so condition (21b) can be relaxed when the left hand side of
(22) is equal to zero, leading hov to take over and push the
robot out of the charging region.

IV. COORDINATION FRAMEWORK

The purpose of the coordination framework is to ensure
mutually exclusive use of the available charging station. The
proposed strategy is through the manipulation of Emin for
each robot to change their arrival times at the charging station
(according to (12)). Our main assumptions are:

1) The underlying communication graph between the
robots is a complete graph, meaning that each robot
can receive information from all other robots.

2) Robots are homogeneous and have the same battery
discharge rate.

3) All robots start at the maximum voltage.
4) The recharge rate of the battery is faster than the

discharge rate. This can be a reasonable assumption for
systems with powerful wireless charging pads along
with capable lipo batteries or for battery swapping
platforms1.

1Although battery swapping is discrete process in nature, it can fit in our
proposed framework by properly choosing kch so as to ensure all robots
spend at least the amount of time needed for a battery swap process.
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The mechanism we propose to change the value of Emin
is to assume that it changes according to the following
dynamics

Ėmin = η (23)

where η ∈ Θ = R with Θ being the set of all admissible
values of η, and the nominal value of choice for η is zero (its
default value is zero unless changed by other control laws
to fulfill other constraints). Our main strategy is twofold:
1) Introduce a constraint to bound the value of Emin from
below, as well as conditions that assures the feasibility of
the scheduling with respect to the system’s capacity, and 2)
introduce a CBF hcij that keeps the difference in arrival times
above a desired value δt through the manipulation of Emin.

A. Bounds on Emin
Arbitrary manipulation of Emin does not necessarily

comply with what could be physical bounds on its value.
Asking for a too low value may cause permanent damage to
the battery and a too high value cause hs to be negative.

1) Lower bound on Emin : Lower bounding Emin
corresponds to requiring having an acceptable voltage at
the beginning of the charging process to avoid permanent
damage to the battery. The proposed CBF for this purpose
is

hL = kp(Emin − Elb) (24)

where Elb > 0 is the desired lower bound voltage and kp > 0
is a scaling gain. The constraint for the QP (5) is:

kpη ≥ −α(hL) (25)

and we choose

α(hL) = κ · sign(hL) · |hL|ρ , ρ ∈ [0, 1) (26)

with κ > 0.
Lemma 4: For a robot with dynamics (6) and Emin

obeying (23), hL is a ZCBF.
Proof: It is not hard to see that hL is a ZCBF following

the same argument in Theorem 2, as η ∈ Θ = R, so it is
always the case that a value of η could be found that satisfies
(3) for the constraint (25), so if Emin(t0) ≥ 0 then (25)
ensures positive invariance of the safe set CEmin

= {Emin ∈
R : Emin ≥ Elb}.

2) Upper bound on Emin: The upper bound on Emin
is correlated with the capacity of the system and how many
robots can be served by one charging station. Indeed, there is
a relation between the feasible number of robots (that can be
served with a minimum separation time δt) and certain robot
parameters, like discharge and recharge rates and maximum
and minimum voltage of the battery.

To demonstrate this, suppose we have n robots in the first
recharging cycle (when all robots start at Emax and discharge
with the same rate, as per assumptions 2 and 3) and that
each robot has a specific Emin. We consider the first robot
to recharge (with Emin yet to be determined) and the last
one (with Emin = Elb in the extreme case). We require that
once the first robot arrives at time t1 and recharges at t2,

it won’t recharge again until at least a time δt after the last
robot has recharged. Thus at t2

Emax − Ēm
ke

− (Ēm − ke(t2 − t1))− Elb
ke

≥ δt (27)

where t2 − t1 = Emax−Ēm

kch
is the time needed to recharge

the battery of the first robot, and Ēm is the value of Emin
of the first agent. The first expression in the above inequality
is the time the first robot takes until it reaches the charging
station again, and the second is the time the last agent take
to reach the charging station for the first time starting from
t2. Substituting t2 − t1 in the above inequality:

Ēm ≤
(1 + ke

kch
)Emax + Elb − δtke

2 + ke
kch

(28)

Noticing that the difference in arrival times of any two
robots is ∆TL = ∆E−∆Emin

ke and considering the first
recharging cycle where E is the same for all robots who have
not recharged yet, this means that ∆Emin sets the difference
in arrival times and uniformly separated arrival times imply
uniform separation in values of Emin.

We can calculate the uniform step in Emin if we convert
the last inequality to an equality and using

∆Ēm =
Ēm − Elb
n− 1

=
(1 + ke

kch
)(Emax − Elb)− δtke

(2 + ke
kch

)(n− 1)
(29)

What we require in this case is that the arrival times of the
last two robots (without loss of generality) with Emin = Elb
and Emin = Elb + ∆Emin to be at least δt:

Emax − Elb
ke

− Emax − (Elb + ∆Emin)

ke
≥ δt (30)

and substituting (29) into the last equation we get

(1 + ke
kch

)(Emax − Elb)− δtke
(2 + ke

kch
)(n− 1)

− δtke ≥ 0, (31)

the critical value of δt at which equality is achieved, given
system parameters (ke, kch, n, Emax − Emin) is

δtcr =

(
1 + ke

kch

)
(Emax − Elb)

ke

[
1 +

(
2 + ke

kch

)
(n− 1)

] . (32)

The last relation describes the feasible separation in arrival
times for the robots given different system parameters, and
considering that each robot has a distinct value of Emin,
which are separated by multiples of Ēm.

Finally, we require δtcr above to be more than the time
taken to fully recharge a battery from Elb to Emax

δtcr ≥
Emax − Elb

kch
. (33)

Definition 2: For a group of n robots, each with a distinct
fixed value of Emin and all applying the energy sufficiency
and overcharge CBFs constraints (hs and hov), a charging
cycle is defined as the time window taken by the robot with
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the lowest Emin value (i.e. Emin = Elb) to discharge from
Emax to Elb and then recharges again.

Lemma 5: For a group of n robots each with a distinct
value of Emin that satisfies (32), (33) and (29), let zi be the
number of recharges that one robot can have in one charging
cycle, then the maximum number of recharges for any robot
is z̄i = 2.

Proof: The number of recharges of robot i = n (first
robot to recharge) in one cycle is

zn = 1 +

 (Emax−Elb)(1+ ke
kch

)
ke

(Emax−Ēm)(1+ ke
kch

)
ke

 (34)

where the second expression on the right hand side is the
floor of the quotient of the two periods. If we take this
quotient and substitute (28) and (32) we get(

2 + ke
kch

)
A

A+
(

2 + ke
kch

) = Q (35)

where A =
(

1 +
(

2 + ke
kch

)
(n− 1)

)
. What we want to

verify is that 1 < Q < 2. Checking the difference between
numerator and denominator(

2 +
ke
kch

)
A−A−

(
1 +

ke
kch

)
= (A−1)

(
1 +

ke
kch

)
> 0,

(36)
satisfying the first inequality. To check the second we need to
make sure the numerator is less than twice the denominator

2

(
A+

(
1 +

ke
kch

))
− 2A− ke

kch
A

= 2

(
1 +

ke
kch

)
− ke
kch

(
1 +

(
2 +

ke
kch

)
(n− 1)

) (37)

but if we substitute (32) in (33) we have(
1 +

ke
kch

)
≥ ke
kch

(
1 +

(
2 +

ke
kch

)
(n− 1)

)
(38)

which renders (37) positive, meaning that the ratio is upper
bounded by 2, which in turn means that the maximum
number of recharges of the most needy agent is two per
charging cycle. Since the last robot recharges only once in
a cycle, this means that any other robot in between can
recharge no more than twice per cycle, which completes the
proof.

Lemma 6: For a group of n robots, if δt satisfies

Emax − Elb
kch

≤ δt ≤ δtcr (39)

as well as equation (29), then there exists Em =
{Emin1

, . . . , Eminn
} such that the difference in arrival times

between any two robots is at least δt (i.e. the scheduling
problem is feasible).

Proof: The idea of the proof is to use the upper bound
z̄i and show that the possible difference between any two
landing times is at least δtcr even with this worst case
scenario.

Based on Lemma 5, the possible number of recharges is
2(n − 1) and thus the required number of spaces between
these recharging events (taking the start and end recharging
events of last agent) is M = 2(n− 1) + 1 = 2n− 1. If we
divide the length of a whole charging cycle by this quantity
it gives the available time δav between any two recharging
events in the worst case, which should be at least equal to
δtcr . To check this

δav − δtcr =
(Emax − Elb)

(
1 + ke

kch

)
ke

[
1

2n− 1
− 1

A

]
(40)

and the difference of the numerator is ke
kch

(n−1) > 0, which
in turn means that for the 2n − 1 intervals, each can be at
least δtcr . This means that there exist values of Emini

for
each of these landings that are properly temporally separated.

To complete the proof, we consider two corner cases for
Ei at the beginning of each cycle, to ensure the robots are
able to adopt new Emin values leading to separate landings.
The worst case is Ei = Emini

at the beginning of each cycle.
In this case, setting Emini = Elb gives

TL2
=
Elb + ∆Ēm − Elb

ke
= δtcr

TL3
=
Elb + 2∆Ēm − Elb

ke
= 2δtcr

...

(41)

the second corner case is if Ei = Emax at the beginning of
the cycle, which has a solution by design, as value of Emini

separated apart by at least ∆Ēm assures having δtcr between
arrival times by design.

B. Coordination CBF

This CBF aims at separating the arrival times of two robots
with at least δt, and the core idea is very similar to the
collision avoidance strategy proposed in [10], albeit it is
collision of arrival times. For that we define a pairwise safe
set Cij as

Cij = {(Emini
, Eminj

) ∈ R2|hcij ≥ 0} (42)

and we propose the following CBF hcij between two agents
(i, j)

hcij = log
|TLi
−TLj

|
δt

(43)

where TLi
is the arrival time of robot i as described in (11),

and δt is the desired separation in arrival times between
robots. The resulting constraint for the QP problem is

TLi − TLj

|TLi
− TLj

|
Γi − Γj
ke

≥ −α(hcij ) (44)

where Γi = d
dtTLi

= −kei − ηi.
It would be more practical to consider a decentralized

version of equation (44) and to show that (43) is a ZCBF.
The desired decentralization can be done by dropping the
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term ηj from Γj in (44) so we end up with (noticing that
robots are assumed to have the same discharge rate)

−
TLi − TLj

ke|TLi
− TLj

|
ηi ≥ −α(hcij ). (45)

For the α(hcij ) function in (45) we propose the form

α(hcij ) = γij · sign(hcij ) · |hcij |ρ , ρ ∈ [0, 1) . (46)

We define the value of γi for robot i as

γij =

{
γh , if ||xi − xc|| > δ and ||xj − xc|| > δ

0 , otherwise
(47)

Theorem 2: For a multi robot system with (6) as the
dynamics of each robot, then for a pair of robots (i, j)
satisfying ||xi−xc|| > δ and ||xj−xc|| > δ, hcij is a ZCBF
for η ∈ Θ = R, with (45) rendering the set Cij forward
invariant. Moreover, if (Emini

(t0), Eminj
(t0)) /∈ Cij , (45)

leads (Emini(t), Eminj (t)) to converge to ∂Cij in finite time.
Proof: Since η ∈ Θ = R there exists a control action η

that satisfies (3) (and keeps Cij invariant), then to show that
hcij is a ZCBF, we need to make sure that |TLi

−TLj
| 6= 0.

The only chance that this difference can be equal to zero
is when one of the robots enters to the charging region. To
show this, consider having two robots (i, j) applying (45)
and without loss of generality suppose that robot j arrives
at the charging station, so the difference in arrival times is

∆TLij
=

1

ke

[
Ei − Emini

− (Ej(ta) + kch(t− ta)− Eminj
)
]

(48)
Due to the choice of γij in (47) the right hand side of (45)
is equal to zero, so the choice of ηnomi

= ηnomj
= 0 as

nominal values actually satisfies (45) for both robots and
consequently Emini

and Eminj
does not change. This means

that (48) is

∆TLij =
1

ke
[Ei − Emini

− (δE + kch(t− ta))] (49)

where δE is the difference between the voltage and minimum
voltage at the time of arrival to the charging station,
expressed in (11). Therefore, it can be seen from (49) that
at some point this difference in arrival times is equal to zero
(Ei decreases while kch(t − ta) increases), rendering (44)
undefined. We can conclude that (43) is a ZCBF when both
robots are out of the charging region.

The proof of the second part is the same as that of
proposition III.1 in [11] and is omitted here for space limits.

It is worth mentioning that the main motivation in the
choice of (46) is the idea that each robot can start with a
random estimate of its Emini

and generating a control action
ηi that satisfies (45) ensures safety in finite time.

In addition, the above theorem is applicable even if one
robot i applies (45) with respect to another robot j while
robot j is not doing the same. This follows the same
argument that since ηi ∈ Θ = R then there is always a
value of ηi that satisfies (3), as long as both robots are away
from the charging station.

In the coordination strategy we propose, we decouple the
energy sufficiency behaviour and the coordination behaviour.
This should not affect the arguments stated earlier about the
ability of the energy sufficiency ZCBF to track Emin. This is
because (10) and (11) do not put a constraint on the change
of Emin as long as u is generated in such a way that causes
ḣs = −βh.

To show this, the constraint in (5) for hs, assuming that
Emin changes, is

−ke − η −
kc
D2

(x− xc)Tu ≥ −α(hs) (50)

and if we consider Emin not to change in this constraint the
second term of the LHS of the previous inequality drops out

−ke −
kc
D2

(x− xc)Tu ≥ −α(hs) (51)

If we consider that u ∈ U = R2 (which was the case for
Theorem 1 in [4] to show that hs is a ZCBF), then it can be
argued that there will be always u′ to be substituted in (51)
such that

kc
D2

(x− xc)Tu′ =
kc
D2

(x− xc)Tu+ η (52)

and this indicates the possibility to decouple the coordination
from the energy sufficiency CBFs.

C. Feasibility of QP

Our coordination strategy introduces two barrier functions:
hcij which tends to keep two agents’ arrival times separate
through changing Emin, and hL which bounds Emin from
below. We need to assure that these constraints are admissible
and lead to a feasible QP.

The main problem lies in the fact that the coordination
effort is being done by changing only Emin which is only
1-D. This way potentially conflicting constraints in the QP
(5) may render it infeasible. This issue has been dealt with
in the context of control barrier function composition in [12]
and [10] and we adapt the basic idea from the latter.

The main idea is that for a local agent, instead of applying
the coordination constraint with all other agents, it only has
to apply it with the agent that has the closest arrival time
among all other agents (hence the need for assumption 1). If
during the process the value of Emin is about to go below
the lower bound, the agent stops the coordination and focuses
only on keeping the lower bound of Emin.

This way, we make sure that by construction each agent
only changes Emin in one direction, leading to a feasible
QP. This idea is summarized in Algorithm (1).

The final QP is

u∗ = min
u∈R3

||u− unom||

s.t. Au ≥ B
(53)

7011



Algorithm 1: Coordination algorithm
Input: TLk

,∀k ∈ Ni
Result: Ac and Bc for QP constraints
hcmin

= h0

hLi = Emini − Elb
while j in Ni do

hcij = log
TLi
−TLj

δ
if hcij < hcmin

then
hcmin

= hcij
end

end
if hcmin < hLi then

Ac = Lghcmin

Bc = −Lfhcmin − α(hcmin) . . . (eqn. 45)
else

Ac = LghLi

Bc = −LfhLi
− α(hLi

) . . . (eqn. 25)
end

where

A =

ATsATov
ATc

 =

− kc
D2 (x− xc)T 0
kov
D2 (x− xc)T 0[

0 0
]

ATc

 ,
B =

BsBov
Bc

 =

 ke − αs(hs)
kch − αov(hov)

Bc


while Ac and Bc are determined from Algorithm (1). In the
following, we show that Algorithm (1) indeed achieves the
desired coordination task.

Theorem 3: For a multi robot system with dynamics
defined in (6) and with the coordination and lower bound
constraints defined in (43) and (24), and provided that the
inequalities (28) and (39) are satisfied, then Algorithm (1)
assures that the difference in arrival time between any two
robots is at least δt (mutual exclusive use is assured).

Proof: From Algorithm (1), each robot is either
applying the coordination CBF hcij or the lower bound
CBF hL. For the robots which do not apply hL, from
Theorem (2), for a robot i the control action that respects
the constraint (44) leads Emini

into safe set Cij with respect
to its neighbor with the closest landing time. Each robot
can apply this to its neighbor with the closest landing time
{(i, j)|j ∈ Ni and hcij = mink∈Ni

hcik}, eventually leading
to Emini ∈ C =

⋂
∀i 6=j
Cij ,∀i.

Moreover, since we have established the feasibility of the
scheduling problem in Lemma (6), then we know that the
sets Cij are nonempty and that a solution exists.

If a robot i is applying the lower bound hL, then it can’t
push its arrival time any further. In this case The nearest
robot j that applies the coordination CBF will have a control
action ηj that will lead Eminj to Cij (noticing that Cij is non
empty), and then all other robots applying coordination CBF
will coordinate in a pairwise fashion based on the neighbour
of closest landing time as discussed in the previous point.

V. RESULTS

A. Simulation results
We carried out simulations using ARGoS [13], a physics-

based simulator designed to handle multi-robot and swarm
systems. The code was written using the Buzz programming
language [14].

The mission considered for this simulation is a coverage
mission, as in [4], in which 7 robots spread over a given
area.

The main requirement is to cover a square of dimensions
6m × 6m with a charging region of radius 0.2m around
the origin. The robots are required to arrive at the charging
station with a separation of δt = 20 sec (knowing that it
takes Emax−Elb

kch
= 6 sec to recharge). Table I contains the

parameters of the system.

TABLE I: Values of parameters used in simulation

Parameter ke kch n Emax Elb δtcr
Value 0.012 0.5 7 13.2 10 20.77 > δt

Figure 1a shows the separation in arrival times is as
desired. We note that the voltage does not go below Elb.
It can be seen as well that the maximum voltage is exceeded
in a small number of conditions because of the kinematic
model in the simulation, which was for a differential drive
robot, so the rotation the robot experiences to pursue the
point mass velocity introduces some delay that can cause
such peaks.

B. Experimental results
We performed a simple waypoint navigation mission with

three Khepera IV robots (where unom = −kp(x − xtarget)
), where kp > 0 is a proportional gain). In our experiment, a
virtual battery simulated in code was used instead of a real
battery for the sake of proving the concept and probing the
effects of more realistic operating conditions on the proposed
algorithm. The code had a running frequency of 10 Hz, and
an optical tracking system was used for position feedback.
Figures 1c and 1d show the evolution of E and Emin with
time.

VI. CONCLUSIONS

In this paper we present a control barrier function
(CBF) based framework for long term autonomy of multi
robot systems with limited charging resources. We started
by highlighting some tracking properties of the energy
persistence CBF in [4] and then we introduced a CBF based
framework to achieve the necessary coordination for sharing
the charging station.

As a future work we consider extending the current
results by investigating double integrator robot models with
disturbances and examine the effect of such disturbances
on the coordination behavior. Moreover, we would like to
accommodate our approach to the case of having multiple
charging stations and possibly relaxing the assumption of
having a complete communication graph.
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Fig. 1: Evolution of voltage and Emin values for the coverage task in V-A (1a and 1b) and the waypoint navigation task in
V-B (1c and 1d). The occasional overshoots of voltage can be mostly attributed to the difference between the single integrator
kinematics and that of an actual robot. There is also some jitter in Emin due to the switching nature of Algorithm 1.
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