
Pac-Man is Overkill

Renato Fernando dos Santos1,2, Ragesh K. Ramachandran3, Marcos A. M. Vieira2 and Gaurav S. Sukhatme3

Abstract— Pursuit-Evasion Game (PEG) consists of a team
of pursuers trying to capture one or more evaders. PEG
is important due to its application in surveillance, search
and rescue, disaster robotics, boundary defense and so on.
In general, PEG requires exponential time to compute the
minimum number of pursuers to capture an evader. To mitigate
this, we have designed a parallel optimal algorithm to minimize
the capture time in PEG. Given a discrete topology, this
algorithm also outputs the minimum number of pursuers to
capture an evader. A classic example of PEG is the popular
arcade game, Pac-Man. Although Pac-Man topology has almost
300 nodes, our algorithm can handle this. We show that Pac-
Man is overkill, i.e., given the Pac-Man game topology, Pac-Man
game contains more pursuers/ghosts (four) than it is necessary
(two) to capture evader/Pac-man. We evaluate the proposed
algorithm on many different topologies.

I. INTRODUCTION

Pac-Man is a popular maze arcade game developed and
released in 1980 [1]. Basically, the game is all about control-
ling a “pie or pizza” shaped object to eat all the dots inside
an enclosed maze without being apprehended by the four
“ghosts” patrolling the maze. Figure 1 shows the screenshot
of Pac-Man at the start of the game. Pac-Man is an instance
of a Pursuit-Evasion Game (PEG) in which an evader (Pac-
Man) is pursued by four pursuers (ghosts). Therefore, the
evolution of the Pac-Man game can be studied by analyzing
the associated PEG problem.

Pursuit-Evasion Game (PEG) is a well studied topic in
the robotics literature [2]–[6]. The huge interest for PEGs in
robotics stems from its application to multi robot problems
such as surveillance, search and rescue, boundary defense
etc. Pac-Man belongs to a subclass of PEGs commonly
referred as the Multi-Pursuer Single-Evader (MPSE) [6]
pursuit evasion problem. Common approaches for solving
and analyzing PEGs are based on game theory, these ap-
proaches can be traced back to the seminal work of Isaacs
on differential games [7]. Since then, various versions of
PEGs were introduced in the robotics literature: continuous
time PEGs [8], discrete time PEGs [3], discrete PEGs [9],
etc. In this paper we focus on discrete PEGs based on the
formulations presented in [5] and [9].

*This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001

1Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do
Sul, Rua Salime Tanure, s/n, Bairro Santa Tereza, Coxim, Mato Grosso do
Sul, Brazil, CEP: 79400-000 renato.santos@ifms.edu.br

2Laboratory of Computer Vision & Robotics, Computer Science Depart-
ment, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627
- Prédio do ICEx Pampulha, Belo Horizonte, Minas Gerais, Brazil, CEP:
31270-901 mmvieira@dcc.ufmg.br

3Robotic Embedded Systems Laboratory, University of Southern Califor-
nia, Ronald Tutor Hall, RTH426, 3710 McClintock Ave, Los Angeles, CA
90089-9121 rageshku@usc.edu; gaurav@usc.edu

Fig. 1. A screenshot of the Pac-Man game. The yellow colored pie shaped
object is the Pac-Man. The four entities at the center of the maze are the
ghosts.

In essence, a discrete pursuit evasion game (DPEG)
amounts to solving a PEG on a graph. The graph in this
setting can be interpreted as a topological map of a domain
representing the connectivity of various components in the
domain of interest. Notably, various formulations of DPEGs
have been proposed based on the nature of search and the
definition of the capture state of the evader. We refer the
reader to the survey paper by T.H. Chung et al. [2] for an
overview on the various formulations used in robotics.

Since our paper is anchored on DPEG, we envision the
domain of DPEG to be a graph which models any complex
bounded environment. The nodes of the underlying DPEG
graph represent regions (e.g. rooms in buildings) in the
environment under consideration. The edges in the graph
describe the links among the various regions represented by
nodes. In our formulation, the pursuers attempt to capture
the evaders in the graph as a team. An evader is captured if
one or more pursuers reside in the same node as the evader.
Similar to [5], our work also aims at computing the minimum
number of steps to capture all the evaders. However, in this
work, we focus on the parallelization of the optimal strategy
to compute the capture time delineated in [5]. In addition, our
parallelized algorithm is shown to be effective in computing
the capture time of the game, played by robots with different
speeds.

The main contributions of our work are the following.
First, we describe a parallel optimal capture time algorithm
(Algorithm 1) to minimize the time of capture in a PEG,

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11652

even if evader plays the optimal strategy. This algorithm
also indicates the minimum number of pursuers necessary
to capture an evader in a given topology. This paralleliza-
tion is important since PEGs, in general, are EXPTIME-
complete [10]. Second, we apply this algorithm to the Pac-
Man game and show that the game only requires 2 ghosts,
thus, Pac-Man is an overkill since it has 4 ghosts. To compute
this result, we have to handle almost 108 states, which is only
possible in a time due to parallelization. Third, we extend
this algorithm to the case when the evaders and pursuers have
different speeds. Fourth, we extend the parallel algorithm
(Subsection 1) to support pac-dots (Pac-dot Algorithm IV-A),
that increases evader survival. Pac-dot Algorithm maintains
the optimal properties of Algorithm 1, even if evader plays
optimal strategy.

The remaining of this paper is structured as follows. In
Section II, we present the assumptions, terminology and
definitions. In Section III, we describe the parallel algorithm.
In Section IV, we describe the PEG game with Pac-dots and
present the Pac-dot algorithm. In Section V, we explain the
implementation’s details. In Section VI, we show the results
for many different topologies, including the Pac-Man game.
In Section VII, we conclude the paper.

II. DEFINITIONS, TAXONOMY AND ASSUMPTIONS

In this section, we describe the various assumptions,
terminologies and definitions used in our paper. Firstly, we
outline the framework used in the paper and specify the
sensing, communication and computational capabilities of
the robots used in our framework. In addition, we enumerate
the resources which aid us in the improved scalability of
the optimal strategy computation algorithm presented in [5].
Finally, we detail the terminologies and definitions used to
describe our problem and its algorithmic solution.

We consider games that are played on domains composed
of a considerable number of regions, such domains include
but are not restricted to urban areas, indoor regions of a
building, any disaster precinct. We assume that each partici-
pant (pursuer or evader) has access in real time to the current
position of all other participants, including its own. That is
to say, the participants are equipped with global vision, i.e.
they have full knowledge of the game. This is the hardest
case to capture evaders since evaders know before moving
the exact positions of all pursuers on the map at that instant
and this gives the opportunity for evaders to play optimally.

This paper initially focuses on the parallelization of the
optimal strategy algorithm [5], to compute the least cost
to PEG. In our problem setting, we identify the cost of
PEG with the capture time of the evader. We propose an
approach that uses parallelism to enable computing the
required massive processing of the PEG. Furthermore, we
extend our approach to incorporate heterogeneous robots. It
is worth noting that, the pursuers can have distinct speeds,
which contribute towards the reduction in capture time and/or
the reduction in the number of pursuers necessary to catch an
evader. Finally, we extend the parallel algorithm to consider
the case of pac-dot.

As mentioned in the preceding section, the domain of a
PEG is defined as a discrete space, bounded and mapped
by a topological graph, discretized through a grid of the
environment, where each node represents coarse-grained
regions (grid cell) and edges/links connects neighbor regions
(interconnected cells in the grid). A topological graph is
represented as an adjacency matrix, that is provided as input
to the algorithm.

We use a discrete-event simulation where the state of the
system changes after each step of the game. In our context,
this discrete sequence of events is a pursuer’s turn to move
followed by an evader’s turn to move, this represents one
step of the game or one time unit. At each step of the
game, the participant pursuer or evader occupies one region
and will move to an adjacent neighboring region. Based
on the speed (hops), in a single game step, multi speed
pursuers can move to multiple regions connected according
to the underlying topological graph. We are interested in
the class of games in which there exist enough pursers
to guarantee game termination in topological graphs. To
illustrate the effectiveness of our algorithm, we test it on
graphs considerably larger than the ones used in [5]. Initially
we consider that pursuers and evaders move at the same
speed, one hop in the topology at each time step. We later
consider the case where the pursuer can move multiple hops
at each time step, moving faster than evader. Now we lay
down the terminologies required for describing our problem.

The game is played on an undirected connected graph
G = (V,L), where a node v ∈ V represent a region and
a link between two regions u and v is represented using
the edge {u,v} ⊂ V ×V . We consider two types of players
in PEG: pursuers and evaders, indicated by P and E sets
respectively. Let Pi be the position of the ith pursuer on G.
Similarly, Ei gives the position of the ith evader. Now, we
define a tuple a =< P1,P2, ...,Pn,E1,E2, ...,Em > containing
the positions of all the participants in PEG. We assume that,
during the evolution of the game, the pursuers and evaders
make alternate moves and only one type of participant takes
an action at a time step. Players move from current vertex
u to an adjacent vertex v. If we use the boolean variable T
(turn) to encode whether it’s the pursuers turn or evaders
turn to move, then the tuple < a,T >, can be used to
represents a state of the game. The pursuers win the game
if they capture the evader. Otherwise, if the evader can avoid
indefinitely, then the evader wins the game. If the evader wins
the game then it implies that the number of pursuers required
to capture the evader is insufficient for the given graph. The
minimum number of pursuers required to terminate a DPEG
on G, is denoted by c(G) in the literature [11].

We define the game as follows. The input is the initial
position of the players (pursuers and evaders), and a topo-
logical graph of the environment. The output is the optimal
sequence moves for all configurations of initial position of
the players. The selected optimal sequence is the motion
commands for agents P and E. The goal is to minimize the
maximum (worst-case) capture time of the evader. The game
terminates when all the evaders are captured. An evader is

11653

captured when it resides on a vertex of the graph occupied
by one or more pursuers. We refer to this state as the capture
state of the evader.

From the above formulation, it is clear that a DPEG has at
least |V ||P|+|E| states. Now, if we consider the fact that there
are two turns (pursuers or evaders transition) associated with
each state in the |V ||P|+|E| states, then state space of the game
would contain 2 ∗ |V ||P|+|E| states. Thus, the game’s states
are exponential in the number of players [10]. A sequence
of transitions can represent the execution of a game.

III. OPTIMAL ALGORITHM

In this section, we describe our scalable algorithm to
compute the optimal strategy for the pursuers and evaders
participating in a PEG.

A. Algorithm Strategy

In this section, we consider that the pursuers and evaders
have the same speed.

The optimal strategy [5] is a zero-sum game, it uses
a minimax algorithm [12] which minimizes the maximum
possible loss for each player in the game. In a PEG, the
pursuer’s goal is to capture the evader as fast as possible
whereas the evader’s goal is to escape from the pursuers as
long as possible.

We construct a game graph with the states as nodes and
edges representing all possible transitions between the states
(minimax tree). We refer to this graph as a game graph.
The game starts with the pursuers turning to move and in
sequence the evaders turn to move, both moves account
one step at time. For each state is assigned a cost function
C(s) gives the minimum distance from s to a capture state
in a pursuer’s move, and in an evader’s move denotes the
maximum distance from state s to a capture state.

B. Parallel Algorithm

Parallelization made the execution of the algorithm on
large topological graphs tractable. As shown in Algorithm 1,
original algorithm (it can be seen in [5]) has been parallelized
in four key areas.

The intuition behind the parallel Algorithm, it consists of
a similarity between the four functions (Lines 3, 5, 10 and
13) in one aspect, that is lock-free (lockless) programming
features. Lock-free programming is a technique for multi-
threaded programs without using locks or mutex [13], [14].
A multi-thread implementation of our algorithm is lock-free
because it satisfies three properties [13], [14]: it is multi-
thread; threads access shared memory, and; threads can’t
block each other.

In Line 1 of Algorithm 1 generate all states of pursuers
and all states of evaders. In the Lines 2-3 initialization
function is called to assign the initial cost of each state. The
transitions from each state to an adjacent state are computed
by genTransition function call (Lines 4-5). In the sequence,
there is a repeat structure (lines 6-14) that run a loop until
there are no new cost of the states to be updated (the negation
of change boolean variable becomes true). Within the repeat

Algorithm 1 Parallel algorithm.
1: Generate all States
2: for all state s do ”in parallel”
3: INITIALIZATION(s)
4: for all no capture state s do ”in parallel”
5: GENTRANSITIONS(s)
6: repeat
7: change← f alse
8: Up← set of all unmarked pursuers states
9: for all s in Up do ”in parallel”

10: change← change or PURSUERCALCCOST(s)
11: Ue← set of all unmarked evader states
12: for all s in Ue do ”in parallel”
13: change← change or EVADERCALCCOST(s)
14: until not change

Algorithm 2 Parallel algorithm functions.
1: function INITIALIZATION(s)
2: if s is a capture state then
3: C(s) ← 0 {cost function}
4: else
5: C(s)← ∞

6: function PURSUERCALCCOST(s)
7: if s has one or more transition to a marked state then
8: C(s)← min

∀s′∈N(s)
(C(s′))+1

9: add transition to ρ

10: return true
11: return f alse
12: function EVADERCALCCOST(s)
13: if all transition from s reach a marked state then
14: C(s)← max

∀s′∈N(s)
(C(s′))

15: add transition to ε

16: return true
17: return f alse

structure, change is assigned with f alse. In Line 8, all
unmarked pursuers states are selected and added to collection
Up. At next line, a loop (Lines 9-10) iterates over elements
of Up. Each pursuer state s is passed as an argument to
pursuerCalcCost function that returns true if state cost has
been updated or f alse otherwise. Similarly, at Lines 11-13
the same reasoning is used for evaders’ states.

In Algorithm 2 there is the definition of called functions in
Algorithm 1. GenTrantitions was omitted here. Initialization
function (1-5) checks if the argument s is a capture state,
initializing it with zero if true or ∞ otherwise. At Lines 6-11,
is defined as the pursuerCalcCost function, with s parameter.
On the next line, is checked if s has at least one adjacent
state that has been its cost updated, if the statement is true,
then the cost of s be calculated and updated in the next lines.
In Line 6, s′ denotes an element of set N(s), that denotes all
adjacent states of the state s, then for all adjacent state its cost
is checked by C(s′) function, min function select the adjacent

11654

000

010 100001

101 110011

111

C
al

cu
la

tio
n

F
lo

w G
am

e F
low

Fig. 2. A Power Set for k = 3, that represents the sequence of pac-dot can
be reached in a game.

state with lowest cost that is incremented by one and assigned
to C(s), updating s cost. In sequence, the transition from s
to s′ (selected by min function) is added to ρ policy. true
is returned. If the conditional structure is not satisfied, then
f alse is returned at Line 17. The evaderCalcCost function
(Line 12-17) on the if structure check if all adjacent states
of s has been its cost updated, returning f alse at Line 17
or case true performed the calculate and update cost of s
in sequence. At Line 14, max function selects the maximum
cost between the cost of all adjacent states of s and updates
its cost. In sequence, the transition is added to ε policy and
true is returned.

C. Multi Speeds Pursuers

In this section, we explain the approach for heterogeneous
pursuers where each pursuer in P can move with a different
speed (in terms of the hops). More concretely, let a pursuer
Pi ∈ P is occupy a vertex s and if it can move with a
maximum speed vi, then when it’s turn comes, Pi can reach
any node in the topological graph there if there is a path of
length vi between the node and s. In other words, the velocity
of a pursuer is its capacity of how many hops it can move
in a game step.

1) Solution approach: First is selected the largest speed
between all pursuers. In next, the adjacency matrix of the
topological graph is used to perform a graph search (Breadth-
First Search or Depth-First Search) for each node to compute
all paths, whose path length be lesser or equal than the
largest pursuer speed value. After generation states step,
all transitions are generated considering the speed of each
pursuer, that is, all nodes that can be reached with distance
lesser or equal than their speed.

IV. PEG WITH PAC-DOT

Pac-dot is an item (pill) present in the Pac-Man game that
when taken by the evader, allows the evader to be immune to
being captured for an immunity time of t time units. During
this immunity time t, the game swaps the roles of pursuers
and evaders so that if the evader captures the pursuers, the
pursuers can be penalized. In this case, the pursuer is moved
to a previously specified location. After the immunity time,
pursuers come back to the game and two cases can happen:
if the game still has one or more pac-dot, evaders can reach
another pac-dot and the immunity time restarts as explained
above. If a pac-dot is not reached by the evader or there

0 1 n-2 n-1. . .
. . .0
. . .1

0 1 n-2 n-1. . .
. . .0
. . .1

0 1 n-2 n-1. . .
. . .0
. . .1

0 1 n-2 n-1. . .
. . .0
. . .1

t’ = 0

t’ = t-1

t’ = t

.

.

.

.

.

.

Initial Sub-game

Non-initial Sub-game

Im
m

un
ity

 T
im

e

Fig. 3. Initial sub-game and non-initial sub-game.

are no more pac-dots, pursuers pursue the evader until they
capture it, and the game terminates. The locations of the
pac-dots in the topological map have been known before the
game starts.

Let k be the number of pac-dot in a game. The number
and structure of sub-games generated is modeled as a Power
Set [15]. We generate 2k sub-games as shown in Figure 2 for
k = 3. Each rectangle is a sub-game, arrow Calculation Flow
indicates the computation of state costs game flow, and Game
Flow indicates the followed flow to obtain the optimal path,
after state costs computation. For each pac-dot is assigned a
boolean bit, to identify the taken flow. If all bits are equal
zero, this represents the initial game sub-game. If a pac-dot
is reached by the evader, then the matching bit is inverted
to one, and follows the arrow to the new corresponding sub-
game, and so on, until the game terminates.

In the Figure 3, we show the two types of sub-games.
Initial sub-game is the sub-game where the game starts, it
has only a frame and it does not have immunity time. A
frame is composed of a set of states that corresponding
to 2 ∗ |V ||P|+|E|. The game can start and terminate in the
initial sub-game. Non-initial sub-games are all subsequent
sub-games that has t frames, where t−1 frames are relative
to immunity time duration, and the last frame t is the frame
after the immunity time. In the last sub-game frame the game
continues until it terminates or a new pac-dot is reached,
and the sub-games flow follow ahead. For all other non-
initial sub-games the behavior is similar. A non-initial sub-
game has t ∗ 2 ∗ |V ||P|+|E| states. A game with k pac-dots
has [(2k− 1) ∗ t + 1] ∗ |V ||P|+|E| states, and the space states
it’s the double. Let s =< a′,a,T > be the new state, where
a′ =< b1, ..,bk, t >.

A. Pac-dot Algorithm

This algorithm follows the same definitions and terminolo-
gies engaged for the parallel algorithm (Algorithm 1), and
all agents have speed equal one.

To be able to take into account the pac-dot during the
game, we made three modifications between parallel algo-
rithm and Pac-dot Algorithm: 1) the initialization values are
0, α and ∞. States of the initial sub-game or states of the
last frame of any non-initial sub-game are initialized with
zero if a capture state, ∞ if a state whose evader occupies a
pac-dot position, and α remaining states (case 1). Otherwise,

11655

(a) Pac-Man Toroidal (b) Google Pac-Man (c) Building

Fig. 4. Evaluated topologies.

capture states are initialized with ∞ and remaining states are
initialized with α (case 2). The two cases of initialization can
be seen in Figure 3. 2) transitions: consider the two cases
mentioned above, in the first case the transition occur locally
(inside same frame), but if evader position is a pac-dot in
pursuers states, then this transition be to states in the next
sub-game, according with the pac-dot (see Figure 2 under
Game Flow perspective). In the second case, all pursuers
state transition be from t ′ frame to t ′ + 1 frame, and the
evaders state transition be in t frame. 3) The repeat structure
in Algorithm 1 was redefined with the inclusion of two
f or structures at lines 8-13. The most external f or in non
crescent order iterates over the sub-games. The most internal
f or also in non crescent order, iterates over time (frame) t.

V. IMPLEMENTATION

In this section, we present the details of implementation of
the algorithm and simulator. We also describe the computer’s
configuration that we used to run the experiments.

We develop a discrete simulator to evaluate PEGs in dif-
ferent topologies. The algorithm and simulator were encoded
in Python 3 language [16]. Besides the native resources of
Python language, we use the Joblib package [17]. More
specifically, we utilized the class joblib.Parallel to imple-
ment the parallel functions.

We use two computers to simulate the games: 1) Processor
Intel XEON E5-2630 v3 2.4GHz 32 cores, 128GB RAM and
12TB HD; 2) Intel Core i7-6800K 3.4GHz 12 cores, 64GB
RAM, 1TB HD. All simulations of the Pac-Man game run
in Computer 1 and other PEGs run in computer 2.

VI. SIMULATIONS AND RESULTS

This section presents the results of the experiments per-
formed using the parallel Algorithm 1 and the pac-dot
algorithm (subsection IV-A). We evaluated the following
topologies: Pac-Man game (Figure 1), a Pac-Man topology
in a torus (Figure 4a) where we add a north-south connec-
tion (marked in red ellipse), Pac-Man version from Google
(Figure 4b), a two-story building (Figure 4c), a Reduced
Pac-Man version (Figure 7) where the red circles should
be disregarded, and Reduced Pac-Man topology in a torus
(Figure 7) where we add an east-west connection (marked
in red circle).

Table I shows the results of the PEG simulation for
previous described topologies. The set of topologies was

simulated on computer 1. Columns are defined from left to
right. Column 1 identifies the topology. Column 2 indicates
the number of players (pursuers and evaders). Column 3
shows the number of vertices for each topology. Column
4 and 5 displays the number of states and transitions needed
to generate the game graph. Column 6 depicts the time
to generate the game graph (all states and transitions).
Column 7 shows the time to calculate the cost. Column 8
presents the total execution time (Column 6 + Column 7).
Column 9 shows the number of steps (cost) to capture the
evader in the worst case. Column 10 presents the diameter
of the topological graph. The difference between cost and
diameter is that the diameter is an invariable continuous
path from beginning to end and the cost may vary due to
evader’s attempts to prolong capture with each movement.
For example, if the evader does not move during the entire
game, the pursuer, in the worst scenario, would have to
transverse the diameter of the graph, and the cost would be
the same as the diameter.

Pac-man topology (first line of Table I) requires 65 steps
to capture the evader and only needs 2 pursuers.

Next, we evaluate the Pac-Man game for heterogeneous
pursuers with different speeds. Figure 5 presents the number
of steps for each configuration. Each configuration (labels
on X-axis) has two numbers that represent the speeds of
pursuer-evader. The evader’s speed is always 1. If the cost
is infinite, it means that the number of pursuers is insufficient
to capture the evader. As the speed of the pursuer increases,
the number of steps to capture decreases since the pursuer
can travel more hops in one time step.

Figure 6 shows the costs of the game with different speeds
for games with 2 pursuers. The labels on X-axis have three
numbers to indicate the speeds of pursuer-pursuer-evader.

Table II shows the results of the PEG with pac-dot
simulation for Reduced Pac-Man and Reduced Toroidal
Pac-Man topologies. These topologies were simulated on
computer 1 and computer 2. Columns are defined from
left to right. Columns 1-5 have the same meaning as in
Table I. Column 6 shows the number of pac-dots of the
simulation. Column 7 presents the evader immunity time
duration. Column 8 depicts the position of each pac-dot in a
simulation, differentiated by circle color (Figure 7). Columns
9 and 10 show the time to calculate the cost. Column 8
presents the total execution time (Column 6 + Column 7).

11656

1-1 2-1 3-1 4-1 5-1 6-1
0

10

20

30

40

50

60

70

35

21
15

12 10

Multi Speeds (one pursuer)

Pac-Man Game

Pursuer-Evader (speeds)

C
os

t
(s

te
p

s)

∞

Fig. 5. Pac-Man game multi speed evaluated with
one pursuer and one evader.

1-1-1 2-1-1 2-2-1 3-1-1 3-2-1 3-3-1
0

10

20

30

40

50

60

70 65

35

25
21 21

17

Multi Speeds (two pursuers)

Pac-Man Game

Pursuer-Pursuer-Evader (speeds)

C
os

t
(s

te
p

s)

Fig. 6. Pac-Man game multi speed evaluated with
two pursuers and one evader.

Fig. 7. Reduced Pac-Man. Reduced Toroidal Pac-
Man has as an edge that links the two red circled
nodes.

TABLE I
TOPOLOGIES AND SIMULATION RESULTS - PARALLEL ALGORITHM WITH OUT PAC-DOT

Topology Players Vertices States Transitions Time to generate Cost Calculation Total Cost/Steps Diameter
Game Graph (min) Time (min) Execution Time (min)

Pac-Man 3 290 24389000 313285590 16 272 288 65 51
Pac-Man Toroidal 3 290 24389000 402542566 23 355 378 73 38
Pac-Man Google 3 317 31855013 402542566 29 431 460 64 49
Building 2-Floors 3 118 1643032 20847208 1 7 10 17 17
Reduced Pac-Man 3 102 1061208 13654176 4 9 13 21 21

Reduced Toroidal Pac-Man 3 102 1061208 13803796 4 9 13 21 21

TABLE II
TOPOLOGIES AND SIMULATION RESULTS - PARALLEL ALGORITHM WITH PAC-DOT.

Topology Players Vertices States Transitions Number of Pac-dot Immunity Time Pac-dot Position Cost/Steps Diameter
Reduced Pac-Man 3 102 12734496 166569444 1 10 green 34 21
Reduced Pac-Man 3 102 36081072 472402512 2 10 orange/green 39 21

Reduced Toroidal Pac-Man 3 102 12734496 168394616 1 10 green 36 21
Reduced Toroidal Pac-Man 3 102 36081072 477578800 2 10 cyan/green 50 21

Column 9 has the same meaning as in Table I, as mentioned
earlier.

VII. CONCLUSIONS

In this work, we presented a parallel algorithm to compute
the optimal policy to capture an evader in a PEG. This
algorithm can handle millions of states and allows us to
compute PEG in larger topologies. For instance, we showed
that the Pac-Man game is an overkill since it only needs
2 ghosts instead of 4. We also evaluated PEGs in many
other topologies. We also extended the algorithm for different
speeds. Finally, we also extended the algorithm to increase
evader survival in a game.

For future work, we intend to integrate these algorithms
into a control framework.

REFERENCES

[1] “Pac-man,” https://www.thoughtco.com/pac-man-game-1779412, July
2019.

[2] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion
in mobile robotics,” Autonomous robots, vol. 31, no. 4, p. 299, 2011.

[3] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “On discrete-time
pursuit-evasion games with sensing limitations,” IEEE Transactions
on Robotics, vol. 24, no. 6, pp. 1429–1439, 2008.

[4] S. Pan, H. Huang, J. Ding, W. Zhang, C. J. Tomlin, et al., “Pursuit,
evasion and defense in the plane,” in 2012 American Control Confer-
ence (ACC). IEEE, 2012, pp. 4167–4173.

[5] M. A. M. Vieira, R. Govindan, and G. S. Sukhatme, “Scalable and
practical pursuit-evasion with networked robots,” Intelligent Service
Robotics, vol. 2, no. 4, p. 247, Sep 2009. [Online]. Available:
https://doi.org/10.1007/s11370-009-0050-y

[6] V. R. Makkapati and P. Tsiotras, “Optimal evading strategies and task
allocation in multi-player pursuit–evasion problems,” Dynamic Games
and Applications, Jul 2019.

[7] R. Isaacs, Differential Games: A Mathematical Theory with
Applications to Warfare and Pursuit, Control and Optimization, ser.
Dover books on mathematics. Dover Publications, 1999. [Online].
Available: https://books.google.com/books?id=XIxmMyIQgm0C

[8] H. Yamaguchi, “A cooperative hunting behavior by mobile-robot
troops,” the International Journal of robotics Research, vol. 18, no. 9,
pp. 931–940, 1999.

[9] T. D. Parsons, “Pursuit-evasion in a graph,” in Theory and applications
of graphs. Springer, 1978, pp. 426–441.

[10] A. S. Goldstein and E. M. Reingold, “The complexity of pursuit on a
graph,” Theoretical Computer Science, vol. 143, no. 1, pp. 93 – 112,
1995.

[11] A. Berarducci and B. Intrigila, “On the cop number of a graph,”
Advances in Applied Mathematics, vol. 14, no. 4, pp. 389–403, 1993.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[13] M. M. Michael, “High performance dynamic lock-free hash tables
and list-based sets,” in Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA ’02.
New York, NY, USA: Association for Computing Machinery, 2002,
p. 73–82.

[14] M. Herlihy, “A methodology for implementing highly concurrent data
objects,” ACM Trans. Program. Lang. Syst., vol. 15, no. 5, p. 745–770,
Nov. 1993.

[15] K. J. Devlin, Fundamentals of contemporary set theory. Springer,
Berlin, 1979.

[16] P. S. Foundation. (2019) Python programming language. [Online].
Available: https://www.python.org

[17] J. Developers. (2008) Joblib running python functions as pipeline jobs.
[Online]. Available: https://joblib.readthedocs.io/en/latest/index.html

11657

