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Abstract— Teleoperation systems require a human-centered
approach in which the kinematic mapping is intuitive and
straightforward for the operators. However, a mismatch in
the degrees-of-freedom (DoFs) between master and slave could
result in an asymmetrical teleoperation system. That is an
obstacle for intuitive kinematic mapping. In particular, it
is even more challenging when the missing DoF is a pure
rotational DoF, since the rotation group SO (3) is a nonlin-
ear Riemannian manifold. This paper is concerned with an
asymmetric teleoperation system, where the master subsystem
can provide 6-DoF pose sensing while the slave subsystem
only has 5 DoFs. The rotation along the missing DoF, which
is configuration-dependent, is mapped to a geodesic curve
in SO (3). We define and prove the closed-form solution of
the perpendicular curve to the geodesic curve. Based on the
perpendicular curve, we develop a novel Incomplete Orientation
Mapping (IOM) approach to avoid the motion in the missing
DoF. By comparing with two baseline methods, the experimental
results demonstrate that the proposed method can discard the
rotational motion along the missing DoF for all configurations,
while preserving the remaining rotations.

I. INTRODUCTION

Teleoperation systems have found numerous applications
[1], [2] in search and rescue [3], space [4], and robot-
assisted medical intervention [5]. Performing a task through
teleoperation allows operators to keep a safe distance from
a dangerous environment as well as to take advantage of the
robots’ capabilities in higher power, higher precision, etc..
In order to provide an immersive experience to operators,
intuitive kinematic mapping is a fundamental requirement
for an effective teleoperation system.

Most of the relevant literature is focused on symmet-
ric Single-Master/Single-Slave (SMSS) systems [6], [7], in
which the master and slave subsystems have the same
number of robots and the same degrees-of-freedom (DoFs).
However, considering the increasing complexity of teleop-
eration tasks and the diversity of master/slave devices, the
mismatch in the DoFs, and/or the number of master and
slave devices is ubiquitous.
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Fig. 1. The asymmetric teleoperation system where the master/slave have
different DoFs. Due to the deficiency in DoF, the slave robot loses the
rotation ability along κ. The locus of Rm (the rotation matrix of the master
device) rotating around κ forms a geodesic curve γRm,κ (θ) in SO (3).
We define and prove the closed-form solution of the perpendicular curve
γ⊥, which is the shortest path from Rs (The current rotation matrix of
the slave robot) to Rm. By decomposing the rotation into two orthogonal
subspaces: the one along γRm,κ (θ) and the other one along γ⊥, we can
only discard the rotational motion along γRm,κ (θ), while preserving the
remaining rotations.

Significant research has been conducted on the subject
of asymmetric teleoperation systems. Most of the research
efforts have been focused on asymmetric teleoperation archi-
tectures involving Multiple-Master/Multiple-Slave (MMMS)
systems, where the master and slave have different number of
agents. Malysz et al. [8] have summarized several important
examples that depart from conventional symmetric SMSS
systems: 1) Multiple-Master/Single-Slave (MMSS) control of
a Kinematically Redundant Slave Robot (KRSR) [9]–[13]. In
this example, the first master device is designated to control
a primary task control frame; meanwhile, another master
device can manipulate a secondary task frame attached to
the KRSR. 2) Single-Master/Multiple-Slave (SMMS) control
of a twin-armed slave system [14]–[17]. In this example,
the multiple slave robots can be controlled autonomously
for formation and/or grasping. The single master device is
teleoperated to control the average position of the slave end-
effectors or control a frame representing the slave robots
formation. 3) Single-Master control of a Kinematically Defi-
cient Slave Robot (KDSR) [11], [18], [19], which is similar
but still different to our problem. In this example, the slave
robot is a kinematically deficient mobile robot subjected
to a nonholonomic constraint such that it has only two
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control motions to position itself in a 3-D planar space.
An asymmetrical teleoperation system results when a 3DoF
master device is used.

Another group of asymmetric teleoperation systems are the
tele-manipulation systems in which the hand exoskeleton is
used as the master device and the robotic hand is used as the
slave robot [20], [21]. Considering the ability to manipulate
objects with diverse shapes and sizes, the robotic hand may
be chosen to be anything from a highly anthropomorphic
dexterous hand [22], [23] to a simpler industrial gripper [24].
The diversity of the robotic hands [25], [26] in kinematics,
sensing, and actuation, and their typical differences to the
commanding human hand, result in significant asymmetries
to the master-slave system. To address such asymmetries,
Brygo et al. [27], [28] proposed a Cartesian-based hand
synergy matrix to map the exoskeleton’s fingertip Cartesian
trajectory to the degree of closure of the Pisa/IIT SoftHand,
serving as the slave robot. Conversely, the interaction force
estimated at the robotic hand as a 1-DoF grasping torque
can be inversely mapped to a 9-D reference in the finger-
tips Cartesian space through an inverse projection of the
Cartesian-based synergy matrix. Salvietti et al. [29] noticed
that the dissimilar kinematic structure in master and slave
devices may lead to a different number of interaction points
on the master side and of contact points in the slave side,
and they accordingly proposed a new forward and backward
mapping algorithm to address this scenario.

This paper is concerned with an asymmetrical teleoper-
ation system, where the master device can provide 6-DoF
pose sensing while the slave robot only has 5 DoFs. It is
a common situation that the slave robot has dissimilar kine-
matic structure to the master device. This can have the effect
that the reachable poses in the master’s workspace cannot be
directly mapped to and reproduced by the commanded slave,
in its workspace. In the master-slave setup implemented in
this paper and shown in Fig. 1, the slave robot loses the
rotation ability along a specific direction, which is referred to
as the missing DoF in the following part of this paper. When
there is a 6-DoF pose sensing input from the master side, the
motion along the available DoFs should be mapped to the
slave to provide intuitive and straightforward mapping. While
the sensed motion along the missing DoF should be avoided
to guarantee safety, since the unreachable input to the slave
controller may lead to unstable behaviors. However, how to
decompose the 6-DoF pose into two orthogonal subspaces is
challenging. In particular, it is even more challenging when
the missing DoF is a pure rotation, since the rotation group
SO (3) is a nonlinear Riemannian manifold.

The rotation along the missing rotational DoF is mapped
to a geodesic curve in SO (3). In this paper, we define and
prove the closed-form solution of the perpendicular curve
to the geodesic curve. By decomposing the rotation into
the two orthogonal subspaces: one along the geodesic curve
and another one along its perpendicular curve, we develop
a novel perpendicular curve-based Incomplete Orientation
Mapping (IOM) approach to find a reachable orientation in
the geodesic curve and avoid the motion along the missing

DoF. The experiments demonstrate that the proposed method
can prevent unreachable orientation references to the slave
manipulator, while preserving the remaining rotations.

Another straightforward solution to the DoF asymmetry
would be to lock the rotational motion along the missing
DoF of the slave at the master device. However, this solution
is limited to haptic teleoperation systems with substantially
strong force feedback devices at the master side, capable of
constraining the motion of the operator along the missing
DoF of the slave. The action of the IOM approach is
decoupled with the motion constraints provided by the force
feedback action and provides an additional level of safety.
The unintentional orientations, which are encountered at the
master side along the missing DoF due to low stiffness
or low force capacity of the haptic device (or no force
feedback), can be always detected and corrected by the
proposed method. Therefore, these assistive/guidance actions
can be modulated to any desirable level of haptic impedance
within the performance capabilities of the master device.

The rest of this paper is organized as follows. Section
II gives the problem statement. Section III reviews the
basic concepts and notations regarding the rotation group
SO (3). Section IV defines the perpendicular curve in SO (3)
and proves its closed-form solution. Section V presents the
proposed perpendicular curve-based IOM approach. Section
VI gives the experimental results to validate the proposed
method. The conclusion and future work are finally summa-
rized in Section VII.

II. PROBLEM STATEMENT

Consider a SMSS teleoperation system with DoF asym-
mery. For the sake of convenience, the following notations
are defined:

• pm, Rm: The position and orientation sensed by the
master device.

• ps, Rs: The current position and orientation of the slave
robot.

• psd, Rsd: The desired position and orientation for the
slave robot.

• κ: The direction of the missing DoF. Without loss of
generality, κ is chosen as a unit vector. According
to the kinematic structure of the slave robot, κ is
configuration-dependent. Here we assume that κ can be
calculated according to the slave robot’s configuration.

As shown in Fig. 2, the forward kinematic mapping
problem with DoF asymmetry is defined as:
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Fig. 2. The IOM problem for teleoperation system with DoF asymmetry.



Definition 1 (Incomplete Orientation Mapping (IOM) Problem):
Given pm, Rm, ps, Rs, and κ, determine a desired position
psd and orientation Rsd for the slave robot such that
psd, Rsd is reachable by the slave robot and only the motion
along κ is avoided.

III. MATHEMATIC PRELIMINARIES

This section reviews the basic notations about the Angle-
Axis Space and the geodesic in rotation group SO (3).
Readers may refer to [30], [31] and [32] for more details.

A. The Angle-Axis Space

Every orientation R ∈ SO (3) can be represented as a
rotation of an angle about an axis by at most π radians.
Define a closed ball Bπ of radius π in R3 as:

Bπ =
{
ω ∈ R3 |‖ω‖ ≤ π

}
. (1)

Consequently, any orientation R ∈ SO (3) can be repre-
sented by a vector ω ∈ Bπ , in which the direction of ω is
the axis and the norm ‖ω‖ is the angle.

However, as well known, the mapping from Bπ to SO (3)
is one-to-one in the interior and two-to-one on the boundary
of the ball. To avoid ambiguity, a half sphere S2 in R3 is
defined:

S2 =
{
ω ∈ R3 |‖ω‖ = π and (q1 or q2 or q3)

}
, (2)

where conditions q1, q2, and q3 are defined as following:

q1 : ωx < 0,

q2 : ωx = 0 and ωy < 0,

q3 : ωx = 0 and ωy = 0 and ωz < 0,

(3)

where ωx, ωy , and ωz are the entries of ω.
Thus, SO (3) is bijective to Bπ\S2, where U\A is the

relative complement set of A in U . Bπ\S2 is called Angle-
Axis Space. The mappings between SO (3) and Bπ\S2

can be given by the exponential mapping exp (ω) and the
logarithm mapping log (R) as introduced in [32].

B. The Distance Metric and Geodesic in SO (3)

Definition 2: The distance between two orientations R1

and R2 is defined as the angle of the rotation RT1 R2:

d∠ (R1, R2) =
∥∥log (RT1 R2

)∥∥. (4)
Proposition 1: For any orientations R ∈ SO (3), R1 ∈

SO (3), R2 ∈ SO (3), the following equation is always true:

d∠ (RR1, RR2) = d∠ (R1, R2) (5)
Proposition 2: For any two orientations R1 ∈ SO (3),

R2 ∈ SO (3), the following equation is always true:

d∠ (R1, R2) = arccos

(
tr
(
RT1 R2

)
− 1

2

)
. (6)

Proposition 3: The geodesic curve in SO (3) from R1

to R2 is given by:

γ (ζ) = R1 exp
(
ζ log

(
RT1 R2

))
ζ ∈ [0, 1], (7)

which is a one-parameter family of orientations.

IV. THE CURVE AND PERPENDICULAR CURVE IN SO(3)

Given an orientation Rm and a unit vector κ, a one-
parameter family of orientations can be obtained by rotating
about κ by an angle θ:

γRm,κ (θ) = Rm exp (θκ) , (8)

where θ ∈ (−π, π] is the varying parameter. γRm,κ (θ) is a
geodesic curve in SO (3).

Definition 3: For any orientation Rs ∈ SO (3), we
define the geodesic distance from Rs to a curve γRm,κ (θ)
as:

d∠ (Rs, γRm,κ (θ)) = min
θ∈(−π,π]

d∠ (Rs, Rm exp (θκ)). (9)
Definition 4: We define the foot-of-perpendicular

(FOP) from Rs ∈ SO (3) to a curve γRm,κ (θ) as:

R⊥ = Rm exp (θminκ) , (10)

where

θmin = arg min
θ∈(−π,π]

d∠ (Rs, Rm exp (θκ)). (11)
Definition 5: We define the perpendicular curve from

Rs ∈ SO (3) to a curve γRm,κ (θ) as:

γ⊥ (ζ) = Rs exp
(
ζ log

(
RTs R⊥

))
ζ ∈ [0, 1] , (12)

which is the geodesic curve from Rs to R⊥.
Lemma 1: Given any orientation Rs ∈ SO (3) and a

curve γRm,κ (θ), the FOP R⊥ is given by:

R⊥ =

{
Rs exp

(
1
2ω
)
, if log (Rc)× κ = 0,

Rs exp
(
− 2π−‖ω‖

2‖ω‖ ω
)
, otherwise,

(13)

where “×” is the cross product of two vectors, and

ω1 = log
(
RTmRs

)
, (14)

ω2 = 2κTω1κ− ω1, (15)

ω = log
(
expT (ω1) exp (ω2)

)
, (16)

Rc = exp (ω1) exp

(
1

2
ω

)
. (17)

Proof: For any θ ∈ (−π, π], we have:

d∠ (Rs, Rm exp (θκ)) = d∠
(
RTmRs, exp (θκ)

)
= d∠ (exp (ω1) , exp (θκ)) .

(18)

Therefore, the distance from Rs to the curve γRm,κ (θ) is
equal to the distance from exp (ω1) to the curve γI,κ (θ).
θκ gives a diameter of Bπ in the Angle-Axis Space whose

direction is determined by κ. Obviously, ω1 and ω2 are
symmetrical about θκ. The following properties can be easily
verified:

‖κ‖ = 1, (19)
‖ω1‖ = ‖ω2‖ . (20)

Then we have:

d∠ (exp (ωi) , exp (θκ))

= arccos

(
tr
(
expT (ωi) exp (θκ)

)
− 1

2

)
,

(21)



where i = 1, 2. It is easy to verify that (See Appendix):

tr
(
expT (ω1) exp (θκ)

)
= tr

(
expT (ω2) exp (θκ)

)
. (22)

Thus,

d∠ (exp (ω1) , exp (θκ)) = d∠ (exp (ω2) , exp (θκ)) (23)

The foot of perpendicular from exp (ω1) to the curve
γI,κ (θ), R⊥, must be at the midpoint of the smaller geodesic
arc from exp (ω1) to exp (ω2) when d∠

(
exp (ω1) , R⊥

)
≤

π
2 or the midpoint of the longer geodesic arc from exp (ω1)
to exp (ω2) when d∠

(
exp (ω1) , R⊥

)
> π

2 :

R⊥ =

{
Rc, if log (Rc)× κ = 0,

exp (ω1) exp
(
− 2π−‖ω‖

2‖ω‖ ω
)
, else.

(24)

Thus,

R⊥ = RmR⊥

=

{
Rs exp

(
1
2ω
)
, if log (Rc)× κ = 0,

Rs exp
(
− 2π−‖ω‖

2‖ω‖ ω
)
, else.

(25)

The proof is complete.
Corollary 1.1: The perpendicular curve γ⊥ (ζ) is given by

γ⊥ (ζ) = Rs exp
(
ζRTs R⊥

)
ζ ∈ [0, 1] . (26)

Corollary 1.2: γ⊥ (ζ) gives the shortest path from Rs to
the curve γRm,κ (θ) in SO (3).

V. THE INCOMPLETE ORIENTATION MAPPING (IOM)
ALGORITHM IN CASE STUDY

To better demonstrate the proposed perpendicular curve-
based Incomplete Orientation Mapping (IOM) algorithm, we
take the asymmetric teleoperation system, where the master
subsystem can provide 6-DoF pose sensing and the slave
subsystem has only 5 DoFs, as an example.

The configuration of the slave manipulator, which is
named Teleop-Man, is shown in Fig. 3. To simplify the
problem, the controlled frame of the slave robot is placed
on the wrist of the Teleop-Man. The first three joints of the
slave robot determine the position and the last two joints
determine the orientation. Due to the deficiency in DoF, the
slave robot loses the rotation ability around the direction κ,
which is perpendicular to the axes of the 4-th and 5-th joints.
The robotic hand, which is installed on the end-effector of
the Teleop-Man, is controlled by a hand exoskeleton. In this
paper, the teleoperation of the robotic hand is not involved.

Please note that the missing DoF κ is a unit vector and is
expressed in the wrist’s frame. According to the geometric
relationship, we can have:

κ = [cos (q5) , 0,− sin (q5)]
T
, (27)

where q5 is the joint value of the 5-th joint. As stated before,
κ is configuration-dependent.

Since the missing DoF κ is a pure rotational DoF, the
position of the master device can be directly mapped to the
slave robot:

psd = pm. (28)
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Fig. 3. The configuration of the 5-DoF slave manipulator, which is named
Teleop-Man. To simplify the problem, the controlled frame is chosen as the
wrist of the Teleop-Man. In this case, the position is only determined by
the first three joints and the orientation is only determined by the last two
joints. The missing DoF is a pure rotational DoF.

As presented in Section IV, the locus of Rm, which is the
rotation matrix of the master device, forms a geodesic curve
γRm,κ (θ) by rotating around κ. Based on the perpendicular
curve, the proposed IOM algorithm is to map the orientation
of the master device to the FOP R⊥:

Rsd = R⊥

=

{
Rs exp

(
1
2ω
)
, if log (Rc)× κ = 0,

Rs exp
(
− 2π−‖ω‖

2‖ω‖ ω
)
, else,

(29)

where ω and Rc are given by Lemma 1.
The geodesic curve γRm,κ (θ) in a Riemannian manifold

is analogous to the straight line in Euclidean space. Accord-
ingly, the shortest path γ⊥ (ζ) in a Riemannian manifold is
analogous to the perpendicular line of the straight line in Eu-
clidean space. This is where the terminology “Perpendicular
Curve” comes from. As shown in Fig. 4, the orientation Rm
sensed by the master device gives the desired goal orientation
for the slave robot. However, due to the deficiency in DoF,
the slave robot loses the rotation ability around the direction
κ. Similarly to the perpendicular line in Euclidean space, the
rotation can be decomposed into two orthogonal subspaces:
the one along the geodesic curve γRm,κ (θ) and the other one
along its perpendicular curve γ⊥. By mapping Rm to R⊥,
the rotational motion along γRm,κ (θ) is discarded. Only the
rotation along γ⊥ is preserved. Since the proposed mapping
algorithm discards the rotational part along the missing DoF
κ, it is named by Incomplete Orientation Mapping (IOM)
algorithm.
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Fig. 4. The geodesic curve and its perpendicular curve can be analogous to
the straight line and its perpendicular line in Euclidean space. Similar to the
Euclidean space, the rotation can also be decomposed into two directions:
one is along itself and the other one is along its perpendicular line.



VI. EXPERIMENTS

To validate the feasibility and effectiveness of the proposed
IOM algorithm, two groups of experiments are carried out.
In the first group, the Directly Mapping Method (DMM,
the position and orientation of the master device is directly
mapped to the slave manipulator without any operation) is
chosen as a baseline comparison to validate the effectiveness
of the proposed IOM algorithm. In the second group, 2
different mapping strategies are chosen as comparisons to
validate the advantages of the IOM algorithm.

A. Experimental Setup

As shown in Fig. 5, the Haption Virtuose 6D serves as the
grounded master device to provide 6-DoF pose sensing. The
5-DoF Teleop-Man, which serves as the slave manipulator,
works in Cartesian position control mode and accepts the
desired 6-DoF pose as input. The pose of the end-effector is
calculated according to the forward kinematics by the slave
controller. Due to the deficiency in DoF, the slave controller
formulates the control problem as a two-layer optimization
problem in which the position is chosen as the primary
objective and the orientation is chosen as the secondary
objective. The position pm and orientation Rm sensed by the
master device are sent to the teleoperation master software
(named ToM) running on the master station computer. Our
IOM algorithm is embedded into ToM. The communication
loop between master-ToM and ToM-slave are both set to be
1kHz. To better focus on the DoF asymmetry, the time delay
is ignored.

The visual information regarding the slave manipulator is
fed to the human operator in the master station. To provide
more intuitive visual feedback, the initial bias between the
master and the slave device has been compensated by:

pm = oRmpm(t) + (ps0 − oRmpm0
) ,

Rm =
(
oRmRm(t)

) (
(oRmRm0

)
T
Rs0

)
,

(30)
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Fig. 5. The experimental setup. The master device can provide 6-DoF pose
sensing and the slave robot only has 5 DoFs. The goal of the proposed IOM
algorithm, which is embedded into ToM, is to find a reachable target pose
reference and send it to the slave manipulator.

where oRm is the rotation matrix of the master’s base frame
relative to the human operator’s base frame, pm0 and Rm0

are the initial position and orientation sensed by the master
and relative to the master’s base frame, ps0 and Rs0 are
the initial position and orientation of the slave manipulator
relative to the slave’s base frame, pm(t) and Rm(t) are
the current position and orientation readings of the master
device.

In our system, the slave manipulator can be either a
simulated one or a physical one. In order to guarantee
safety, during the testing of the comparison methods (i.e.
the DMM), the slave robot is implemented in simulation,
since the comparison methods may map unreachable targets
to the slave and lead to danger.

B. Baseline Comparison: DMM

To better illustrate the effectiveness of the IOM method in
rotational motion decomposition, the missing DoF κ is set to
be the x-axis (κ = [1, 0, 0]

T ) so that the discarded rotational
part is only on the x component. The DMM is chosen as a
baseline comparison.

For both methods, the human operator is asked to control
the slave manipulator to move freely in the workspace.
In particular, the slave manipulator’s motion ability in all
directions (3 translations and 3 rotations) are tested. During
the movement, we try our best to keep the 5-th joint value
q5 to be zero since κ is set to be the x-axis in the tests. The
trajectories of the master and slave are recorded in real-time.
More details about the experiments are shown in the attached
video.

Since the missing DoF is a pure rotational DoF, the DMM
and the proposed IOM method share the same performance
in terms of position error. The orientation errors between Rs

 

(a)

 

(b)

Fig. 6. The orientation error curves of the two methods: (a) The DMM.
(b) The IOM method. The missing DoF κ = [1, 0, 0]T is also presented in
both figures and has been scaled in (b). As we can see, the IOM method
only has big errors in x-axis, which is exactly the missing DoF direction
κ. In contrast, the DMM method leads to big errors in all directions.



and Rm for the two methods are shown in Fig. 6. To better
illustrate the effect of rotational motion decomposition, the
direction κ is also presented. In particular, κ has been scaled
in Fig. 6(b) by:

κ = sign ∗
∥∥log (RTmRsd)∥∥ ∗ κ, (31)

where sign = 1 if log
(
RTmRsd

)
has the same direction with

κ and sign = −1 if they have the opposite direction.
As shown in Fig. 6(b), the scaled missing DoF direction

κ almost overlaps with the orientation error curve. This
demonstrates that the IOM method can discard the rotational
part along κ (the x-axis) and guarantee smaller errors in the
other directions (the y- and z-axis). In contrast, the DMM
method leads to big errors in all directions, which is not
intuitive and straightforward for human operators.

The orientation errors between Rs and Rsd and the bias
between Rsd to Rm of the IOM method are presented
in Fig. 7(a) and Fig. 7(b), respectively. As shown in Fig.
7(a), the errors between Rs and Rsd are much smaller than
those of the DMM method. This result demonstrates that
the unreachable rotation along the missing DoF κ has been
discarded and the mapping results Rsd of the IOM algorithm
are all reachable by the slave robot. As shown in Fig. 7(b),
the scaled missing DoF direction κ overlaps perfectly with
the bias between Rsd to Rm. This result validates that our
mapping results only discard the rotational part along κ.

 

(a)

 

(b)

Fig. 7. The result of the IOM method. (a) The errors between Rs and
Rsd are much smaller than those of the DMM method (see Fig. 6(a)).
(b) The bias between Rsd to Rm along with κ (κ has been scaled). The
overlapping of the bias with the scaled κ shown in (b) demonstrates that
our mapping results only discard the rotational part along κ.

C. Comparison to 2 Different Mapping Strategies

In the first group of experiments, the effectiveness of the
IOM method has been demonstrated by choosing a constant
κ. However, the missing DoF direction κ is configuration-
dependent. To better demonstrate the advantages of the IOM
method, 2 different mapping strategies have been carried out

as comparisons in the second group of experiments. These
methods were chosen from the state of the art as being the
most applicable to our problem.

The first strategy is the DMM which serves as a baseline
method. The second strategy (named EPDM, Excluding
Predefined DoF Method), which is a borrowed idea from
[33], is to predefine an ‘unused’ DoF and exclude the
‘unused’ component from the pose vector. Suppose we have
pm = [pmx, pmy, pmz]

T , Rm = exp
(
[ωmx, ωmy, ωmz]

T
)

,

Rs = exp
(
[ωsx, ωsy, ωsz]

T
)

, and the predefined DoF is x-
axis. Then the third mapping strategy is given by:

psd = pm = [pmx, pmy, pmz]
T

Rsd = exp
(
[ωsx, ωmy, ωmz]

T
)
,

(32)

where the x component of the rotation is discarded directly.
For each method, the human operator is asked to test the

rotational motion ability of the slave in three configurations.
As shown in Fig. 8, the missing DoF direction κ expressed
in the wrist frame varies with the configuration.

Configuration 1 Configuration 2 Configuration 3

4-th Joint

5-th Joint

4-th Joint 4-th Joint

5-th Joint 5-th Joint

 

sx
sz sz

sx

sz

sx

κ κ κ

Fig. 8. The 3 configurations to test the rotational motion ability. The
missing DoF direction κ is configuration-dependent.

As shown in Fig. 9(a)(b)(c), the DMM method fails to
avoid the unreachable orientation mappings and leads to big
errors for all the three configurations.

As shown in Fig. 9(d)(e)(f), the EPDM works well for the
first configuration since the missing DoF κ is coincidentally
aligned the predefined DoF. Moreover, the errors between Rs
and Rsd are much smaller than those of the DMM for both
the first and second configurations. This demonstrates that
the EPDM can avoid the unreachable orientation mappings
for these two cases. However, the EPDM fails for the third
configuration, in which κ is perpendicular to the predefined
DoF. This is a singularity configuration for the EPDM since
κ has no component on the predefined DoF. Moreover, as
shown in Fig. 9(d)(e), the bias between Rsd and Rm does
not overlaps with the scaled κ for the second and third
configurations. This means that the rotational part discarded
by the EPDM is not only in the missing DoF. Therefore, the
intuitiveness of the EPDM is jeopardised.

In contrast, the proposed method works well for all the
three configurations. As shown in Fig. 9(g), the ewx (cyan)
and κx (red), the ewy (black) and κy (green), and the
ewz (magenta) and κz (blue) are overlapped perfectly. The
overlapping shown in Fig. 9(g)(h) demonstrates that our
mapping results only discard the rotational part around κ.
These results validate that the proposed method can preserve
all motions in the other directions. The errors shown in Fig.
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Fig. 9. The experimental results of the DMM, the EPDM, and our IOM method are presented in the first, second, and third row, respectively. κ has been
scaled in (d), (e), (g), (h). Our method can avoid the unreachable orientation mappings for all the three configurations, which are marked in each figure.

9(i) are much smaller than those shown in Fig. 9(c)(f) for all
the three configurations. These results demonstrate that the
proposed method can avoid the unreachable mapping and
generate more predictable, and safer robot motions.

VII. CONCLUSION

To address a new asymmetrical teleoperation system with
one DoF asymmetry, we proposed the perpendicular curve
in SO (3) and a perpendicular curve-based IOM approach.
By decomposing the rotational motion into two orthogonal
subspaces: the one along the geodesic curve γRm,κ (θ) and
the other one along its perpendicular curve γ⊥, the proposed
method can only discard the rotation around the missing DoF
κ and preserve the bias part along the perpendicular curve.
The experiments demonstrated that the proposed method can
avoid the unreachable orientation mappings, while preserving
the remaining rotations. By using the proposed method,
the unintentional orientations can be always detected and
corrected. Therefore, the guidance actions can be modulated
to any desirable level of haptic impedance within the per-
formance capabilities of the master device. In the future
work, the haptic rendering algorithm will be integrated with a
passivity layer in the control framework to provide stable and

transparent haptic feedback information about the missing
DoF.

APPENDIX

According to the definition of the exponential mapping
(Rodrigues’ formula), we have:

tr
(
expT (ωi) exp (θκ)

)
= tr (I) +

sin ‖ωi‖
‖ωi‖

tr
(
ω̂Ti
)
+

1− cos ‖ωi‖
‖ωi‖2

tr
(
ω̂2
i

)
+ sin θtr (κ̂) +

sin ‖ωi‖ sin θ
‖ωi‖

tr
(
ω̂Ti κ̂

)
+

(1− cos ‖ωi‖) sin θ
‖ωi‖2

tr
(
ω̂2
i κ̂
)
+ (1− cos θ) tr

(
κ̂2
)

+
sin ‖ωi‖ (1− cos θ)

‖ωi‖
tr
(
ω̂Ti κ̂

2
)

+
(1− cos ‖ωi‖) (1− cos θ)

‖ωi‖2
tr
(
ω̂2
i κ̂

2
)
,

(33)

where i = 1, 2, ω̂i and κ̂ represent the skew-symmetric
matrix of ωi and κ.



Denote ω1 = [x1, y1, z1]
T , ω2 = [x2, y2, z2]

T , κ =
[x, y, z]

T , we have:

x2 + y2 + z2 = 1, x2 = 2kx− x1,
y2 = 2ky − y1, z2 = 2kz − z1,
x21 + y21 + z21 = x22 + y22 + z22 ,

(34)

where k = xx1 + yy1 + zz1.
By doing some algebraic calculations, it is easy to verify:

tr
(
ω̂T1
)
− tr

(
ω̂T2
)
= 0, (35)

tr
(
ω̂2

1

)
− tr

(
ω̂2

2

)
= 0, (36)

tr
(
ω̂T1 κ̂

)
− tr

(
ω̂T2 κ̂

)
= 0, (37)

tr
(
ω̂2

1κ̂
)
− tr

(
ω̂2

2κ̂
)
= 0, (38)

tr
(
ω̂T1 κ̂

2
)
− tr

(
ω̂T2 κ̂

2
)
= 0, (39)

tr
(
ω̂2

1κ̂
2
)
− tr

(
ω̂2

2κ̂
2
)
= 0. (40)

Thus, we have:

d∠ (exp (ω1) , exp (θκ)) = d∠ (exp (ω2) , exp (θκ)) (41)
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