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Abstract— We propose a novel shared control and active
perception framework combining the skills of a human operator
in accomplishing complex tasks with the capabilities of a mobile
robot in autonomously maximizing the information acquired
by the onboard sensors for improving its state estimation. The
human operator modifies at runtime some suitable properties
of a persistent cyclic path followed by the robot so as to achieve
the given task (e.g., explore an environment). At the same time,
the path is concurrently adjusted by the robot with the aim of
maximizing the collected information. This combined behavior
enables the human operator to control the high-level task of
the robot while the latter autonomously improves its state
estimation. The user’s commands are included in a task priority
framework together with other relevant constraints, while the
quality of the acquired information is measured by the Shatten
norm of the Constructibility Gramian. The user is also provided
with guidance feedback pointing in the direction that would
maximize this information metric. We evaluated the proposed
approach in two human subject studies, testing the effectiveness
of including the Constructibility Gramian into the task priority
framework as well as the viability of providing either visual or
haptic feedback to convey this information metric.

I. INTRODUCTION

In this paper, we consider a shared control framework
involving a mobile robot traveling along a desired trajectory
for exploration/navigation purposes, with the shape/location
of the trajectory being partially controlled by a human
operator. As in typical shared control scenarios [1], [2],
[3], [4], [5], we envisage a division of roles between
the robot and the human operator. The mobile robot is
equipped with onboard sensors and has enough autonomy
for implementing lower-level control actions for addressing
some ‘local’ constraints/requirements that would otherwise
be hard to handle by the human operator. For instance,
obstacle avoidance or attraction towards regions of interest are
typical low-level behaviors, as well as dealing with limited
actuation/energy, constrained dynamics or limited sensing [6].
The human operator is, instead, in charge of higher-level
behaviors such as steering the mobile robot (either the robot
itself or the whole trajectory followed by the robot) towards
areas of interest or the next waypoint. The operator can
provide commands to the mobile robot by acting on an input
device and, when haptics is included (as in the case of this
work), she/he can also receive a force feedback informing
about what actions the robot would like to execute. The
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operator is then left with the choice of whether (and to what
degree) follow the feedback suggestions, thus blending her/his
higher-level goals with the local needs of the robot.

This general idea is instantiated in this paper by considering
a fundamental task for any mobile robot navigating in
an environment with onboard sensing: the quality of the
information acquired by the onboard sensors, which is needed
for properly estimating the robot state. In fact, having a good
knowledge about the robot internal state and possibly also
about self-calibration and environment parameters is essential
in order to safely move in an unstructured environment. The
quality of the robot state estimation is highly influenced by
the kind and amount of sensor information, especially in case
of limited sensing capabilities and/or low cost (and noisy)
sensors. Moreover, since any non-trivial robot dynamics
are non-linear, the quality of information also depends on
the actual trajectory performed by the robot which may
be optimized for enhancing the estimation process. For
these reasons, the problems of optimal information gathering
(see [7] and references therein), aka active sensing control,
as well as the optimal sensors placement ([8], [9]) have been
widely studied in the literature.

In this context, in [8] we have recently proposed a trajectory
planning framework aimed at solving online the active sensing
control problem: we proposed a method to determine the
optimal control actions for a mobile robot that maximize
the amount of information collected by the onboard sensors
(and, thus, improve the accuracy and convergence speed of
an observer). In this work we illustrate how to embed the
active sensing control method developed in [8] into a shared
control framework: a mobile robot equipped with onboard
sensors travels along a desired trajectory and localizes itself by
measuring distances from some landmarks in the environment.
The trajectory is continuously adjusted online by the robot
autonomy so as to maximize the information acquired by
the sensors following the approach presented in [8]. At the
same time, the human operator controls some geometric
properties of the trajectory: for instance she/he may control
(i) the centroid location (in case of a closed trajectory) as a
“pivot” for exploring the environment, or (ii) the final point
(in case of an open-ended trajectory), in order to guide the
robot towards a specific point. The user’s commands have
a higher priority w.r.t. the active perception actions so as
to ensure their correct fulfillment. However, as explained
above, the operator is nevertheless provided with a force
feedback for informing about where the robot autonomy
would like to steer the trajectory along the user controlled
degrees-of-freedom. In this way, the operator retains control
over the global task, but she/he has the possibility to follow
the autonomy suggestions whenever appropriate. We evaluate
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the proposed shared control framework with two human
subjects studies in a virtual environment where a unicycle
robot persistently travels along a closed path which is jointly
modified by the local autonomy (for enhancing the robot
estimation accuracy) and the human operator actions. The
results show the benefits of the approach in typical navigation
tasks.

II. PRELIMINARIES

Let us consider a generic robot with dynamics

q̇(t) = f(q(t),u(t)), q(t0) = q0 (1)
z(t) = h(q(t)) + ν (2)

where q(t) ∈ Rn is the robot state, u(t) ∈ Rm the
control inputs, and z(t) ∈ Rp the sensor outputs (i.e., the
measurements available through the sensors mounted on the
robot). We assume that f and h are analytic functions and that
ν ∼ N (0,R(t)) is a normally-distributed Gaussian output
noise with zero mean covariance matrix R(t). As the onboard
sensors are not able to directly provide a measure of the
whole state of the robot, we also assume that an observer
(an Extended Kalman Filter – EKF – in our case) provides
(online) an estimation q̂(t) of the true state q(t), together
with the associated covariance matrix P . Notice that q(t) can
be extended to also include self-calibration and environment
parameters to be estimated.

Without loss of generality, we also assume that the
system (1)–(2) is differentially flat [10]. This property applies
to most of the mobile robots of our interest (e.g., unicycles
and quadrotors). In practice this assumption is needed for the
sake of computational efficiency, since it allows avoiding the
numerical integration of (1) along the planned future path [8].
The flat outputs, and hence the whole state trajectory of the
robot, is parametrized as a closed or open B-Spline. B-Splines
curves are linear combinations, through a finite number N
of control points xc = (xTc,1, x

T
c,2, . . . , x

T
c,N )T ∈ Rκ·N , of

basis functions Bαj : S → R for j = 1, . . . , N . Each B-Spline
is defined as

γ(xc, ·) : S → Rκ, s 7→
N∑
j=1

xc,j B
α
j (s, s) = Bs(s)xc,

(3)
where S is a compact subset of R and Bs(s) ∈ Rκ×N . The
degree α > 0 and knots s = (s1, s2, . . . , s`) are constant
parameters, with ` = N ≥ α. Bs(s) is the set of basis
functions and Bαj is the j-th basis function evaluated at s,
obtained by the classical Cox-De Boor recursion formula in
case of open B-Spline, or by a slightly modified version in
case of closed B-Spline as shown in [6]. In the following we
will then let qγ(xc, s) and uγ(xc, s) represent the state q
and inputs u obtained (via the flatness) as a function of the
B-Spline γ(xc, s).

III. SHARED ACTIVE SENSING CONTROL –
PROBLEM FORMULATION

In this section, we show how the active perception problem
defined in [8] can be integrated in a shared control architecture.
The solution proposed in [8] is able to generate online, in
real-time, a trajectory for a robotic system over a future

time horizon aimed at maximizing the amount of information
obtained by the onboard sensors. Having a real-time solution
for the active sensing control part is also important in the
context of this work, due of the presence of an operator-in-the-
loop that would be far less comfortable with the computational
delays of an offline solution. For the reader’s convenience,
we now briefly summarize the main definition and results
presented in [8] which are also relevant here.

A. Constructibility Gramian
In [8], the Constructibility Gramian (CG) has been in-

troduced as a suitable metric for quantifying the amount
of information collected along a given trajectory by the
onboard sensors of a robot with dynamics (1)–(2). By letting
qf = q(tf ) (where tf can be considered as either a fixed
final time or as the current running time) and P 0 the a
priori information about the state q0 = q(t0) collected in
the (infinite) time interval (−∞, t0) and available at t0, the
expression of the CG is

Gc(t0, tf ) = ΦT (t0, tf )P
−1
0 Φ(t0, tf )+

+

∫ tf

t0

Φ(τ, tf )
TC(τ)TW (τ)C(τ)Φ(τ, tf ) dτ.

(4)
where C(τ) = ∂h(q(τ))

∂q(τ) , W (τ) ∈ Rp×p is a symmetric
positive definite weight matrix, and Φ(t, tf ) ∈ Rn×n is
the state transition matrix (see [11] for its definition and
properties). In [8] we also showed that, in absence of process
noise, (4) is the solution of the Continuous Riccati Equation
(CRE) and hence maximization of some norm of Gc(t0, tf )
is expected to produce a trajectory that minimizes the state
estimation uncertainty.

B. Optimization Problem
The reactive planning framework introduced in [8] for

maximizing online (4) is also exploited in this paper as one
of the tasks to be executed by the mobile robot. The overall
optimization problem is defined as follows:

Problem 1 (Online Shared Active Sensing Control) For
all t ∈ [t0, tf ], find the optimal location of the control points

x∗c(t) = argmax
xc
‖Gc(s0, sf )‖µ ,

s.t.

1) qγ(xc(t), st)− q̂(t) ≡ 0, (state coherency)
2) fl(xc(τ), sτ ) 6= 0 , ∀ τ ∈ [t, tf ], (flatness regularity)
3) L(xc(t), st, sf ) = Ld − Lt, (fixed length)
4) usr(xc(t), s)− usrd ≡ 0, (user’s task)

where
Lt = L(s0, st) =

∫ st

s0

v(xc, σ) dσ

represents the length already traveled by the robot on the
previous interval [t0, t] (and, analogously, L(xc(t), st, sf )
is the length of the trajectory in the future interval [st, sf ]).
Finally, v(xc, σ) = ‖∂γ(xc, s)/∂s‖2.

In Problem 1, ‖A‖µ = µ
√∑n

i=1 λ
µ
i (A) represents the

Shatten norm of a matrix A, with µ � −1 and λi(A) the
i-th eigenvalue of A. The Shatten norm is exploited as an



approximation of the smallest eigenvalue of a matrix with the
benefit of always being differentiable even in case of repeated
eigenvalues (thus, avoiding possible numerical issues).

Problem 1 contains a set of constraints. The fourth task
is one of the novelties of this paper w.r.t. [8] and represents
the user’s task. The human operator is indeed in charge
of modifying some geometric characteristics (e.g. a specific
point, the centroid, the area, and so on) of the planned path for
the robot. Two examples of possible geometric characteristics
also used in Sec. V are:
• Point on the path: a point on the future path w.r.t. the

current robot position can be controlled by the user in
order to specify a waypoint in the environment where
the robot needs to pass through. In this case, one can
set constraint 4) in Problem 1 as

qγ(xc(t), s(t) + s̃)− qd = 0,

with s̃ being the arc-length distance between the current
location of the robot and the point to be controlled by
the user, and qd the desired position for the forward
point imposed by the user’s task;

• the centroid of a closed path: the centroid may represent
a “pivot” whose location can be controlled by the user
in order to explore a desired zone of the environment.
In this case, one can set constraint 4) in Problem 1 as∫ sf

s0
qγ(xc(t), σ) v(xc, σ) ds∫ sf
s0
qγ(xc(t), σ) dσ

− Cd = 0 ,

with Cd being the desired position for the centroid
imposed by the user.

The other constraints of Problem 1, already used in [8], are:
state coherency, for ensuring that the optimization over the
future path is coherent with the current state estimate; flatness
regularity, for avoiding intrinsic singularities introduced by
the flatness transformations (e.g., for the unicycle the intrinsic
singularity corresponds to the forward velocity equal to zero);
fixed length, for guaranteeing well-posedness of Problem 1
since ‖Gc‖ could be unbounded from above if the robot has
an unlimited path length1.

We chose B-Spline curves (widely used in the literature,
e.g., [6], [12]) to avoid an infinite-dimensional optimization
problem, which would be intractable at runtime. B-Spline
allowed us to formulate a finite-dimensional (thus numerically
tractable at runtime) optimization problem, where the control
points of the B-Spline become the optimization variables.
However, our approach is compatible with any similar
parametric path solution, e.g., Nurbs.

IV. SHARED ACTIVE SENSING CONTROL –
PROPOSED SOLUTION

By letting

ẋc(t) = uc(t) , xc(t0) = xc,0

where uc(t) ∈ Rκ×N , Problem 1 is solved by an online
constrained gradient descent action uc(t) affecting the loca-
tion of the control points xc(t) (starting from an initial path

1Notice that, differently from this paper, in [8] we used the energy to
guarantee the well-posedness of the optimization problem.
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Fig. 1. Proposed framework. The priority-based controller computes the
action uc according to the user inputs. Then, the trajectory generator
computes the controls points xc of the B-Spline and, exploiting the flatness
property, it also evaluates the inputs u to the robotic system. The robot moves
following these inputs and collects new measurements about the environment.
The inputs u and measurements z feed an EKF that provides the estimation q̂
of the state and the associated covariance matrix P . These become inputs to
the priority-based controller that, together with the user input uh, determines
the next control action uc for optimizing the positioning of the control points
on the future path. Finally, the user receives a feedback, pointing in the
direction where the CG is maximized (i.e., where the estimation uncertainty
is minimized).

defined by xc,0), based on a task-priority approach (see, e.g.,
[13]) that translates all the constraints and the cost function
in tasks with different priorities. Moreover, we also introduce
a guidance feedback provided to the operator in order to
make her/him aware about the possibility of increasing the
amount of information collected by the robot along the future
trajectory for reducing the estimation uncertainty.

A. Prioritized Stack Of Tasks
The overall architecture of our online shared active sensing

control is illustrated in Fig. 1. The stack of tasks in the
“Prioritized task control” of Fig. 1 is (starting from the task
with highest priority): 1) state coherency, 2) flatness regularity,
3) length, 4) user’s task and, finally, 5) optimization of the
CG. The Appendix reports how uc(t) can be recursively
generated. The user’s commands have higher priority w.r.t. the
CG optimization task since, as explained before, the operator
must have full control over the geometric properties of the
path and, therefore, the feedback generated by the active
sensing represents a suggestion of how the robot should
move for improving the estimation performance.

B. Feedback to the user
The operator is provided with a feedback information

about how to steer the robot in order to maximize the
amount of collected information. This feedback indicates
the direction towards which the geometric characteristic of
the robot trajectory, controlled by the operator, should move
for maximizing the Shatten norm of the CG (while also
being subject to all the other constraints). Its intensity is
proportional to the improvement that could be achieved in
that direction, i.e., the gradient of the Shatten norm. Since
the CG maximization is the last task in the stack, its gradient
is projected into the null space of the other tasks via the
projector AN4 (see (11) in the Appendix). As a consequence,
the component of the gradient of the Shatten norm of the
CG filtered out by AN4 (and, thus, not implemented by the
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Fig. 2. Unicycle mobile robot with an onboard sensor able to measure the
squared distances w.r.t. four markers F i, i ∈ [1, . . . , 4] in the environment.

(a) t = 0 s (b) t = 30 s

(c) t = 60 s (d) t = 90 s

Fig. 3. Scenario #1: power grid activation. The users have to activate four
switches in a certain order. The next switch to activate is red; when activated,
it turns green. A switch activates when the real robot passes over it, but
users only see the estimated robot position. Black dots are the markers from
which the robot sensors compute the distances to estimate the robot position,
the green dot is the point on the B-Spline controlled by the user, and the
green arrow is the visual guidance provided to the user in condition CG-V.

robot autonomy) is (IκN×κN − AN4)∇xc‖Gc(−∞, sf )‖µ.
This component, when mapped back onto the user space via
the Jacobian J4 (see (10) in the Appendix), can then be used
for generating a feedback

fusr = βJ4(IκN×κN − AN4)∇xc‖Gc(−∞, sf )‖µ . (5)

with β > 0 a tunable gain. fusr will then guide the user
in following the gradient of the Shatten norm of the CG
along those directions that are not implemented by the robot
autonomy because of the projection action of AN4.

The feedback information fusr could be conveyed in
different ways, e.g., as an arrow on a screen or as a kinesthetic
force provided by a grounded haptic interface. Both of these
options are tested in the experimental evaluation reported in
the next Section.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed approach, we consider
two scenarios where the human subjects control the motion of
a mobile robot by acting on particular geometric properties of
the followed path through a kinesthetic haptic interface. The
subjects also receive a visual or a haptic feedback about the
quality and quantity of the information currently collected by

(a) t = 0 s (b) t = 133 s

(c) t = 266 s (d) t = 400 s

Fig. 4. Scenario #2: infrastructure monitoring. Users have to make the real
robot visit 100 tiles on a factory floor. However, they can only see the action
of the estimated robot. If the quality of the robot position estimation is low,
the real robot will act differently from what users see, leading to a different
set of visited tiles (see also Fig. 5). The red tiles are those visited by the
estimated robot, the black dots are the markers from which the robot sensors
compute the distances to estimate its state, the green dot is the centroid
of the B-Spline (controlled by the user), and the green arrow is the visual
guidance provided in condition CG-V.

the onboard sensors. A video of the experiments is available
at https://youtu.be/yGL7i48ZisA.

Mobile robot: As case study, we consider a unicycle
vehicle (see Fig. 2) moving on a plane XW ×Y W . The state
of the robot is q(t) = (x(t), y(t), θ(t))T , where the first two
components are the position of a reference point attached to
the robot on XW × Y W and θ(t) is the robot heading w.r.t.
XW . The unicycle kinematic model isẋẏ

θ̇

 =

cos θ 0
sin θ 0
0 1

[v
ω

]
, (6)

where v and ω are the linear and angular velocity of the
robot, respectively. The flat outputs are ζ = [ζ1, ζ2]

T =

[x, y]T and hence θ = arctan(ζ̇2/ζ̇1), v =
√
ζ̇21 + ζ̇22

and ω = (ζ̈2ζ̇1−ζ̈1ζ̇2)/(ζ̇21+ζ̇
2
2 ). Moreover, we assume that the

onboard sensor is able to provide measurements of the squared
distances w.r.t. four markers F i, i ∈ [1, . . . , 4]:

z =

x
2 + (y − d)2

(x− d)2 + y2

x2 + (y + d)2

(x+ d)2 + y2

+ ν, (7)

where d = 2 m is the distance of each marker from the
origin of the global reference frame. Moreover, in order
to emulate the behavior of a real sensor, we consider a
measurement noise that increases with the distance to the
markers. This is obtained by weighting the measurement
covariance matrixR−1 with a weight matrixW in such a way
that R−1W = W TR−1W , where W = diag(w1, . . . ,wm),
with m the number of measurements (m = 4 in (7)). Weight
wi is a function equal to one when the distance between the
robot and the i-th marker is below a given threshold D1, and
it monotonically reaches zero when the distance is greater



than another threshold D2 > D1. This mechanism ensures
an infinite covariance matrix as soon as the i-th distance
is greater than D2 and hence, the measurement from the
i-th marker can be considered no longer available. In our
experiments, we set D1 = 1.5 m and D2 = 2.5 m.

Master interface: The subjects work in synergy with
the active perception algorithm by acting on a grounded
Omega.6 haptic interface (as shown in Fig. 1). By moving
its end-effector, subjects control a geometric property of the
closed B-Spline defining the trajectory of our mobile robot
(see Sec. III-B). A screen in front of the subjects shows the
considered virtual scenario.

Experimental modalities: We consider
(N) The closed B-Spline trajectory of the robot is cal-

culated by solving Problem 1 (see Secs. III-B, IV-A
and the Appendix), where the CG maximization task
is removed from the stack of tasks shown in Fig. 1. In
other words, the quality of the robot state estimation
is not maximized by the autonomy and it completely
depends on the trajectory chosen by the human operator.
The user receives no feedback on how to improve the
estimation of the robot state;

(CG-N) The closed B-Spline trajectory of the robot is generated
by solving Problem 1, including the CG maximization
task. However, the user receives no feedback on how to
improve the estimation of the robot state.

(CG-V) The closed B-Spline is generated by solving Problem 1,
including the CG maximization task. The user receives
visual guidance on how to move the considered trajectory
point by means of an arrow defined by (5);

(CG-H) The closed B-Spline is generated by solving Problem 1,
including the CG maximization task. But this time
the user receives haptic guidance on how to move the
considered trajectory point, by means of a kinesthetic
force, defined by (5) and provided via the Omega.6
haptic interface.

In all conditions, the subjects use the haptic interface to
control the geometric property of the robot path, as explained
in Sec. III-B.

A. Experimental Scenario #1: power grid activation
We consider a situation where the operator teleoperates the

mobile robot for activating four electrical switches in a given
order by controlling a point on the closed B-Spline defining
the trajectory of the mobile robot, as seen in Sec. III-B.

The virtual scene, shown in Fig. 3, is simulated using V-
REP. It consists of the four switches (dark grey, red, or green
in Fig. 3), four markers (black), the estimated position of the
robot (solid robot model), its closed B-Spline trajectory (blue,
see also Sec. II), and the point of this trajectory controlled
by the operator (green). The real robot estimates its position
by measuring the squared distances w.r.t. the black markers,
with a measurement noise increasing with the distance from
the markers. As described in Secs. II and IV-A, the robot
continuously moves along a closed B-Spline following the
prioritized stack of tasks algorithm.

The task of this experiment consists in activating the four
switches in the given order in no more than 90 seconds.
The next switch to be activated is indicated in red while the
already activated switches are marked in green. A switch is

(a) N (b) CG-N

(c) CG-V (d) CG-H

Fig. 5. Scenario #2: infrastructure monitoring. Representative example
of the set of tiles visited by the real robot for one user. In condition N,
where the quality of the robot position estimation is low, users think to have
completed the task while some tiles still need to be visited by the real robot.
The high quality of the estimation in the other conditions prevent this issue,
proving the importance of including the CG maximization task as well that
of providing an effective feedback to the user.

activated when the real robot passes through the center of its
tile. However, the screen only shows the estimated robot state
to the human operator (see Fig. 3(b)). It is therefore clear that,
as the error in the estimation of the robot position increases,
it becomes increasingly difficult for the user to complete the
task, as she/he is only aware of the robot estimated pose
while the switches are activated by the robot real pose. This
situation is representative of many maintenance tasks carried
out in remote or dangerous areas, where the operator needs to
physically act on the environment without having an external
reliable measure on the current robot status with, thus, the
only available information being the robot estimation of its
own pose.

For this scenario, the desired path length is set to Ld =
10 m. We assume that a zero-mean Gaussian noise is acting
on the measurements with covariance R = I and we used an
EKF as observer. At the beginning of the experiment, the real
robot is located at q(t0) = (1.0 m, 1.0 m, 0.0 rad)T , while
the estimated one is at q̂(t0) = (−0.4 m, 0.5 m,−0.3 rad)T .

1) Subjects: Ten participants took part to our two experi-
ments, including 1 woman and 9 men (age 24–37 years old).
The experimenter explained the context, the observability
concept, and the meaning of the feedback. Then, he explained
the task and adjusted the setup to be as comfortable as
possible. Users performed one randomized repetition of the
task per experimental condition, yielding 40 trials for this
Scenario. Operators were asked to complete the task as fast as
possible, taking however into account the received feedback.

2) Results: As a measure of performance, we registered the
task completion time, the quality of the robot state estimation,
and the perceived effectiveness as registered by the users.

Fig. 6(a) shows the average normalized task completion
time, which is calculated as the time needed by the robot
to complete the task, divided by the time limit (90 s). We
ran a one-way repeated-measures ANOVA test (a = 0.05).
The experimental condition (N vs. CG-N vs. CG-V vs. CG-
H) was considered as the within-subject factor. Data were
transformed using a arcsin transformation before running the
statistical analysis. The ANOVA test revealed a statistically
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Fig. 6. Scenario #1: results. Mean and 95% confidence interval of (a)
completion time, (b) minimum eigenvalue of P−1 (from the EKF), and (c)
perceived effectiveness for the four experimental conditions.

Fig. 7. Scenario #1. Evolution of the minimum eigenvalue of P−1 (i.e.,
the maximum estimation uncertainty) for one representative subject in the
four experimental conditions.

significant change in the task completion time (F(3,27)
= 8.143, p = 0.001). Post hoc analysis with Bonferroni
adjustments revealed a statistically significant difference
between N vs. CG-V and N vs. CG-H. Statistically significant
p values of this and following comparisons are reported
in Figs. 6 and 8. Fig. 6(b) shows the average minimum
eigenvalue of P−1. It was calculated as the mean value of
the minimum eigenvalue of P−1 throughout the task. This
metric is interesting because it is inversely proportional to the
maximum estimation uncertainty [8], making it a measure
of the quality of the estimation of the robot state. We ran
again a one-way repeated-measures ANOVA test (a = 0.05),
revealing a statistically significant change in the value of this
eigenvalue across experimental conditions (F(3,27) = 51.989,
p < 0.001). A representative example of how this metrics
evolves during the task is reported in Fig. 7. As expected, this
metric reaches higher values in CG-V and CG-H conditions
w.r.t. N and CG-N, confirming the results of Fig. 6(b). At
the same time, the positive effect of the Gramian can be also
seen when no feedback is available (CG-N) w.r.t. N.

At the end of the experiment, we asked the participants

to rate the perceived effectiveness of the three experimental
conditions. The responses were given using bipolar Likert-
type scales that ranged from 0 to 10, where a score of 0
meant “very low” and a score of 10 meant “very high” [14],
[15]. To compare this metrics, we ran a one-way repeated-
measures ANOVA test (a = 0.05) as before. Data were
transformed using a square-root transformation. Fig. 6(c)
shows the perceived effectiveness of the three experimental
conditions. The ANOVA test revealed a statistically significant
change in the perceived effectiveness (F(3,27) = 13.410, p <
0.001).

Finally, four subjects out of ten found conditions CG-H
and CG-V to be the most effective at completing the task,
followed by N (two subjects).

B. Experimental Scenario #2: infrastructure monitoring

We also carried out a second experiment, considering a
scenario where users teleoperate a mobile robot to inspect
a factory floor by controlling the centroid of the closed B-
Spline defining the mobile robot trajectory, as seen in Sec. III.

The virtual scene, shown in Fig. 4(a), is again simulated
using V-REP and consists of a large rectangular area in which
we define 100 tiles that need to be inspected (light grey in
Fig. 4), four markers (black), the estimated position of the
robot (solid robot model), its closed B-Spline trajectory (blue),
and the centroid of this trajectory (green). As in Sec. V-A,
the real robot estimates its position by measuring the squared
distances w.r.t. black markers, with a measurement noise
increasing with the distance from the markers. Again, the
robot continuously moves along a closed B-Spline.

The task consists in visiting all 100 tiles in no more than
400 seconds. A tile is considered visited when the robot
passes through its center. As before, the screen only shows the
estimated robot to the human operator (see Fig. 4). However,
differently from the previous Scenario #1, here the user does
not have a direct feedback about the tiles actually visited by
the real robot as she/he can only see the tiles visited by the
estimated one.

Therefore, as the error in the estimation of the robot
position increases, the probability that the real robot leaves
some tile unchecked is likely to rise. This situation is
representative of many inspection applications carried out
in remote or dangerous areas, where the operator needs to
check the status of a certain infrastructure without having an
external reliable measure on the current robot status.

For this scenario, we considered the same setup, modalities,
and subjects of the previous experiment of Sec. V-A. The
users again performed one randomized repetition of the task
per experimental condition, yielding 40 additional trials for
this Scenario. Moreover, the desired path length is set to
Ld = 10 m. Again, we assume that a zero-mean Gaussian
noise is acting on the measurements with covariance R = I
and we used an EKF as observer. At the beginning, the real
robot is located at q(t0) = (0.0 m, 1.0 m, 0.0 rad)T , while
the estimated one is at q̂(t0) = (−0.4 m, 0.5 m,−0.3 rad)T .

1) Results: Also in this case, as a measure of performance,
we registered the average task completion time, the quality
of the estimation of the robot state, and the perceived
effectiveness as registered by the human users.
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Fig. 8. Scenario #2: results. Mean and 95% confidence interval of (a)
minimum eigenvalue of P−1 and (b) difference in the covered tiles.

The average normalized task completion time was cal-
culated as the time needed by the robot to complete the
task, divided by the time limit (400 s). We ran a one-way
repeated-measures ANOVA test (a = 0.05). The experimental
condition (N vs. CG-N vs. CG-V vs. CG-H) was considered
as the within-subject factor. Data were transformed using an
arcsin transformation before running the statistical analysis.
The ANOVA test revealed no statistically significant change
in the task completion time (F(3,27) = 1.657, p > 0.05).
Fig. 8(a) shows the average minimum eigenvalue of P−1. We
ran again a one-way repeated-measures ANOVA test (a =
0.05), revealing a statistically significant change in the value
of this eigenvalue across experimental conditions (F(3,27) =
110.361, p < 0.001). Fig. 8(b) shows the average difference
between the number of tiles visited by the estimated robot
(shown to the operator) vs. those actually covered by the real
robot. The ANOVA test revealed a statistically significant
change in the number of visited tiles (F(1.080,9.722) = 9.974,
p = 0.010).

As in Sec. V-A, at the end of the experiment, we asked the
participants to rate the perceived effectiveness of the three
experimental conditions using 11-points bipolar Likert-type
scales. This time, the ANOVA test revealed no statistically
significant change in the perceived effectiveness (F(3,27) =
1.048, p > 0.05). Finally, seven subjects out of ten found
condition CG-H to be the most effective at completing the
task, followed by N (two subjects) and CG-V (one subject).

VI. DISCUSSION

The reported results show the effectiveness and viability
of the proposed shared control active perception technique.
Using the active perception routine (CG-N, CG-V, CG-H) to
maximize the information acquired by the robot significantly
improves the performance of both tasks w.r.t. not considering
the optimization of CG (N). Of course, this difference is
most evident in the value of the minimum eigenvalue of
P−1 (quality of the estimate), but also in the completion
time (Scenario #1), perceived effectiveness (Scenario #1),
and number of covered tiles (Scenario #2). When the user is
provided with feedback regarding where to move to maximize
this metric (CG-V, CG-H), the positive effect is even stronger
with respect to when no feedback is provided (CG-N). On the
other hand, the difference between the two types of feedback
(visual vs. haptic, CG-V vs. CG-H) is more subtle. Haptic

guidance outperforms the visual one only in the value of the
minimum eigenvalue of P−1 for Scenario #2, although it
was preferred by users in both Scenarios.

As the two Scenarios target different tasks, the role of
the active sensing and the feedback provided affected the
user’s performance in different ways. In the first Scenario,
the switches were activated only when the real robot touched
them, but the users only saw the estimated robot position
on their screen. For this reason, in condition N, where the
estimate quality was poor (i.e., the positions of the estimated
and real robots were significantly different), the users had
to perform multiple passes on the switch until the real robot
finally activated it. This behavior resulted in longer completion
times as well as in users becoming quickly frustrated. In the
second Scenario, we had no feedback at runtime about the
tiles actually visited by the real robot. Only at the end, we
compared the difference in the tiles covered by the real and
the estimated robots. For this reason, during the task, it was
less evident the role and importance of being provided with
guidance information to maximize the quality of the estimate.
Unfortunately, this situation resulted in two users out of ten
judging both CG-V and CG-H “not useful” and “distracting,”
which prevented us from finding a significant difference in the
perceived effectiveness metrics of this Scenario. This results
might be due to the limited understanding that these users had
of the metrics and the observability concept, despite our effort
in instructing them before starting the experiment. Of course,
we expect operators to more easily comprehend the meaning
of the feedback as well as better appreciate its role in this
task. Despite this result, it is clear from the other metrics
that providing feedback from the active perception routine
still significantly improved the task performance. Finally, we
registered two main subjective responses/behaviors regarding
the use of visual vs. haptic feedback. One group of users
appreciated the capability of the visual arrow in providing
the guiding information without forcing/pushing their motion.
On the other hand, another group of users appreciated the
capability of force feedback in gently pushing them toward
the right direction, without the need of additional thinking.

Despite the positive effects of the proposed approach, it
is clear that the robot moves quite significantly to complete
the task. To address this issue, we recall that the length of
the B-spline can be adjusted according to the task at hand.
Moreover, by interacting with our operators, we realized that
most of them were unable to effectively use all the B-spline
to carry out the task (e.g., visit the tiles). Conversely, they
tended to position only a small part of the robot path on
areas of interest (e.g., unvisited tiles). This is mostly due to
their difficulty in understanding how the path will change
when moving the centroid. For this reason, in the future, we
want to employ more experienced users, as it will be the
case in real-world industrial scenarios. Moreover, we want to
study how to employ open B-Splines, enabling the operator to
control the end of a continuously-moving path while solving
Problem 1.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a shared control active percep-
tion algorithm aimed at combining the high-level capabilities
of a human operator with an autonomous controller whose



goal is to minimize the estimation uncertainty along a
persistent trajectory defined as closed B-Spline. The operator
is in charge of modifying some geometric properties of this
curve. Moreover, visual or haptic feedback is provided to the
users, guiding them toward the direction where the estimation
uncertainty is minimized. We evaluated our framework in
two different scenarios, performing a comparison with a
framework that does not consider the active perception task
and/or does not provide any feedback to the user. This
comparison confirms the effectiveness of our methodology
and the usefulness of the providing haptic feedback.

Future works will be dedicated to test our framework in
complete experiments with real and more complex robots (in-
cluding quadrotor UAVs and multi-robot systems). Moreover,
different type of feedback will be also considered, such as
audio, bracelets [16], and other wearable devices.

APPENDIX

In this section, we briefly report how the gradient
descent control action acting on the location of the
control points can be recursively built. Let 1o(t) =
qγ(xc(t), s(t))− q̂(t) represent the state coherency task, so

that 1ȯ(t) = J1
1uc(t) + Jsṡ − ˙̂q(t) where Js =

∂qγ
∂s

,

the Jacobian J1 =
∂qγ
∂xc

=
∂qγ
∂Γ

∂Γ
∂xc

, and matrix Γ =[
γ(xc(t), st),

∂γ(xc(t),st)
∂s , . . . , ∂

(k)γ(xc(t),st)
∂s(k)

]
for a suitable

k ∈ N. By choosing

1uc = −J†1(k11o(t)− ˙̂q(t) + Jsṡ), (8)

one obtains exact exponential regulation of the highest priority
task 1o(t) with rate k1. The projector into the null space of
this (first) task is just AN1 = AN0 − (J1

AN0)
†(J1

AN0)
with AN0 = IκN×κN .

The flatness regularity task was solved by defining
a repulsive potential function 2o(t) = U(xc, s(t)) =∑
i

∫
S∗
i
Ui(δi(xc, σ)) dσ acting on the control points when

δi(xc, s) is close to zero over some intervals. The task consists
in minimizing the potential function. By choosing

2uc =
1uc − (J2

AN1)
†(k2

2o(t) + J2
1uc), (9)

with J2 = ∂U/∂xc, one obtains exact exponential regulation
of task 2o(t) with rate k2 while still guaranteeing the
accomplishment of the highest task 1o(t). The projector into
the null space of both previous objectives can be computed
(recursively) as AN2 = AN1 − (J2

AN1)
†(J2

AN1).
Let 3o(xc(t), st, sf ) = L(xc(t), st, sf )− Ld(t) represent

the length task, so that 3ȯ(t) = J3
3uc(t) − L̇d(t), with

J3 =
∫ sf
st

∂
∂xc

v(xc, σ) dσ and L̇d(t) the desired task velocity
By choosing

3uc =
2uc + (J3

AN2)
†(−λ33o(t) + L̇d(t)− J3

2uc) ,

one obtains exact exponential regulation of task 3o(t) with
rate k3 while still guaranteeing the accomplishment of the
previous higher priority tasks. The projector into the null space
of all previous tasks is AN3 = AN2−(J3

AN2)
†(J3

AN2).
Let 4o(xc(t), s̃) = usr(xc(t), s)− usrd(t) represent the

user’s command task, so that 4ȯ(xc(t), s̃) = J4
4uc −

˙usrd(t) = J4
4uc − uh(t), with J4 = ∂

∂xc
usr(xc, σ) and

uh(t) the user input (see Fig. 1). By choosing

4uc=
3uc+(J4

AN3)
†
(

˙usrd(t)−λ4

∫
4ȯ(xc(τ), s̃)dτ−J4

3uc

)
.

(10)
one obtains exact exponential regulation of task 4o(t) with

rate k4 while still guaranteeing the accomplishment of the
previous higher priority tasks. The projector into the null space
of all previous tasks is AN4 = AN3−(J4

AN3)
†(J4

AN3).
Finally, we consider the maximization of the Schatten norm

of the CG in the null-space of the previous tasks. The final
gradient descent strategy becomes

5uc =
4uc +

AN4∇xc‖Gc(−∞, sf )‖µ (11)

The interested reader is referred to [8] for additional details
on how to compute ∇xc‖Gc(−∞, sf )‖µ.
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