
Multi-Robot Coordinated Planning in Confined Environments
under Kinematic Constraints

Clayton Mangette and Pratap Tokekar

Abstract— We investigate the problem of multi-robot
coordinated planning in environments where the robots may
have to operate in close proximity to each other. We seek
computationally efficient planners that ensure safe paths and
adherence to kinematic constraints. We extend the central
planner dRRT* with our variant, fast-dRRT (fdRRT), with the
intention being to use in tight environments that lead to a high
degree of coupling between robots. Our algorithm is empirically
shown to achieve the trade-off between computational time
and solution quality, especially in tight environments. We also
demonstrate the ability of our algorithm to be adapted to
the online planning problem while maintaining computational
efficiency. The software implementation is available online at
https://github.com/CMangette/Fast-dRRT.

I. INTRODUCTION

Computationally efficient multi-robot motion planning
algorithms are highly sought after for their numerous
applications. In a time when automotive manufacturers
are quickly approaching the advent of self-driving cars,
centralized motion planners in lieu of traditional traffic
control structures open the possibility of increased traffic
flow in busy urban environments [6], [19]. With an
increase in automation in warehouses [1], efficient path
planning of robots designed to move inventory has become
another important use case. Beyond ground vehicles, traffic
management of Unmanned Aerial Vehicles (UAVs) is
identified as an important area of research to ensure safe
integration of aerial vehicles into the airspace [8].

In each of the aforementioned applications, the algorithms
used must be robust to planning in tight, confined
environments while eliminating the possibility of robot
collisions. In the case of automated driving, urban traffic
structures such as intersections and highway merging ramps
constrain vehicles to a narrow set of paths. Similarly, robots
operating in a warehouse environment must conform to the
facility infrastructure to avoid storage and shelving units.
While not subject to high clutter, high volume air traffic can
artificially restrict paths for UAVs.

The planning algorithms available for such problems
can be classified as centralized or decoupled. Centralized
algorithms plan in the joint space of all robots whereas
decoupled approaches only consider the space for each
individual robot [9]. Centralized frameworks already exists
in each use case. The intersection manager in [16] is
a candidate replacement to traffic lights that can control

C. Mangette is with the Department of Electrical and Computer
Engineering, Virginia Tech, U.S.A. {mangettecj}@vt.edu

P. Tokekar is with the Department of Computer Science at the University
of Maryland, U.S.A. {tokekar}@umd.edu

Fig. 1: The central planner returns collision-free path queries
by referencing pre-computed roadmaps from a local planner.

when autonomous vehicles enter an intersection. A task
allocation and path planning system in [5] demonstrates how
to automate warehouse stock movement with kiva robots.
The Unmanned Aerial System Traffic Management uses a
centralized service supplier to manage requests and conflicts
between UAVs operating within the same space [8].

The main challenge in centralized planning is time-
efficiency. State-of-the-art planners feature algorithms
that improve efficiency while preserving completeness.
Recognizing the shortcomings of previous algorithms that
rely on explicit computation of the composite planning space,
discrete rapidly expanding random trees (dRRT) [12] and its
optimal variant dRRT* [11] improve efficiency by delegating
computations to offline tasks when possible and relying
on implicit representations of the planning space. These
algorithms do not encode steering constraints, but provide
a general framework for fast multi-robot planning.

This paper presents a variant to dRRT / dRRT*, which we
call fast-dRRT (fdRRT), that returns sub-optimal trajectories
quickly in tight environments that require significant
coordination between robots. We also extend these planners
to account for robots with kinematic constraints.

II. RELATED WORK

Extending motion planning to the multi-robot domain has
been challenging due an increase in search space size. A
sequential process in [20] splits the problem into local path
planning using D* and coordination between robots to avoid
collisions. Instead of handling spatial and velocity planning
separately, Wagner and Choset developed M*, a multi-robot
analogue to A* that resolves local path collisions by coupling
paths only when they are found to overlap [17].

Van den Berg et al. provide a framework for planning in a
roadmap that determines a sequential ordering for each robot

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7999

to execute its path [15]. The coordinated path planner in [21]
searches for collision-free paths over an explicitly computed
multi-robot work space, but is limited in scope due to the
memory required to build its roadmap. Using the principle
of sub-dimensional expansion, Wagner et al. designed sub-
dimensional RRT and sub-dimensional PRM to plan paths
for multiple robots with integrator dynamics [18].

Solovey et al. also use sub-dimensional expansion in
discrete RRT (dRRT) [12]. The idea is to build collision-
free road maps for each robot, and then use them to build
a search tree implicitly embedded in the road maps. dRRT
draws samples from each road map and combines them into
a composite sample to which the tree is extended towards
by selecting a composite neighboring vertex. Collision-
free composite motions are added as vertices to the tree
until a goal is reached. The optimal variant of dRRT,
dRRT*, improves upon computation time further by carefully
choosing neighbors to expand towards the goal state [11].

This paper presents a centralized planning strategy for
kinematically constrained robots in tight environments.
The central planning algorithm, which we call fast-dRRT
(fdRRT), is designed to switch between randomly exploring
the state space and driving greedily towards the goal state
in a manner similar to dRRT*. The difference in our
algorithm is how expansion failures due to collisions are
adjudicated. Instead of returning an expansion failure if no
collision-free connection can be established, fdRRT forces
an expansion success by commanding some robots to stay
in their previous configurations while permitting others to
move forward. It is empirically demonstrated that this makes
fdRRT faster than dRRT* in tight work spaces, but at the
cost of solution quality. We also demonstrate the feasibility
of fdRRT in dynamic planning scenarios. Unlike dRRT*,
fdRRT makes no guarantee of probabilistic optimality, thus
imposing an trade-off between solution efficiency and quality
when choosing between the two algorithms. Additionally,
fdRRT’s incorporation of kinematic constraints makes it a
flexible planner that can be used in different systems.

III. PROBLEM FORMULATION

The inputs to this problem are a set of initial and
goal configurations for N robots in the planning space.
q ∈ (x, y, θ, κ)T denotes a configuration of a robot. Q =
{q1, q2, ..., qN} denotes a set of robot configurations, which
is referred to as a joint configuration. The initial and goal
configurations are denoted as Qinit and Qgoal, respectively.
Furthermore, environmental obstacles are known and denoted
as Cobst. The goal is to find a joint trajectory Π =
{π1, π2, ..., πN} that connects Qinit to Qfinal such that all
local trajectories π ∈ Π are collision-free with respect to the
environment and other robots.

We are interested in multi-robot systems that operate under
kinematic constraints. Each robot is assumed to follow the
dynamics given by:

[
ẋ, ẏ, θ̇, κ̇

]T
=

[
cos θ, sin θ, κ, σ

]
. For

simplicity, each robot is constrained to moving forward. The
dynamics are an extension of Dubins’ steering constraints
[2] with an additional variable κ for curvature. The control

signal in this model is σ, which is the angular acceleration.
The sum of path lengths of the multi-robot trajectory is the
cost metric chosen for evaluating solution quality.

IV. ALGORITHM OVERVIEW

Our system is illustrated in Figure 1. A roadmap for
each robot is constructed locally to definte its possible
configurations and motions. Similar to dRRT*, the central
planner receives path queries in the form of initial and
final configurations and local roadmaps from the robots
in the planning space. To avoid re-planning due to new
requests, the central planner accepts requests until a deadline
Tdeadline and relegate new requests to the next planning
cycle. Given the local roadmaps and initial and final
configurations of each robot, the central planner returns
composite path Π = (π1, π2, ..., πR) that guarantees collision
free trajectories between robots. Each local trajectory
is sent to its corresponding robot as a list of time-
parameterized waypoints wi(t) = [xi(t), yi(t), θi(t), κi(t)]

T

and connecting paths πi(s) = [xi(s), yi(s), θi(s), κi(s)]
T .

The intent is for the central planner to determine the sequence
of configurations that each robot visits as well as its arrival
time. Each robot must then determine appropriate speed and
steering commands to execute its motions.

The central planning algorithm takes the work in [11] and
applies it to a system of multiple kinematically constrained
robots. Two modifications are made to improve upon its
speed in finding a solution. First, when finding the best node
in the tree to connect to a new configuration, both the lowest
cost configuration and the lowest cost free configuration
are returned. Then, in the event that no collision-free
configuration is found, the ForceConnect subroutine is
invoked, and attempts to find a hybrid configuration in
which a subset of robots move forward towards the new
joint configuration and the rest maintain their positions. The
intuition behind this subroutine is that there is a small set of
paths that take a robot to its goal in confined environments,
making the likelihood of overlapping paths high. The
only feasible path may involve some robots momentarily
holding their positions while others move forward, similar
to the pebble motion problem [13]. Our modification to
dRRT* explicitly searches for these types of solutions when
collisions occur to increase the computational efficiency of
the algorithm. Completeness is preserved as this modification
does not significantly change the structure of the algorithm.

The local controller on each robot determines the speed
profile to follow from wi(t) and the distance travelled
between consecutive waypoints. πi(s) is re-parameterized to
πi(t) from the distance traveled over time, which can be
tracked by a local controller using a technique such as pure-
pursuit or nonlinear Model Predictive Control (MPC) [7].

A. Roadmap Generation

Solovey et al. suggest using probabilistic roadmaps
(PRMs) as approximations to local configuration spaces [12].
The PRM algorithm builds a roadmap as a graph G =
(V,E), with each vertex v ∈ V being a unique configuration

8000

and each edge e(vi, vj) ∈ E a path in free space connecting
two adjacent vertices vi and vj [4]. Configurations qrand
are randomly sampled in the configuration space C and
connected to any vertices in G within a connection distance
d, {v ∈ V |dist(qrand, v) ≤ d ∧ e(qrand, v) ∈ Cfree)}.
Roadmap construction continues until |V | = n, after which
paths between configurations can be queried.

Connections in [4] are line segments, which are sufficient
under the assumption of single-integrator dynamics, but
not for the dynamics we consider. Scheuer and Fraichard
extend Dubins’ paths to continuous curvature paths using
clothoids to transition between changes in curvature that,
while less computationally efficient than Dubins’ segments,
are a feasible connection method [10]. Additionally, G in
[4] is an undirected graph, implying that motions between
connected vertices are bi-directional. Due to Dubins’ steering
constraints and the non-holonomic constraints, this is not
necessarily true, and the existence of a collision-free path
connecting vi to vj does not guarantee the reverse. To address
this, Svestka and Overmars demonstrate that making G a
directed graph is sufficient to impose this restriction [14].

The local planning method is similar to the Probabilistic
Path Planner (PPP) in [14] with additional sampling and
connection constraints to build a road map biased towards
the optimal path that discriminates against undesirable
connections (Algorithm 1). G is initialized with a

Algorithm 1: RoadmapGeneration(qi, qf , n, r, Cobst)
1 G← qi;
2 πsample ← ReferencePath(qi, qf);
3 while |V | < n do
4 qrand ← RandomConfig(πsample);
5 for v ∈ V do
6 πlocal ← Steer(v, qrand);
7 if Reachable(πlocal , d) &

CollisionFree(πlocal, Cobst) then
8 if qrand /∈ G then
9 (G, vnew)← Insert(qrand);

10 end
11 G← Connect(v, vnew, πlocal);
12 end
13 end
14 end
15 H← CostToGoal(G, qf);
16 G← PruneDeadNodes(G,H);
17 return G , H

configuration qi (Line 1), which represents a robot’s starting
configuration. A base path πsample is computed as the ideal
path to follow from qi to qf and is used when sampling
configurations (Line 2). G expands to size n by sampling
random configurations qrand (Line 4), finding a continuous
curvature path πlocal connecting each existing node in G
to qrand (Line 6), and evaluating its feasibility (Line 7). A
continuous curvature path π12 connecting two configurations
q1 and q2 is considered feasible if it does not lead to a
collision with any environmental obstacles and satisfies the
both of the reach-ability constraints: (1) the path length
l(πlocal) ≤ d; (2) q2 is in front of q1. This subroutine uses
the check in [3] to determine if q2 is in the half-space of q1

and then determine the orientation of q2 with respect to q1.
The reachability check prunes complex maneuvers such as

turning 360◦ to connect two adjacent configurations. After
G reaches sufficient size, a cost-to-goal array H is computed
storing the shortest path cost to go from every configuration
in G to qf (Line 15). Any configurations in G that do not
have a path to qf are removed from G to prevent useless
exploration during central planning (Line 16).

B. Central Planner

Algorithm 2: fdRRT(Qinit, Qgoal,G,H)
1 T← Qinit;
2 Vlast ← Qinit;
3 while Qgoal /∈ T do
4 (T, Vlast) = Expand(T,G,H, Vlast, Qgoal);
5 if Qgoal ∈ T then
6 Π← FindPath(T, Qgoal);
7 return Π
8 end
9 end

The structure from dRRT* (Algorithm 2) is preserved
with the initialization of T with Qinit (Line 1). The
algorithm then expands, while remembering the most recent
expansion node Vlast to determine how it expands in the
next expansion call (Line 4). FindPath queries T for a
path to Qgoal and returns a composite path Π if successful
(Lines 5–6). A notable difference is the omission of a
local connector present in [11], [12], whose purpose is to
solve the coordination problem when close to Qgoal. We
found this to be unnecessary in our environments. For traffic
intersections, once all vehicles have passed through the
physical intersection of the two roads, T expands greedily
towards Qgoal. We instead re-purpose this subroutine during
node expansion for resolving collision conflicts.

Algorithm 3: Expand(T,G,H, Vlast, Qgoal)
1 if Vlast = ∅ then
2 Qrand ← RandomConfig(G);
3 Vnear ← Nearest(T, Qrand);
4 else
5 Qrand ← Qgoal;
6 Vnear ← Vlast;
7 end
8 Vnew ← Id(Vnear,G,H, Qgoal);
9 N ← NeighborsInTree(Vnew,T);

10 (V free
best , Vbest)← BestParent(Vnew, N);

11 if V free
best = ∅ then

12 VH ← ForceConnect(Vnew, Vbest);
13 if VH = ∅ then
14 return ∅
15 else
16 T← Connect(Vbest, VH);
17 return VH ;
18 end
19 else
20 T← Connect(V free

best , Vnew);
21 return Vnew;
22 end

The method for expanding T is detailed in Algorithm 3.

8001

Expansion begins with selecting a node to expand from.
If Vlast was added during the previous call, then a new
expansion vertex Vnew is chosen by selecting a neighbor
of Vlast (Lines 2–3). Otherwise, the closest neighbor Vnear
of a random configuration Qrand is chosen (Lines 5–6). The
direction oracle subroutine selects an expansion node Vnew
based on the success of the previous expansion (Line 8). If
Qrand = Qgoal, Vnew is chosen as the tuple of individual
vertices vi ∈ V that are neighbors to vinear and have the
lowest path cost to qif ∈ Qgoal. It is otherwise chosen as a
tuple of randomly selected neighbors to vinear [11].

All composite parents to Vnew that have already been
added to T are expansion candidates to connect to Vnew
(Line 9). Each candidate is evaluated based on whether the
composite path between N and Vnew results in a collision-
free motion and the composite path cost. The lowest cost
collision-free node, V free

best , and the lowest cost node Vbest
are selected. Vbest is simply found by selecting the candidate
node with the lowest overall cost, and V f

bestree is selected
as the lowest cost node that whose joint path connecting
to Vnew is collision-free. If no such V free

best exists, the
subroutine ForceConnect (Algorithm 4) attempts forcing
T to expand by creating a new hybrid node, VH , that
restricts some robots to hold their position at vbest ∈
Vbest, and allows others to move forward towards vnew ∈
Vnew. While forcing some vehicles to stop increases traffic
delays, ForceConnect increases computational efficiency
in practice by restricting random sampling to a last resort.

Algorithm 4: ForceConnect(V1, V2)

1 H ← ∅;
2 L← ∅;
3 Π12 ← LocalPaths(V1, V2);
4 for πi ∈ Π12 do
5 for πj ∈ Π12, i 6= j do
6 (Hi, Li, Ai)← LocalPriority(πi, πj);
7 end
8 end
9 S ← ∅;

10 for i = 1, 2, .., N do
11 if Hi = ∅ & Ai = ∅ then
12 S ← S ∪ i;
13 else if Hi = ∅ & Ai 6= ∅ then
14 if cost(i) ≤ min(cost(j ∈ Ai)) then
15 S ← S ∪ i;
16 end
17 end
18 end
19 VH ← {vi2|i ∈ S} ∪ {v

j
1|j /∈ S};

20 return VH ;

ForceConnect: When forcing a connection between two
composite nodes V1 and V2, the ith robot either holds its
position at vi1 ∈ V1 or moves forward towards vi2 ∈ V2.
Three sets are initialized for each robot ri ∈ R: Hi, the set
of robots with higher local priority than ri, Li, the set of
robots with lower priority than ri, and Ai, the set of robots
that conflict with ri but have no local priority assigned. Each
interaction is checked and H,L, and A are populated by
LocalPriority. The local priority of ri with respect to

(a) (b) (c)

Fig. 2: Simulation outputs from each environment from
the most confined space (Warehouse) to the least confined
environment (UAV air traffic)

rj is assigned according to the rules, which originate from
the logic in [12] and [15]: (1) If πi(0) blocks πj , then robot i
is given priority. (2) If πj(0) blocks the path of πi, then robot
j is given priority. (3) If πi and πj do not overlap, then there
is no interaction and no priority is assigned. (4) Otherwise,
the local priority cannot be determined. This occurs when πi
and πj overlap, but the starting positions of robots i and j
do not block each other. Either robot can be given priority,
but the decision is deferred.

A solution set S is then initialized to pick robots that
should move forward (Line 9). Each robot is added to or
rejected from S based on its own Hi, Li and Ai sets. If no
other robots have a higher local priority and no robots have
an undetermined priority, then ri is added to S. If any vehicle
has a higher priority, then ri is rejected from S. If no robots
have a higher priority, but some have undetermined priorities,
then the cost of adding ri is assessed. Here, the cost refers to
number of vehicles that would be excluded from S if ri was
added to S. The cost of adding ri is compared to the cost of
adding any of rj ∈ Ai and will be added to S if the trade-off
from adding ri is lower than the trade-off from adding any
other member of Ai. After all robots are either added to or
rejected from S, a hybrid node VH is constructed (Line 19).

C. Extensions to Online Planning

To accommodate new robots entering the planning space,
algorithms 2 and 3 are modified to include an additional
input Πcurrent, the current joint trajectory being executed.
Πcurrent is treated as an obstacle when planning Πnew, so
collision checking joint configurations in Πnew also involves
collision checking against the configurations in Πcurrent.
Re-planning of Πcurrent is not allowed in the current
implementation, so the planner that searches for Πnew must
plan around Πcurrent. The only modification required for
accommodating Πcurrent when planning is when finding
Vbest (algorithm 3, line 10). Because Πcurrent is given
priority over new path queries, Vbest must be selected such
that collisions between new robots entering the environment
are permitted, but collisions with robots executing Πcurrent

are prohibited. If no configuration satisfies this constraint,
then the algorithm must report an expansion failure.

8002

V. SIMULATIONS AND RESULTS

Our algorithm was implemented and tested in MATLAB
using three environments (Figure 2), ordered from the most
to least confined spaces. The first environment considers
disk-shaped robots with radius 1.6m planning in a warehouse
space with ten obstacles (Figure 2a). Environment 2 (Figure
2b) is a three-line, four-way traffic intersection. Each lane is
3m wide, and each robot is rectangular-shaped with length
3.6m and 1.6m. Environment 3 (Figure 2c) has no obstacles,
but has numerous circular UAV robots with disk radius
0.25m planning multiple overlapping paths.

The number of robots n is increased incrementally, and n
individual queries are drawn randomly in 1000 test cases.
Average search tree size, solution time, and path lengths
are the chosen evaluation metrics to illustrate the trade-offs
between dRRT* and fdRRT (Figures 3–5).

We observe that fdRRT performs better than dRRT* in
terms of efficiency in the intersection and warehouse spaces.
In test cases with maximum traffic, fdRRT returned solutions
57% faster in the traffic intersection and around 200% faster
in the warehouse. However, dRRT* is 12% faster in the UAV
environment. This may be due to the lack of clutter within the
UAV space, and thus reduced number of choke points. Under
these conditions, the added computational time in fdRRT
when forcing connections may degrade performance.

Solution quality metrics show the opposite trend. As more
robots are added to each environment, the path quality in
fdRRT degrades, with paths being 22% and 54% longer in
the intersection and warehouse spaces, respectively. Paths in
the UAV space are nearly identical with a 0.2% discrepancy.

The trends in solution times across the different test
cases may be attributed to the degree of clutter populating
each environment and the number of overlapping paths.
For instance, the environment in Figure 2a has numerous
obstacles scattered throughout the environment, which
dramatically limits the number of alternative paths that each
robot can take. In contrast, the robots in Figure 2c are closely
spaced and have a number of overlapping paths, but are
less confined due to the lack of clutter in the environment.

Additional tests were run to evaluate the performance of
the online planner. We compare its solution time to that of the
offline planner when planning in a fully populated version of
environment 2 (Figure 6). In the first test case n = 10 robots
act as the initial plan request, and after one iteration, m = 2
robots enter the space and request a joint trajectory. In the
second test case, n = 9 robots are initially in the environment
and m = 3 robots enter afterwards. We continue this until
two robots are members of the initial query and ten robots
enter after the initial planning phase. The average solution
times with standard deviations in Figure 6 show that while
both plans exhibit exponential growth in computation times
as more robots are considered, the online planner’s execution
time grows faster with a higher variance.

VI. CONCLUSIONS AND FUTURE WORK

We developed a planner for multiple robots to
plan paths when operating in confined environments.

Our implementation has demonstrated its advantage in
computational time over dRRT* when planning in confined
environments, at the cost of solution quality. The results
from this study are promising, but several challenges remain.
Testing the feasibility of fdRRT in a real system is one
goal we would like to reach. We also plan to explore
extending the planner to incorporate vehicle dynamics in
addition to vehicle kinematics. In its current form, we
only consider sampling configurations q ∈ (x, y, θ, κ) and
ignore constraints on vehicle speed and acceleration. Adding
constraints on vehicle dynamics makes connecting between
configurations more difficult, but carries the benefit of
ensuring that all paths are feasible for robots with both
kinematic and dynamic constraints.

REFERENCES

[1] E. Ackerman, “Amazon uses 800 robots to run
this warehouse,” Jun 2019. [Online]. Available:
https://spectrum.ieee.org/automaton/robotics/industrial-robots/
amazon-introduces-two-new-warehouse-robots

[2] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, p.
497, jul 1957. [Online]. Available: https://doi.org/10.2307

[3] J. h. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of
time-optimal off-road vehicle maneuvers using the rrt*,” in 2011 50th
IEEE Conference on Decision and Control and European Control
Conference, Dec 2011, pp. 3276–3282.

[4] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, Aug 1996.

[5] J.-T. Li and H.-J. Liu, “Design optimization of amazon robotics,” 2016.
[6] B. Liu and A. El Kamel, “V2x-based decentralized cooperative

adaptive cruise control in the vicinity of intersections,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 3, pp.
644–658, March 2016.

[7] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[8] J. L. Rios, L. Martin, and J. Mercer, “Use of UAS Reports
(UREPs) during TCL3 Field Testing,” National Aeronautics and Space
Administration,, Tech. Rep., 07 2017.

[9] G. Sanchez and J. . Latombe, “Using a prm planner to compare
centralized and decoupled planning for multi-robot systems,” in
Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No.02CH37292), vol. 2, May 2002, pp. 2112–2119
vol.2.

[10] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for
car-like vehicles,” 10 1997, pp. 997 – 1003 vol.2.

[11] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E.
Bekris, “drrt*: Scalable and informed asymptotically-optimal multi-
robot motion planning,” Autonomous Robots, vol. 44, no. 3, pp.
443–467, Mar 2020. [Online]. Available: https://doi.org/10.1007/
s10514-019-09832-9

[12] K. Solovey, O. Salzman, and D. Halperin, Finding a Needle
in an Exponential Haystack: Discrete RRT for Exploration of
Implicit Roadmaps in Multi-robot Motion Planning. Cham: Springer
International Publishing, 2015, pp. 591–607. [Online]. Available:
https://doi.org/10.1007/978-3-319-16595-0 34

[13] P. Surynek, “An application of pebble motion on graphs to
abstract multi-robot path planning,” in 2009 21st IEEE International
Conference on Tools with Artificial Intelligence, Nov 2009, pp. 151–
158.

[14] P. Svestka and M. H. Overmars, “Motion planning for carlike robots
using a probabilistic learning approach,” The International Journal
of Robotics Research, vol. 16, no. 2, pp. 119–143, 1997. [Online].
Available: https://doi.org/10.1177/027836499701600201

8003

(a) (b) (c)

Fig. 3: Performance comparison in traffic intersection.

(a) (b) (c)

Fig. 4: Performance comparison in a warehouse space.

(a) (b) (c)

Fig. 5: Performance comparison in UAV environment.

Fig. 6: A comparision of the computation time required for
an initial plan of N robots and a new request as M robots
enter the environment.

[15] J. P. van den Berg, J. Snoeyink, M. C. Lin, and D. Manocha,
“Centralized path planning for multiple robots: Optimal decoupling
into sequential plans,” in Robotics: Science and Systems, 2009.

[16] J. J. B. Vial, W. E. Devanny, D. Eppstein, and M. T. Goodrich,
“Scheduling autonomous vehicle platoons through an unregulated

intersection,” CoRR, vol. abs/1609.04512, 2016. [Online]. Available:
http://arxiv.org/abs/1609.04512

[17] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sep. 2011, pp. 3260–
3267.

[18] G. Wagner, Minsu Kang, and H. Choset, “Probabilistic path planning
for multiple robots with subdimensional expansion,” in 2012 IEEE
International Conference on Robotics and Automation, May 2012, pp.
2886–2892.

[19] L. Ye and T. Yamamoto, “Modeling connected and autonomous
vehicles in heterogeneous traffic flow,” Physica A: Statistical
Mechanics and its Applications, vol. 490, pp. 269 – 277, 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0378437117307392

[20] Yi Guo and L. E. Parker, “A distributed and optimal motion
planning approach for multiple mobile robots,” in Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), vol. 3, May 2002, pp. 2612–2619 vol.3.

[21] P. Švestka and M. H. Overmars, “Coordinated path planning for
multiple robots,” Robotics and Autonomous Systems, vol. 23, no. 3,
pp. 125 – 152, 1998. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S092188909700033X

8004

