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Abstract— The technique of linearization for nonlinear sys-
tems around some operating point has been widely used for
analysis and synthesis of the system behavior within a certain
operating range. Conventional linearization methods include
the analytical linearization (AL) method using the Jacobian
matrix, the result of which usually works only for a sufficiently
small region, as well as the numerical linearization (NL)
method based on small perturbation, the accuracy of which
is usually not guaranteed. In this letter, we propose an optimal
linearization method via quadratic programming (OLQP). We
start with uniform data sampling within the neighborhood of
the operating point based on the nonlinear ordinary differential
equation (ODE). We then find the best linear model that fits to
these sample points with a QP formulation. The OLQP solution
is derived in closed form with proved convergence to the AL
solution. Two examples of nonlinear systems are investigated in
terms of linearization and results are compared among these
linearization methods, which has shown the proposed OLQP
method features a great balance between model accuracy and
computational complexity. Moreover, the OLQP method offers
additional options in controller design by tuning its parameters.

I. INTRODUCTION

Almost all systems in reality are nonlinear. However,
there are much more well-established analysis and synthesis
tools for linear systems due to simplicity. The technique of
linearization is accordingly developed and widely used to
approximate the nonlinear system by a corresponding linear
model so that linear system theories can be readily applied
to the nonlinear system. This approach of studying nonlinear
systems has been proved effective in many applications, e.g.,
stability analysis of equilibrium point [1]. We herein review
the existing linearization methods.

A. Review of Linearization Methods

Consider a nonlinear system governed by a nonlinear
ordinary differential equation (ODE):

ẋ= f(x,u), (1)

where x ∈Rn is the vector of state variables, u ∈Rm is the
vector of control inputs, and f :Rn×Rm→Rn is a nonlinear
function. Suppose f is continuously differentiable at some
operating point (xo,uo) ∈ Rn×Rm, then the system can be
linearized around this point using the following methods:

1) Analytical Linearization (AL)
Denote ∆x= x−xo and ∆u= u−uo. The AL solution

of (1) around (xo,uo) is thus given by

∆ẋ=A∆x+B∆u, (2)
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where

A=
∂f

∂x

∣∣∣∣
(x,u)=(xo,uo)

∈ Rn×n , (3a)

B =
∂f

∂u

∣∣∣∣
(x,u)=(xo,uo)

∈ Rn×m , (3b)

are the constant Jacobian matrices. The AL solution captures
the most accurate dynamic information around the operating
point in a linear manner. However, the range within which
the linear approximation is valid is unknown and usually
small [2]. In addition, it is sometimes tedious to compute
it out in terms of symbolic calculations. Fortunately, we
have automatic differentiation (AD) [3] tool which can
numerically evaluate the exact AL solution.

2) Numerical Linearization (NL)
Starting from xo, two other state vectors can be created,

e.g., x+
i = xo + hei and x−i = xo− hei, i = 1, . . . ,n, where

ei ∈Rn is the standard basis vector with its ith entry equal to
1 and 0 for the rest, and h∈R is a small positive perturbation.
That is, the ith component of the state vector x±i is perturbed
from xo by ±h. By further setting u = uo, their time-
derivatives can be calculated from (1) as ẋo, ẋ+

i , and ẋ−i ,
respectively. The ith column of the matrix A of (3a), denoted
as ai, can thus be approximated by

ai ≈
(
ẋ+

i − ẋo
)
/h (4a)

for a forward-difference approximation (FDA), or

ai ≈
(
ẋo− ẋ−i

)
/h (4b)

for a backward-difference approximation (BDA), or

ai ≈
(
ẋ+

i − ẋ
−
i
)
/(2h) (4c)

for a central-difference approximation (CDA) [4], [5]. The
matrix B of (3b) can also be approximated in a similar way
by perturbing the control inputs one after another while fixing
x= xo. It is really straightforward to apply the NL method
but the accuracy is usually not guaranteed.

3) Statistical Linearization (SL)
SL method [6], [7] determines the constant matrices A

and B jointly by minimizing the expectation

E
[
‖f(zo +ξ)−f(zo)−Wξ‖2

2

]
(5a)

with respect to W = [A B], where zo =
[
xT

o ,u
T
o
]T , ‖.‖2 is

the Euclidean norm, and ξ is a vector of random variables
with zero mean and covariance matrix Ξ = E

[
ξξT

]
. The

unique optimal solution is given by

W ∗ = E
[
(f (zo +ξ)−f (zo))ξ

T ]Ξ−1. (5b)
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The random vector ξ under consideration is usually jointly
Gaussian, e.g., with zero mean and variance h for each
entry. Although the SL solution is on average closer to the
given nonlinear system, it gets much more computationally
expensive in terms of expectation calculation, not to mention
the tremendous number of dimensions for practical systems.

4) Least Squares Optimal Linearization (LSOL)
LSOL method [2], [8], [9] determines the constant matri-

ces A and B jointly by minimizing the integral∫
Z
‖f(zo +z)−f(zo)−Wz‖2

2 dz (6a)

with respect to W = [A B] over some finite region of
interest Z around zo, e.g., a hypercube of edge 2h, where
z =

[
∆xT ,∆uT

]T . The unique optimal solution is given by

W ∗=

(∫
Z
(f(zo+z)−f(zo))z

Tdz
)(∫

Z
zzTdz

)−1

. (6b)

One can consider the LSOL method similar to the SL method
but with a uniform distribution instead. Compared with SL,
LSOL performs better in terms of competent model accuracy
yet with less computational complexity.

5) Optimal Linearization via Domain Densification (OLDD)
OLDD method [10] determines the constant matrices A

and B jointly by minimizing the summation

∑
zs∈S
‖f(zo +zs)−f(zo)−Wzs‖2

2 (7a)

with respect to W = [A B] for a given finite set S of points
zs =

[
∆xT

s ,∆u
T
s
]T around zo. The set S is constructed from

an h-dense curve via domain densification and the unique
optimal solution is given by

W ∗=

(
∑

zs∈S
(f(zo+zs)−f(zo))z

T
s

)(
∑

zs∈S
zsz

T
s

)−1

(7b)

as a multiple linear regression problem. The OLDD method
expresses optimal linearization as a parameter identification
problem, which makes it in high dimensions more tractable
than using multiple integrals in the LSOL method. However,
domain densification is unable to collect the points evenly
over the region of interest, i.e., model accuracy is mediocre
and yet dependent on the order of the states and controls.

6) Other Methods
In this letter, we are only interested in finding the best

linear approximation to a nonlinear system with the same
states and controls around some operating point, and thus
the following linearization methods are out of scope:
• Trajectory-Based Optimal Linearization [11], [12], [13]

optimizes the linear approximation to a particular so-
lution of (1) from a given initial condition to the
final state. That is, a trajectory with respect to time is
linearized instead of a region of states and controls.

• Feedback Linearization [14], [15] method algebraically
transforms a nonlinear system into a linear one with
completely different dynamic interpretation. In addition,

the number of dimensions usually increases if the non-
linear ODE is not an affine function of control inputs.

• System Identification [16], [17] technique estimates the
model parameters by minimizing the error between the
model output and the measured response, which is thus
similar to the trajectory-based optimal linearization and
only works for the stable equilibrium point at best.

B. Motivation & Contribution
The conventional AL method only captures the linear term

in a Taylor series expansion of a nonlinear function around
the operating point. Therefore, the resulting linear model
usually works only for sufficiently small variations of states
and controls. However, in some practical applications [2],
[10], linear analysis and synthesis are desired to be applied
to a much larger region of interest. The NL, SL, LSOL, and
OLDD methods can be readily adapted to different ranges
of states and controls by manipulating the parameter h, but
they are subject to the trade-off between model accuracy and
computational complexity.

Inspired by the previous work, this letter now presents
a novel optimal linearization method via quadratic pro-
gramming (OLQP), which features a great balance between
model accuracy and computational complexity. Over spec-
ified ranges of states and controls around the operating
point, the OLQP method finds the best linear approximation
to a given nonlinear function by fitting the linear model
to the data points uniformly sampled within the region,
which makes it more accurate than the AL, NL, and OLDD
methods in predicting the nonlinear behavior, while less
computationally expensive than the SL and LSOL methods.
In addition, the OLQP method consists with the AL method
in that as the region of interest gets smaller, its solution
is proved to converge to the AL solution. Therefore, AL
can be viewed as a special case of OLQP and it can be
used for Jacobian estimation. Lastly, it has shown that the
OLQP method offers additional options in controller design
by tuning its parameters.

The rest of this letter is organized as follows. Section II il-
lustrates the proposed OLQP method. Section III benchmarks
OLQP method against other linearization methods using the
rigid-body aircraft model. Section IV investigates the control
system behavior based on the OLQP linear model for the
well-known cart-pole system. Section V concludes the letter
with potential future directions.

II. OPTIMAL LINEARIZATION VIA
QUADRATIC PROGRAMMING

This section details the proposed OLQP method. We start
with the uniform data sampling strategy, then formulate lin-
ear approximation to an optimization problem, later convert
it into a QP problem, derive its optimal solution, afterwards
prove its convergence to the AL solution, and finally simplify
the calculation for most practical systems of interest.

A. Data Sampling
We can observe in the linear model (2) that the state vector

x and control input u are decoupled. Accordingly, let’s first



define the neighborhood of (xo,uo) separately by

O = {(x,u) | u= uo, ‖x−xo‖∞
≤ h}, (8a)

Q= {(x,u) | x= xo, ‖u−uo‖∞
≤ h}, (8b)

where ‖·‖
∞

is the infinity norm selecting the largest absolute
value among all the entries of a vector. O and Q essentially
capture the state and control space around (xo,uo) bounded
by a hypercube of edge 2h. The edges for all the states and
controls do not need to be set equal in general. Here we are
just making it comparable with other methods.

To make the problem finite dimensional, one simple data
sampling strategy is that we can uniformly collect points
from O and Q, which yields

R= {(x,u) | u= uo, x
(i) = x

(i)
o −h+( j−1)∆h,

i = 1, . . . ,n, j = 1, . . . ,N} , (9a)

S = {(x,u) | x= xo, u
(i) = u

(i)
o −h+( j−1)∆h,

i = 1, . . . ,m, j = 1, . . . ,N} , (9b)

respectively, where ∆h is the resolution, N = 2h/∆h+1≥ 2 is
thus the number of points on the edge, and (·)(i) denotes for
the ith entry. Note that there are a total number of Nn points
sampled in R and Nm points in S. Again, the resolutions do
not need to be set equal in general.

Finally, two sets of data points are created. The first set is

T ={(∆x,∆u,∆ẋ) | ∆x= x−xo, ∆u= u−uo,

∆ẋ= f(x,u)−f(xo,uo), (x,u) ∈R}, (10a)

and the second set is

V ={(∆x,∆u,∆ẋ) | ∆x= x−xo, ∆u= u−uo,

∆ẋ= f(x,u)−f(xo,uo), (x,u) ∈ S}, (10b)

which will eventually be utilized in the OLQP method.

B. Problem Formulation

Given the nonlinear system (1) with some operating point
(xo,uo) as well as the linear model (2) around that point,
the goal is to determine the matrices A and B such that
the difference between them is minimized over the region of
interest. Define the difference

d= f(x,u)−f(xo,uo)−A∆x−B∆u. (11)

For every element (∆x,∆u,∆ẋ)k ∈ T , k = 1, . . . ,Nn, the
difference is reduced to

dk = ∆ẋk−A∆xk, (12a)

while for each element (∆x,∆u,∆ẋ)l ∈V , l = 1, . . . ,Nm, the
difference is reduced to

dl = ∆ẋl−B∆ul . (12b)

Using the squared Euclidean norm ‖d‖2
2 = d

Td as a measure
of the difference, the minimization of the total difference J
can be formulated as

minimize
A,B

J =
Nn

∑
k=1
‖dk‖2

2 +
Nm

∑
l=1
‖dl‖2

2 (13)

=
Nn

∑
k=1
‖∆ẋk−A∆xk‖2

2 +
Nm

∑
l=1
‖∆ẋl−B∆ul‖2

2,

which can essentially be decoupled in terms of A and B.

C. QP Formulation

A typical formulation for a mathematical QP problem can
be written as follows:

minimize
z

1
2
zTPz+qTz+ c

subject to Gz �w,
(14)

where c ∈ R, z,q ∈ Rn, w ∈ Rm, P ∈ Rn×n is symmetric
positive semidefinite, and G ∈ Rm×n [18]. If the problem is
unconstrained and q ∈R(P ), it is simple enough to have the
well-known analytical solution z∗ =−P †q, where P † is the
pseudo-inverse of P . We will now show (13) is essentially
a QP problem.

Let’s first rewrite (12a) as

dk = ∆ẋk−∆Xka, (15a)

where

∆Xk =


∆xT

k 0 · · · 0

0 ∆xT
k

. . .
...

...
. . . . . . 0

0 · · · 0 ∆xT
k

 ∈ Rn×n2
, (15b)

a= vec
(
AT ) ∈ Rn2

. (15c)

That is, ∆Xk is a block diagonal matrix with n blocks of
∆xT

k and a is the vectorization of the matrix AT . Similarly,
(12b) can be rewritten as

dl = ∆ẋl−∆Ulb, (16a)

where

∆Ul =


∆uT

l 0 · · · 0

0 ∆uT
l

. . .
...

...
. . . . . . 0

0 · · · 0 ∆uT
l

 ∈ Rn×mn, (16b)

b= vec
(
BT ) ∈ Rmn. (16c)

Substituting (15a) and (16a) into the cost function J yields

J =
Nn

∑
k=1
‖∆ẋk−∆Xka‖2

2 +
Nm

∑
l=1
‖∆ẋl−∆Ulb‖2

2

= aT

(
Nn

∑
k=1

∆XT
k ∆Xk

)
︸ ︷︷ ︸

1
2Pa

a+

(
−2

Nn

∑
k=1

∆ẋT
k ∆Xk

)
︸ ︷︷ ︸

qT
a

a

+bT

(
Nm

∑
l=1

∆UT
l ∆Ul

)
︸ ︷︷ ︸

1
2Pb

b+

(
−2

Nm

∑
l=1
ẋT

l ∆Ul

)
︸ ︷︷ ︸

qT
b

b

+
Nn

∑
k=1

∆ẋT
k ∆ẋk +

Nm

∑
l=1

∆ẋT
l ∆ẋl︸ ︷︷ ︸

c̃



=

[
a
b

]T

︸ ︷︷ ︸
z̃T

[ 1
2Pa 0
0 1

2Pb

]
︸ ︷︷ ︸

1
2 P̃

[
a
b

]
︸ ︷︷ ︸

z̃

+

[
qa
qb

]T

︸ ︷︷ ︸
q̃T

[
a
b

]
︸ ︷︷ ︸

z̃

+ c̃.

(17)

Therefore, (13) is equivalent to

minimize
z̃

J =
1
2
z̃T P̃ z̃+ q̃T z̃+ c̃, (18)

which is a QP problem defined by (14) with no constraint.

D. Optimal Solution

With the uniform data sampling strategy as suggested in
Section II-A, it is guaranteed that Pa � 0 and Pb � 0, which
is followed that P̃ � 0 as well. The positive definiteness of
the matrices will be verified later in this subsection. As a
result, the optimal solution is determined to be

z̃∗ =−P̃−1q̃ (19)

for (18) with

a∗ =−P−1
a qa, (20a)

b∗ =−P−1
b qb. (20b)

The OLQP solution A∗ and B∗ can be further constructed
from (15c) and (16c), respectively. Specifically, let’s first
write out (20a) in detail:

a∗ =

(
Nn

∑
k=1

∆XT
k ∆Xk

)−1( Nn

∑
k=1

∆XT
k ∆ẋk

)

=


Σ−1

a 0 · · · 0

0 Σ−1
a

. . .
...

...
. . . . . . 0

0 · · · 0 Σ−1
a



µ1
µ2
...
µn

 , (21a)

where

Σa =
Nn

∑
k=1

∆xk∆xT
k , (21b)

µi =
Nn

∑
k=1

∆ẋ
(i)
k ∆xk, i = 1, . . . ,n. (21c)

The matrix A∗ is then constructed as

A∗ =

 µT
1 Σ−1

a
...

µT
n Σ−1

a

=

 ∑
Nn

k=1 ∆ẋ
(1)
k ∆xT

k
...

∑
Nn

k=1 ∆ẋ
(n)
k ∆xT

k

Σ−1
a

=

 Nn

∑
k=1


∆ẋ

(1)
k

...
∆ẋ

(n)
k

∆xT
k

Σ−1
a

=

(
Nn

∑
k=1

∆ẋk∆xT
k

)
Σ−1

a . (22)

The matrix Σa of (21b) can actually be further simplified to

Σa =
Nn

∑
k=1

diag
((

∆x
(1)
k

)2
, . . . ,

(
∆x

(n)
k

)2
)

(23)

due to the symmetry of the uniform data sampling strategy,
i.e., all off-diagonal entries cancel out. Moreover, based on
(9a) and (10a) with ∆h = 2h/(N−1), each diagonal entry

Nn

∑
k=1

(
∆x

(i)
k

)2

=Nn−1
N

∑
j=1

(−h+( j−1)∆h)2

=Nn−1
(

Nh2−2h∆h
N(N−1)

2
+∆h2 N(N−1)(2N−1)

6

)
=

h2Nn(N +1)
3(N−1)

, i = 1, . . . ,n, (24)

which implies Σa � 0 when N ≥ 2, and thus so is Pa � 0.
Substituting (23) with (24) into (22) yields a simplified form

A∗ =
3(N−1)

h2Nn(N +1)

Nn

∑
k=1

∆ẋk∆xT
k (25a)

and similarly,

B∗ =
3(N−1)

h2Nm(N +1)

Nm

∑
l=1

∆ẋl∆u
T
l , (25b)

which essentially eliminates the matrix inversion.

E. Summary of OLQP Method
Given the nonlinear system (1) with some operating point

(xo,uo) as well as the linear model (2) around that point,
the proposed OLQP method follows:
Step 1: Determine the region of interest around (xo,uo), O

of (8a) and Q of (8b), with the parameter h for the
size of the region.

Step 2: Uniformly sample points within the region of inter-
est to construct the sets R of (9a) and S of (9b),
with the parameter N for the resolution.

Step 3: Create two new sets T of (10a) and V of (10b)
based on R and S, respectively.

Step 4: Compute the optimal linear model A∗ of (25a) and
B∗ of (25b) using T and V , respectively.

Note that for actual implementation, we don’t need to
create the sets T and V exactly. To reduce memory storage,
once the contribution of one sample point is involved, we do
not need to have it anymore.

F. Convergence to AL Solution
We will now prove the OLQP solution, the matrices A∗ of

(25a) and B∗ of (25b), actually converge to the AL solution,
A of (3a) and B of (3b), when h goes to zero.

Based on (22) with (23), any entry a∗ir in A∗ of row i and
column r is determined to be

a∗ir =
∑

Nn

k=1 ∆ẋ
(i)
k ∆x

(r)
k

∑
Nn

k=1

(
∆x

(r)
k

)2 . (26)

Taking the limit to (26) as h goes to zero yields

lim
h→0

a∗ir = lim
h→0

∑
Nn

k=1 ∆ẋ
(i)
k ∆x

(r)
k

∑
Nn

k=1

(
∆x

(r)
k

)2 . (27)



For any k and r with ∆x
(r)
k 6= 0 we have

lim
h→0

∆ẋ
(i)
k �

��∆x
(r)
k(

∆x
(r)
k

)�2 = lim
h→0

f(xk,uo)
(i)−f(xo,uo)

(i)

x
(r)
k −x

(r)
o

=
∂f (i)

∂x(r)

∣∣∣∣∣
(x,u)=(xo,uo)

, (28)

which leads (27) to

lim
h→0

∑
Nn

k=1 ∆ẋ
(i)
k ∆x

(r)
k

∑
Nn

k=1

(
∆x

(r)
k

)2 =
∂f (i)

∂x(r)

∣∣∣∣∣
(x,u)=(xo,uo)

(29)

as well, and the limit on the right-hand side is exactly the
entry air in A of (3a). Note that (29) holds based on (28)
due to the following lemma:

Consider 4 sequences αn, βn, γn 6= 0, δn 6= 0 with n ∈ N.
If lim

n→∞
αn/γn = lim

n→∞
βn/δn = ρ as well as γn + δn 6= 0, then

lim
n→∞

(αn +βn)/(γn +δn) = ρ . The proof is trivial.
Essentially, (29) is equivalent to

lim
h→0

A∗ =A (30a)

of (3a) and similarly,

lim
h→0

B∗ =B (30b)

of (3b), which proves the convergence.

G. Simplification for Most Practical Systems

So far we have developed the OLQP method using a QP
formulation and proved its convergence to the AL solution,
which is sufficient to be implemented on any general nonlin-
ear system. Nevertheless, the proposed method can be further
simplified for most practical systems of interest.

Consider the equations of motion taking the form:

M(q)q̈+C(q, q̇) = Fu, (31)

where q is the vector of generalized coordinates, M(q)
stands for the inertia matrix, the vector C(q, q̇) captures the
Coriolis, centrifugal, and gravitational forces, and the matrix
F defines how the control input u enters the model. We can
further convert (31) into its state-space form as (1), where
the state vector x=

[
qT , q̇T

]T and

f(x,u) =

[
q̇

g (x,u)

]
=

[
q̇

M(q)−1 (Fu−C(q, q̇))

]
. (32)

We observe that g(x,u) is an affine function of the control
input u. For any well-defined operating point (xo,uo) =([
qT

o , q̇
T
o
]T

,uo

)
, the AL solution is thus structured as

A=

[
0 I
A21 A22

]
and B =

[
0
B2

]
, (33a)

where

A21 =
∂g

∂q

∣∣∣∣
(x,u)=(xo,uo)

, A22 =
∂g

∂ q̇

∣∣∣∣
(x,u)=(xo,uo)

, (33b)

B2 =M(qo)
−1F , (33c)

and I is the identity matrix. Since the matrix B is already
in closed form, there is no need to consider it in the QP
anymore, i.e., simply set B∗ =B of (33a). In addition, the
system can be reduced to

q̈ = g(x,u), (34a)

with the linear model around the operating point

∆q̈ =
[
A21 A22

][ ∆q
∆q̇

]
+B2∆u, (34b)

where ∆q = q−qo. The proposed OLQP method still works
here since there is no strict requirement for A to be a square
matrix. Once [A∗21 A∗22] is computed, the OLQP solution
A∗ can be constructed from (33a) with B∗ =B.

III. EXAMPLE OF RIGID-BODY AIRCRAFT MODEL

In this section, the rigid-body aircraft model is studied for
the longitudinal motion. The system is linearized around the
equilibrium condition and results are compared among the
linearization methods.

A. Modeling

The following equations describe a rigid-body aircraft in
the longitudinal direction [2]:

mV̇ = T cosα−D−mgsinγ, (35a)
mV γ̇ = T sinα +L−mgcosγ, (35b)

α̇ = q− γ̇, (35c)
Iyyq̇ = M− xcLcosα− xcDsinα, (35d)

where the state vector x = [V,γ,α,q]T , V is the airspeed,
γ is the flight path angle, α is the angle of attack, q is the
pitch rate; the control input u= [T,δc]

T , T is the thrust, δc is
the canard deflection; the variable L = 0.5CLρV 2S is the lift
force, D= 0.5CDρV 2S is the drag force, M = 0.5CMρV 2Sc is
the pitching moment; the parameter m is the aircraft mass, g
is the gravitational acceleration, Iyy is the moment of inertia
about the y-axis, ρ is the air density, S is the reference area,
c is the mean aerodynamic chord, xc =−0.0465c is the dis-
tance between the aircraft aerodynamic center and the center
of mass; for α > 0, the aerodynamic coefficients are given by
CL = ∑Aiα

i+(1/2.235)(δc +α)∑Ciα
i, CD = ∑Biα

i, CM =
(δc +α)∑Ciα

i− 1.5qc/V , i = 0, . . . ,5. Table I summarizes
all the parameters. The equilibrium point of interest is given
by (xe,ue) =

(
[100,0,0.0754,0]T , [12781,−0.124]T

)
.

TABLE I
AIRCRAFT PARAMETERS

m = 10,617 kg g = 9.81 m/s2 Iyy = 77,095 kg·m2

ρ = 1.225 kg/m3 S = 57.7 m2 c = 4.4 m
A0 = 0.00933 B0 = 0.02323 C0 = 0.28933
A1 = 3.58977 B1 = 0.03809 C1 =−0.15349
A2 = 4.40752 B2 = 1.64156 C2 = 0.75441

A3 =−16.98693 B3 = 1.65442 C3 =−1.50691
A4 = 13.38188 B4 =−2.30301 C4 = 1.07489
A5 =−3.34885 B5 = 0.55977 C5 =−0.25771



B. Linearization & Jacobian Estimation

The AL solution, or the Jacobian, is determined to be

A=


−2.401×10−2 −9.81 −10.406 0
1.944×10−3 0 1.382 0
−1.944×10−3 0 −1.382 1

0 0 9.622 −1.331

 , (36a)

B =


9.392×10−5 0
7.093×10−8 4.192×10−2

−7.093×10−8 −4.192×10−2

0 5.795

 , (36b)

around the equilibrium condition, with eigenvalues λ (A) =
{−4.460,1.755,−0.0161±0.152 j}. We are first interested
in how well the proposed OLQP method can estimate the
AL solution. Let’s define the difference between them

D =
[
A B

]
−
[
A∗ B∗

]
(37)

with the Frobenius norm ‖D‖F =
√

tr(DTD) as a measure
of the difference. Note that A∗ and B∗ are actually functions
of the parameters h and N, and thus so is D, i.e., A∗(h,N),
B∗(h,N), and D(h,N). Fig. 1 shows the difference function
‖D(h,N)‖F for the aircraft example. It is verified that the
OLQP solution approaches the AL solution as h goes to zero,
which is proved in Section II-F. In addition, we can see that
when h is sufficiently small, increasing N, i.e., improving
the resolution of data sampling, does not help too much in
enhancing the accuracy.

Fig. 2 compares how close other linearization solutions
are to the AL solution. The FDA and BDA solutions are
very close to each other while their accuracy is terrible even
for small value of h. The CDA, LSOL, OLDD and OLQP
solutions are all very close to the AL solution even for
large value of h wherein the LSOL solution is the best at
estimating the AL solution for the aircraft example. However,
it takes around 40 seconds for the LSOL method according
to Table II, which further compares the average running time
of each method for computing the linear model 100 times
on an Intel Core i7-7700HQ@2.80 GHz quad-core laptop.
It is clear that the proposed OLQP method is a great choice
for Jacobian estimation in consideration of both accuracy
and computational complexity. Note that the OLDD method
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Fig. 1. Plot of ‖D‖F as a function of h and N. The difference ‖D‖F
vanishes when h approaches zero. Moreover, when h is sufficiently small,
N does not contribute too much.

depends on the order of the states and controls so only
two arbitrary cases are considered; MATLAB’s dlgradient
function is used for AD calculation; the SL method is not
involved because it cannot handle the problem dimension
and nonlinearity.

TABLE II
AVERAGE RUNNING TIME

OLQP (N = 2) 7.9 ms FDA 7.3 ms LSOL 40.4 s
OLQP (N = 6) 15.6 ms BDA 7.3 ms OLDD 18.6 ms
QLQP (N = 10) 56.6 ms CDA 7.7 ms AL (AD) 265 ms

C. Model Accuracy

We are also interested in how close the OLQP linear model
is to the original nonlinear system in Section III-A, i.e., how
well the OLQP method can predict the nonlinear behavior,
compared against other linearization methods. Since the
equilibrium point of interest is unstable, the following linear
quadratic regulator (LQR) controller is designed for all the
systems, which is based on the AL linear model (36a) and
(36b), with Q = diag(10−4,1,10,1) and R = diag(1,10).
Numerical simulations are performed for three different val-
ues of ∆α with initial condition x(0) =xe+[0,0,∆α,0]T , as
shown in Fig. 3. As ∆α increases, the prediction of AL model
becomes worse, as expected. On the other hand, the LSOL
and OLQP models achieve an overall better description of
the nonlinear system than other methods. Specifically, when
∆α = 0.1 rad, the response of AL model is almost identical
with the nonlinear model; when ∆α = 0.4 rad, they are
on about the same level of closeness; when ∆α = 0.6 rad,
the LSOL and OLQP models are closer. This makes sense
because the AL model is only valid for a small region,
while the LSOL and OLQP models capture more nonlinear
dynamic information over a specified larger region in an
optimal manner. For this example, the parameter h is fixed
equal to 0.4 and the OLQP model works better when the
states are far away from the equilibrium. Imaging if we have
a varying h and thus a varying OLQP model which depends
on the location of states and controls, a better description of
nonlinear behavior can be expected, which might be worth
working on in the future.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

Fig. 2. Comparison of Jacobian estimation among the proposed OLQP,
NL, LSOL, and OLDD methods with varying h. The OLQP solution with
N = 10 is the second closest for the aircraft example.
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Fig. 3. Comparison of model accuracy among AL, OLQP, NL, LSOL, and OLDD methods with h = 0.4. Numerical simulations are performed for all
the models with three different initial conditions. The LSOL and OLQP models achieve an overall better description of the nonlinear system than other
methods.

IV. EXAMPLE OF CART-POLE SYSTEM

In this section, the well-known cart-pole system is inves-
tigated. Linearization around the unstable equilibrium point
is carried out with both the AL method and proposed OLQP
method. LQR controller is further designed based on the two
linear models. Corresponding results are compared.

A. Modeling
The equations of motion take the form as (31), where

M(q) =

[
m1 +m2 m2l cosθ

m2l cosθ m2l2

]
, (38a)

C(q, q̇) =

[
−m2lθ̇ 2 sinθ

−m2gl sinθ

]
, Fu=

[
u
0

]
, (38b)

q = [x,θ ]T is the vector of generalized coordinates, x is the
position of the cart, θ is the angle of the pole, and the control
force is given by u; the masses of the cart and pole are given
by m1 and m2, respectively, and the length of the pole and
acceleration due to gravity are l and g, respectively. We can
further convert it into its state-space form as (1), where the
state vector x = [θ , ẋ, θ̇ ]T . Note that the position x actually
does not contribute to the dynamics at all, and thus the total
number of states is reduced to 3. The unstable equilibrium
point of interest is given by (xe,ue) =

(
[0,0,0]T ,0

)
.

B. Linearization
Given the operating point (xe,ue) and the parameters m1 =

m2 = 1 kg, l = 10 m, g = 1 m/s2, the AL solution around
this point is determined to be

A=

 0 0 1
−1 0 0
0.2 0 0

 and B =

 0
1
−0.1

 , (39)

with eigenvalues λ (A) =
{

0,±
√

5/5
}

. The OLQP solution
is computed as A∗(h,N) and B∗ =B from Section II-G.

C. Control

Since (A,B) is verified to be controllable and assume
all the states can be measured directly, LQR controller can
be designed based on the linear models to stabilize the
pendulum around the upright configuration. Note that the
optimal control u = −Kx, where the gain matrix K is
computed by MATLAB’s lqr command with the weighting
matrices Q= diag(1,1,1) and R = 1.

To evaluate the controller performance based on the OLQP
linear model, two aspects are investigated. On the one hand,
the settling time ts for the angle θ , i.e., |θ(t)| ≤ π/1800 for
all t ≥ ts with a fixed initial condition x(0) = [π/9,0,0]T ,
is considered as the main property quantifying the system
transient response; on the other hand, the maximum feasible
value for the initial angle θ(0)max, i.e., starting from which
the pendulum can still be stabilized, is regarded as the main
property reflecting the system robustness.

Fig. 4 shows the simulation results of the OLQP method
with varying h and fixed N = 5. First, it is clear that
for small value of h, the LQR controllers of the AL and
OLQP methods behave similarly to each other, due to the
two linear models close to each other. When h becomes
larger, as may be expected, the two linear models get further
away from each other. Specifically for the OLQP method,
it essentially captures the most information of the original
nonlinear system over some region of states and controls
around the operating point, and determines the best linear
approximation over the entire region in an average sense. The



Fig. 4. Simulation results of the settling time ts and maximum initial angle
θ(0)max with varying h and fixed N = 5. The closed-loop system is unstable
when h > 3.265, i.e., the OLQP linear model fails to describe the nonlinear
system accurately.

effect, for the cart-pole system, is a trade-off between the
system transient response and robustness when that region
gets larger, i.e., h gets larger. The closed-loop system starts
with an improvement in the transient response as ts decreases
and yet a deterioration in the robustness as θ(0)max decreases
as well. Later, the transient response gets worse while the
robustness turns better. Finally, the system becomes unstable
when that region gets too further away from the operating
point, i.e., the OLQP linear model fails to accurately describe
the original nonlinear system.

To sum up, the effect that changing the parameter h in the
proposed OLQP method will result in a trade-off between
the system transient response and robustness, indicates that
the OLQP method actually offers extra options in designing
the controller. It is also reasonable to involve the parameter
N when tuning the controller since it will affect the OLQP
solution as well.

V. CONCLUSION

In this letter, an optimal linearization method via quadratic
programming (OLQP) is presented. It starts with the uniform
data sampling over a specified region of states and controls
around the operating point based on the nonlinear ordinary
differential equation (ODE). The best linear model that
fits to these sample points is then found via a quadratic
programming (QP) formulation.

Compared with other existing linearization methods, the
proposed OLQP method features a great balance between
model accuracy and computational complexity. The OLQP
method is also consistent with the analytical linearization
(AL) method in that as the region of interest becomes
smaller around the operating point, the OLQP solution is
proved to converge to the AL solution. Therefore, AL can
be viewed as a special case of OLQP and it can be used
for Jacobian estimation. Moreover, the OLQP method offers
additional options in controller design since the change in
its parameters has shown a trade-off between the closed-loop
system transient response and robustness. Last but not least,
the OLQP method is applicable to a much larger class of
nonlinear functions than the AL method since its process

only involves summations instead of derivatives, i.e., the
function does not even need to be continuously differentiable
at the point of interest.

Many interesting research topics have crossed our mind
based on the OLQP method. For example, how to better
describe the nonlinear system with a state-varying OLQP
linear model, as mentioned in the end of Section III-C.
Another one is that conventional trajectory stabilizer requires
a linear time-varying approximation of the system around the
trajectory. That is, the system is almost linearized at each
point along the entire trajectory. What if we wisely split
the state and control space into several regions and apply
the OLQP method for each region? How can we do that
and how will the system behave differently? We are looking
forward to applying the OLQP method to more examples in
the future.
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