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Abstract— Motivated by the astonishing capabilities of natu-
ral intelligent agents and inspired by theories from psychology,
this paper explores the idea that perception gets coupled to
3D properties of the world via interaction with the envi-
ronment. Existing works for depth estimation require either
massive amounts of annotated training data or some form
of hard-coded geometrical constraint. This paper explores a
new approach to learning depth perception requiring neither
of those. Specifically, we propose a novel global-local network
architecture that can be trained with the data observed by a
robot exploring an environment: images and extremely sparse
depth measurements, down to even a single pixel per image.
From a pair of consecutive images, the proposed network
outputs a latent representation of the camera’s and scene’s
parameters, and a dense depth map. Experiments on several
datasets show that, when ground truth is available even for
just one of the image pixels, the proposed network can learn
monocular dense depth estimation up to 22.5% more accurately
than state-of-the-art approaches. We believe that this work, in
addition to its scientific interest, lays the foundations to learn
depth with extremely sparse supervision, which can be valuable
to all robotic systems acting under severe bandwidth or sensing
constraints.

I. INTRODUCTION

Understanding the three-dimensional structure of the world
is crucial for the functioning of robotic systems: for instance,
it supports path planning and navigation, as well as motion
planning and object manipulation. Animals, including humans,
obtain such three-dimensional understanding naturally, with-
out any specialized training. By observing the environment
and interacting with it [1], they learn to estimate (possibly
non-metric) distances to objects using stereopsis and a
variety of monocular cues [2], [3], including motion parallax,
perspective, defocus, familiar object sizes. Could a robotic
system acquire a metric understanding of its surrounding
from a similar feedback?

Endowing robots with such an ability would be valuable for
several applications. Consider for example a swarm of nano
aerial vehicles, whose task is to explore a previously unseen
environment [4], [5]. Constrained by the size and battery life,
each robot can only carry limited sensing, e.g. a camera and a
1D distance sensor. Learning to estimate dense metric depth
maps from such on-board sensors during operation would
allow efficient exploration and obstacle avoidance [6].

Classically, multi-view geometry methods are used to recon-
struct the 3D coordinates of points given their corresponding
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RGB-Image Struct2Depth [7] Ours
Fig. 1. We train a depth perception system with what would be available
to a robot interacting with the environment: images and very sparse depth
measurements. When trained in such sparse regimes (up to a single pixel
per image), our approach learns to perceive depth with higher accuracy than
state-of-the-art methods.

projections in multiple images. These geometric approaches,
carefully engineered over decades, demonstrate impressive
results in a variety of settings and applications [8]. One
downside of this class of approaches is that they are using
only some of the depth cues (mainly stereo and motion
parallax), but typically do not exploit more subtle monocular
cues, such as perspective, defocus or known object size.
Unsupervised learning approaches to depth estimation [9],
[10], [7] combine geometry with deep learning, with the hope
that deep networks can learn to utilize the cues not used by
the classic methods. In these approaches, depth estimators
are trained from monocular or stereo video streams, using
photometric consistency between different images as a loss
function. Unsupervised learning approaches are remarkably
successful in many cases, but they are fundamentally based on
hard-coded geometry equations, which makes them potentially
sensitive to the camera model and parameters, as well as
difficult to tune.

A. Contributions

The present work is motivated by the following question:
can a three dimensional perception system be trained with
the data that a robot would observe interacting with the
environment? To make the problem tractable, we make two
assumptions. First, motivated by the extensive evidence from
psychology and neuroscience on the fundamental importance
of motion perception [11], [12], we provide pre-computed
optical flow as an input to the depth estimation system. Optical
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flow estimation can be learned either from synthetic data [13],
[14] or from real data in an unsupervised fashion [15]. Second,
we assume at training time the availability of images and only
very sparse depth ground truth (just few pixels per image),
similar to what a robot might collect with a 1-D distance
sensor while navigating an environment.

To learn a depth estimator from such assumptions, we
design a specialized global-local deep architecture consisting
of two modules, global and local. The global module takes as
input two images and optical flow between them and outputs a
compact latent vector of “global parameters”. We expect those
parameters to encode information about the observer’s motion,
the camera’s intrinsics, and scene’s features, e.g., planarity.
The local module then generates a compact fully convolutional
network, conditioned on the “global parameters”, and applies
it to the optical flow field to generate the final depth estimate.
The global and the local modules are trained jointly end-
to-end with the available sparse depth labels and without
camera’s pose or instrinsics ground truth.

Since the method is inspired by learning via interaction, we
evaluate it on several indoor scenarios. We compare against
generic deep architectures, unsupervised depth estimation
approaches, and classic geometry-based methods. Standard
convolutional networks show good results when trained with
dense depth ground truth, but their performance degrades
dramatically in the very sparse data regime. Unsupervised
learning-methods and classic triangulation approaches are
generally strong, but their performance in the challenging
monocular two-frame indoor scenario suffers from suboptimal
correspondence estimation due to homogeneous surfaces and
occlusions. The proposed approach outperforms all these
baselines, thanks to its ability to effectively train with very
sparse depth labels and its robustness to imperfections in
optical flow estimates.

II. RELATED WORK

The problem of recovering the three-dimensional structure
of a scene from its two-dimensional projections has been
long studied in computer vision [16], [17], [18], [19]. Classic
methods are based on multi-view projective geometry [20].
The standard approach is to first find correspondences
between images and then use these together with geometric
constraints to estimate the camera motion between the images
(for instance, with the eight-point algorithm [18]) and the
3D coordinates of the points (e.g., via triangulation [17]).
Numerous advanced variations of this basic pipeline have
been proposed [21], [22], [23], [24], improving or modifying
various its elements. However, key characteristics of these
classic methods are that they crucially rely on projective
geometry, require laborious hand-engineering, and are not
able to exploit non-motion-related depth cues.

To make optimal use of all depth cues, machine learning
methods can either be integrated into the classic pipeline, or
replace it altogether. The challenge for supervised learning
methods is the collection of training data: obtaining ground
truth camera poses and geometry for large realistic scenes
can be extremely challenging. An alternative is to train on

simulated data, but then generalization to diverse real-world
scenes can become an issue. Therefore, while supervised
learning methods have demonstrated impressive results [25],
[26], [27], [28], it is desirable to develop algorithms that
function in the absence of large annotated datasets.

Unsupervised (or self-supervised) learning provides an
attractive alternative to the label-hungry supervised learning.
The dominant approach is inspired by classic 3D reconstruc-
tion techniques and makes use of projective geometry and
photometric consistency across frames. Existing works use
various depth representations for this task: voxel grids [29],
point clouds [30], triangular meshes [31] or depth maps [9],
[10], [32], [33]. In this work we focus on the depth map
representation. Among the methods for learning depth maps,
some operate in the stereo setup (given a dataset of images
recorded by a stereo pair of cameras) [9], [32], while others
address the more challenging monocular setup, where the
training data consists of monocular videos with arbitrary
camera motions between the frames [10], [33]. Reprojection-
based approaches can often yield good results in driving
scenarios, but they crucially rely on geometric equations and
precisely known camera parameters (one notable exception
being the recent work in [34], which learns the camera
parameters automatically) and enough textured views. In
contrast, we do not require knowing the camera parameters
in advance and are robust in low-textured indoor scenarios.

Several works, similar to ours, aim to learn 3D represen-
tations without explicitly applying geometric equations [35],
[36], [37]. A scene, represented by one or several images, is
encoded by a deep network into a latent vector, from which,
given a target camera pose, a decoder network can generate
new views of the scene. A downside of this technique is
that the 3D representation is implicit and therefore cannot
be directly used for downstream tasks such as navigation
or motion planning. Moreover, at training time it requires
knowing camera pose associated with each image. Our
method, in contrast, does not require camera poses, and
grounds its predictions in the physical world via very sparse
depth supervision. This allows us to learn an explicit 3D
representation in the form of depth maps.

III. METHODOLOGY

A. Model architecture

Given two monocular RGB images I1, I2, with unknown
camera parameters and relative pose, as well as the optical
flow w between them, we aim to estimate a dense depth
map corresponding to the first image. We assume to have an
artificial agent equipped with a range sensor, which navigates
through an indoor environment. By doing so, it collects a
training dataset of image pairs, with depth ground truth d
available only for extremely few pixels. Using this sparsely
annotated dataset, we train a deep network Fθ(I1, I2,w), with
parameters θ, that predicts a dense depth map d̂ over the
whole image plane. We now describe the network architecture
in detail.

An overview of the global-local network architecture is
provided in Figure 2. The system operates on an image pair



Fig. 2. Global-local model architecture. An image pair and an estimated flow field are first fed through the global module that estimates the
“global parameters” vector g, representing the camera motion. From these global parameters, the local module generates three convolutional
filter banks and applies them to the optical flow field. The output of the local module is then processed by a convolution to generate the
final depth estimate.

I1, I2 and the optical flow (dense point correspondences) w
between them. In this work, we estimate the flow field with
an off-the-shelf optical flow estimation algorithm, which is
neither trained nor tuned on our data.

The rest of the model is composed of two modules:
a global module G that processes the whole image and
outputs a compact vector of “global parameters” and a local
module L that applies a compact fully convolutional network,
conditioned on the global parameters, to the optical flow field.
This design is motivated both by classic 3D reconstruction
methods and by machine learning considerations. Establish-
ing an analogy with classic pipelines, the global module
corresponds to the relative camera pose estimation, while
the local module corresponds to triangulation – estimation
of depth given the image correspondences and the camera
motion. These connections are described in more detail in
the supplement. From the learning point of view, we aim to
train a generalizable network with few labels, and therefore
need to avoid overfitting. The local module is very compact
and operates on a transferable representation – optical flow.
The global network is bigger and takes raw images as input,
but it communicates with the rest of the model only via
the low-dimensional bottleneck of global parameters, which
prevents potential overfitting.

The “global module” G is implemented by a convolutional
encoder with global average pooling at the end. The network
outputs a low-dimensional vector of “global parameters” g =
G(I1, I2,w). The idea is that the vector represents the motion
of the observer, although no explicit supervision is provided
to enforce this behavior. While the optical flow alone is in
principle sufficient for ego-motion estimation, we also feed
the raw image pair to the network to supply it with additional
cues.

The “local module” L takes as input the generated global
parameters g, as well as the optical flow field. First, the
global parameter vector is processed by a linear perceptron
that outputs several convolutional filters banks, collectively
denoted by ϕ = LP (g). Then, these filter banks are stacked

into a small fully convolutional network Cϕ that is applied to
the optical flow field. We append two channels of x- and y-
image coordinates to the input w of Cϕ, as in CoordConv [38].
The output of Cϕ is the final depth prediction d̂ = Cϕ(w).

This design of the local module is motivated by classic
geometric methods: for estimating the depth of a point it is
sufficient to know its displacement between the two images,
its image plane coordinates, and the camera motion. In
contrast to this standard formulation of triangulation, we
intentionally make the receptive field of the network larger
than 1× 1 pixel, so that the network has the opportunity to
correct for small inaccuracies or outliers in the optical flow
input.

B. Loss function

Similarly to previous work [27], [26], we define the loss on
the inverse depth ẑ .

= d̂
−1

. This is a common representation
in computer vision and robotics [39], [22], which allows to
naturally handle points and their uncertainty over a large
range of depths. We use the L1 loss on the inverse depth,
averaged over the subset P of the pixels that have associated
ground truth inverse depth z:

Ldepth =
1

|P |
∑
i∈P
|ẑi − zi|. (1)

To encourage the local smoothness of the predicted depth
maps, we add an L1 regularization penalty on the gradient
∇ẑ = (∂xẑ, ∂y ẑ) of the estimated inverse depth. Similarly to
classic structure from motion methods and unsupervised depth
learning literature [32], we modulate this penalty according
to the image gradients ∂I1, allowing depth discontinuities to
be larger at points with large ∂I1:

Lsmooth =
1

|Ω|
∑
i∈Ω

|∂xẑi| e−|∂xI
i
1| + |∂y ẑi| e−|∂yI

i
1|, (2)

with Ω representing the full image plane. The full training
loss of our network is a weighted sum of these two terms
Ltotal = λpLdepth + λsLsmooth.
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Fig. 3. Qualitative comparison of the depth maps generated with the baselines and our approach. Overall, Struc2Depth’s predictions are
generally poor in homogeneous and repetitive regions, while DispNet tends to over-smooth depth maps. In contrast, our method can predict
fine details of the scene geometry.

C. Model details

In all our experiments the input images have resolution
256× 192 pixels. Unless mentioned otherwise, ground truth
depth is provided for a single pixel of each image, but we
also experiment with denser ground-truth signals. We use a
pre-trained PWC-Net [14] for optical flow estimation.

We use the Leaky ReLU non-linearity in all networks.
The global module is implemented by a 5-layer convolutional
encoder with the number of channels growing from 16 to 256,
with stride 2 in the first 4 layers. The last 256-channel hidden
layer is followed by a convolution with 6 channels and global
average pooling, resulting in the 6-dimensional predicted
global parameter vector g. The local module consists of a
single linear perceptron which transforms g linearly to a
3.9K vector. Empirically, we did not find an advantage in
utilizing a multi-layer non-linear perceptron in place of the
linear operation. The resulting vector is split into three parts,
which are reshaped into filter banks with kernel size 3× 3
and number of output channels 20, 10, 20, respectively. These
filter banks, with Leaky ReLUs in between, constitute the
compact fully-convolutional depth estimation network Cϕ.
The 20-channel network output is then processed by a single
3 × 3 convolutional layer to shrink the channels to 1. The
design of this compact fully convolutional network has been
inspired by the refinement layer used by previous works on
supervised depth estimation [27], [26].

We train the model with the Adam optimizer [40] with
an initial learning rate of 10−4 for a total of approximately

94K iterations with a mini-batch size of 16. We apply data
augmentation during training. Further details are provided in
the supplement.

IV. EXPERIMENTS

Navigating a physical agent in the real world to collect
interaction data is challenging due to problem spanning
perception, planning, and control. Therefore, in order to
isolate the contribution of our proposed method, we simulate
distance observations from a navigation agent, e.g. nano-
drones [5], by masking out all depth ground truth except
for a single one on several depth estimation benchmarks.
Specifically, we test the approach on three datasets collected
in cluttered indoor environments, either real or simulated:
Scenes11, Sun3D, and RGB-D. Scenes11 [27] is a large
synthetic dataset with randomly generated scenes composed
of objects from ShapeNet [43] against diverse backgrounds
composed of simple geometric shapes. SUN3D [44] is a
large collection of RGB-D indoor videos collected with a
Kinect sensor. RGB-D SLAM [45] is another RGB-D dataset
collected with Kinect in indoor spaces.

For all datasets, we use the splits proposed by [27]. As
commonly done in two-view depth estimation methods and
in structure-from-motion methods [8], [27], we resolve the
inherent scale ambiguity by normalizing the depth values such
that the norm of the translation vector between the two views
is equal to 1. To quantitatively evaluate the generated depth
maps, we adopt three standard error metrics summarized
in Table I. We compare to both standard convolutional



Method Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

Eigen [25] 0.045 0.57 0.77 0.072 0.82 0.38 0.046 0.54 0.37
DispNet [41] 0.038 0.51 0.70 0.041 0.49 0.33 0.038 0.45 0.36
FCRN [42] 0.041 0.52 0.74 0.047 0.44 0.30 0.042 0.45 0.35
Small Enc-Dec 0.046 0.66 0.83 0.064 0.73 0.45 0.049 0.58 0.46
Struct2Depth [7] 0.058 0.95 0.81 0.037 0.44 0.27 0.037 0.44 0.48
Struct2Depth [7] + Flow 0.056 0.94 0.79 0.036 0.42 0.27 0.035 0.42 0.45
Ours 0.031 0.43 0.61 0.035 0.37 0.25 0.033 0.37 0.33

TABLE II
IN THE SPARSE TRAINING REGIME, OUR METHOD CAN EFFICIENTLY LEARN TO PREDICT DEPTH FROM SINGLE POINT SUPERVISION,
OUTPERFORMING SIGNIFICANTLY BOTH STANDARD ARCHITECTURES AND UNSUPERVISED DEPTH ESTIMATION SYSTEMS. FOR ALL

ERROR METRICS, LOWER IS BETTER.

neural networks, unsupervised methods, and classic structure
from motion methods. Additional quantitative and qualitative
comparisons are provided in the supplementary material.

A. Learning from very sparse ground truth

We compare the proposed global-local architecture to
strong generic deep models – the encoder-decoder architecture
of Eigen et al. [25], the popular fully convolutional architec-
ture DispNet [41], and the multi-scale encoder-decoder of
Laina et al. (FCRN) [42]. For a fair comparison with our
method, we provide all the baselines with both the image
pair and the optical flow field. Specifically, we generate input
samples by concatenating the image sequence and the flow on
the last dimension. We additionally tune the models to reach
best performance on our task. The details of the tuning process
are reported in the appendix. We also compare to a reduced-
sized DispNet [41] (Small Enc-Dec), that has a number of
parameters similar to our model (including both the global
and the local module). Its encoder consists of 4 convolutions
with (16, 32, 54, 128) filters, with sizes of (7, 5, 3, 3), and
stride 2. Its decoder is composed of 4 up-convolutions
with (128, 64, 32, 16) filters of size 3 and stride 1. Encoder
and decoder layers are connected through skip connections.
Finally, we compare against Struct2Depth [7], current state-
of-the-art system for unsupervised depth estimation.

As shown in Table II, our approach outperforms all the
baselines in the sparse supervision regime. Specifically, we
outperform the architecture of Eigen et al. [25] on average by
53%, the architecture of Laina et al. [42] by 22.5%, and
the fully convolutional DispNet by 20%. Indeed, due to
over-parametrization, these baselines tend to overfit to the
training points, failing to generalize to unobserved images
and locations.

This is empirically demonstrated in Fig. 4, where we plot
the depth loss on training points as a function of the number
of iterations. Decreasing the size of the architecture to address
overfitting does not however solve the problem: the Small
Enc-Dec, with number of parameters similar to our network,
achieves poor results, mainly due to its limited capacity.

Our approach also achieves on average 24% better error
than the unsupervised depth estimation baseline [7] over all
datasets and metrics. Indeed, the considered datasets represent
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Fig. 4. For large networks, the loss on training points (solid lines) is
significantly higher than the validation loss (dashed lines). In contrast,
our global-local architecture learns generalizible representations.

a challenge for geometry-based methods given the presence of
large homogeneous regions, occlusions, and small baselines
between views, which are typical factors encountered in
indoor scenes. Noticeably, the performance of Struct2Depth
on the SUN3D dataset is relatively good, boosted by the
larger baseline between views and the abundance of features.
Interestingly, providing optical flow to the unsupervised
baseline only increases performance of 3.5% on average.
We hypothesize that this is due to the fact that unsupervised
methods already estimate correspondences internally, and
providing flow as input gives redundant information.

Fig. 5 analyzes the performance of our and the DispNet
architectures (our strongest baseline) as a function of the
number of observed ground-truth pixels per image. Unsurpris-
ingly, both methods learn to predict accurate depth maps when
dense annotations (D) are available. Decreasing the amount of
supervision obviously leads to performance drops. However,
for our method the error increases on average by only 5%
when going to sparser supervision, compared to 12% for the
baseline, which leads to a large advantage over the baseline
in the single-pixel supervision regime. This shows that the
global-local architecture provides an appropriate inductive
bias for learning from extremely sparse depth ground-truth.

B. Robustness to Dynamically Changing Camera Parameters

In practical applications camera internal parameters, such as
focal length, may change through time. Indeed, environmental
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Fig. 5. Depth estimation errors with increasing number of training pixels per image and dense supervision (D). When supervision gets
sparser, our method’s performance degrades more gracefully than the baseline.

Method Scenes11 SUN3D RGB-D

Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE Abs-Inv Abs-Rel S-RMSE

Struct2Depth [7] 0.062 2.19 0.87 0.045 0.52 0.25 0.050 0.54 0.46
DispNet [41] 0.039 0.57 0.70 0.041 0.46 0.27 0.046 0.56 0.38
Ours 0.034 0.51 0.61 0.034 0.43 0.24 0.036 0.40 0.33

TABLE III
DEPTH ESTIMATION ERRORS WITH CAMERA INTRINSICS VARYING UP TO 20% OF THEIR NOMINAL VALUE BETWEEN VIEWS. BASED ON

PROJECTIVE GEOMETRY, UNSUPERVISED METHODS SUFFER THE MOST FROM PARAMETER UNCERTAINTY.

changes like temperature, humidity and pressure could cause
severe variations to their nominal value. Due to these
variations, methods based on projective geometry, which
are sensitive to the accuracy of calibration parameters, can
experience large performance drops. Although the problem
could be alleviated by automatic re-calibration, these changes
would have to be detected in the first place and would require
either collecting multiple views of an object [46], [47] or
additional sensing [48].

We empirically study the robustness of our method and
the baselines to dynamically changing camera intrinsics. In
particular, we randomly change, for each image pair, the
horizontal and vertical focal lengths, as well as the center
of projection, by up to 20% of their nominal value. The
unsupervised depth estimation baseline suffers the most from
the uncertainty in the camera intrinsics. Indeed, its estimation
error increases on average by 26% with respect to the case
in which camera parameters are correctly set. In contrast, as
our approach does not explicitly rely on projective geometry,
it does not exhibit such sensitivity to the camera parameters.
Indeed, it experiences only a small decrease in performance,
of approximately 5% with respect to the case where the
intrinsics are fixed, since the learning problem becomes more
challenging.

C. Global parameters and the camera motion

According to the intuition behind our model, the global
parameters should have information about the observer’s ego-

motion between the frames, and as such should be related to
the actual metric camera motion. Here we study this relation
empirically, by training a camera pose predictor on the output
of our global module, in supervised fashion. Note that this
is done for analysis purposes only, after our full model has
been trained: at training time the model has no access to
the ground truth camera poses. Specifically, we add a small
two-layer MLP with 256 hidden units on top of the global
module that is either pre-trained with our method or randomly
initialized. We then either train the full network or only
the appended small MLP to predict the camera motion in
supervised fashion (details of the training process are provided
in the supplement).

Results in Table IV show that the global parameters indeed
contain information about the camera pose. In both training
setups pre-trained network substantially outperforms the
random initialization: 17% to 64% error reduction across
datasets and metrics when only tuning the MLP and up to 11%
error reduction when training the full system. Interestingly,
our method is also competitive against classic state-of-the-art
baselines for motion estimation [27].

D. Robustness to Optical Flow Outliers

Optical flow estimation plays a central role in our learning
procedure. In this section, we study the impact of corre-
spondences’ errors to the quality of the predicted depth
map. Specifically, we compute the per-pixel Abs-Inv metric
as a function of the optical flow’s error, normalized for



Scenes11 SUN3D RGB-D

Method rot trans rot trans rot trans

Scratch-MLP 1.3 74.4 3.6 55.5 5.3 78.4
Pretrained-MLP 0.9 26.7 2.7 32.5 4.4 51.5
Scratch-Full 0.7 10.3 1.8 25.0 3.2 30.5
Pretrained-Full 0.7 9.2 1.7 22.4 3.2 28.7

KLT [27] 0.9 14.6 5.9 32.3 12.8 49.6
8-point FF [27] 1.3 19.4 3.7 33.3 4.7 46.1

TABLE IV
ESTIMATION OF CAMERA MOTION BASED ON THE GLOBAL

PARAMETERS ESTIMATED BY OUR MODEL.
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Fig. 6. Relation between error in correspondences and depth error
for the local-global network and classic triangulation, either with
perfect pose (GT Pose) or with the pose provided by our fine-tuned
global network (see Sec. IV-C). Standard deviations of the errors are
shadowed. Our approach learns to filter out errors in correspondences
by exploiting its receptive field larger than one and regularities of
those errors in the data.

the image size. The results of this study are shown in
Fig. 6 for the SUN3D dataset. Results for other datasets
are available in the appendix. Our approach (red line) can
correct for outliers in the correspondences significantly better
than the traditional triangulation approach. Interestingly, the
main reason behind this behaviour does not consist in the
precision of the camera motion estimation. Indeed, doing
triangulation with either ground truth camera motion or the
motion estimated from the global parameters (see Sec. IV-C)
result in approximately the same performance. Conversely,
we hypothesize that our approach can cope with outliers in
correspondences because of the information encoded in the
global parameters. Such information not only includes the
relative motion between views, but also specifics about the
scene (e.g. planarity) and the camera intrinsics. To retrieve
this information, the global network uses monocular cues
like perspective, focus, or parallax. Conditioned on this scene
knowledge and exploiting regularities in the data, the local
network can adapt to the observed scene and filter out outliers.
Such high-level reasoning is absent in traditional triangulation.

E. Ablation study

Our architecture is based on several design choices that
we now validate through an ablation study. In particular, we
ablate the following components: (i) the use of optical flow
as an intermediate representation, (ii) the estimation of global

variables to generate convolutional filters, (iii) the use of
coordinate convolution in the fully convolutional network and
(iv) the use of the image pair, in addition to optical flow, for
the estimation of global parameters.

Abs-Inv Abs-Rel S-RMSE

Full Model 0.033 0.43 0.61
– Image Pair 0.033 0.45 0.62
– CoordConv 0.038 0.52 0.71
– Glob. Mod. 0.041 0.55 0.73
– Flow 0.052 0.73 0.81

TABLE V
ABLATION STUDY ON THE SCENES11 DATASET.

The results in Table V show that all components are
important and some have larger impact than others. The
use of optical flow and coordinate convolution are crucial
since they both provide essential cues for depth estimation.
However, a basic encoder-decoder architecture (i.e. without
global variables or coordinate convolutions) underperforms
even when provided with optical flow. Unsurprisingly, the
least important factor is providing the image pair to the global
module, since, when camera parameters are fixed, the optical
flow is a sufficient statistics of the observer’s ego-motion.

V. DISCUSSION

Motivated by the way natural agents learn to predict depth,
we propose an approach for training a dense depth estimator
from two unconstrained images given only very sparse
supervision at training time and without the explicit use of
geometry. We show that in cluttered indoor environments our
global-local model outperforms state-of-the-art architectures
for depth estimation by up to 22.5% in the sparse data regime.

Our methodology comes with some advantages and limi-
tations with respect to previous work. One of the strongest
advantage with respect to learning-based methods consists in
its ability to learn from extremely sparse data. In addition, our
method performs well in the cases where camera parameters
are unknown or corrupted by noise. However, one limitation
that our approach shares with supervised and unsupervised
methods is the lack of generalization between visually
different environments. This limitation can be softened by
training in multiple indoor and outdoor environments. With
respect to traditional geometry, our method can better cope
with outliers in correspondences, given its ability to adapt
to the scene characteristics. However, similarly to classic
methods, our approach suffers in the case of pure rotation,
where correspondences are not informative for depth. This
limitation can be overcome by adding memory to the neural
network through a recurrent connection.

In the future, we plan to address the aforementioned
limitations to increase the network performance. In addition,
we believe that a very exciting venue for future work to be
the extension of our algorithm to a more strictly interactive
procedure on a physical platform.
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