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Abstract— This paper presents a framework for recognition
and prediction of ongoing human motions. The predictions
generated by this framework could be used in a controller
for a robotic device, enabling the emergence of intuitive
and predictable interactions between humans and a robotic
collaborator. The framework includes motion onset detection,
phase speed estimation, intent estimation and conditioning.
For recognition and prediction of a motion, the framework
makes use of a motion model database. This database contains
several motion models learned using the probabilistic Principal
Component Analysis (PPCA) method. The proposed framework
is evaluated with joint angle trajectories of eight subjects
performing squatting, stooping and lifting tasks. The motion
onset and phase speed estimation modules are first evaluated
separately. Next, an evaluation of the full framework provides
more insight in the current challenges regarding motion predic-
tion. A brief comparison between PPCA and the Probabilistic
Movement Primitives (ProMP) method for learning motion
models is made based on the influence of both methodologies
on the performance of the framework. Both PPCA and ProMP
motion models are able to predict motions over a short time
horizon but struggle to predict motions over a longer horizon.

I. INTRODUCTION

Human-robot collaboration (HRC) focuses on intuitive
and predictable interactions between a human and a robotic
device (e.g. a robotic arm as in [1] or an exoskeleton as in
[2]). Using predictions of human motions in the controller
of a robotic collaborator could be a crucial step in achieving
such interactions. Thus, the need for automatic recognition
and prediction of ongoing human motions arises. This paper
presents a framework for recognition and prediction of
ongoing human motions.

Crucial to this framework are mathematical representations
of human motions. Such representations can be found in the
Programming by Demonstration (PbD) paradigm. In PbD,
a developer provides a number of demonstrations to teach
a robot how to execute certain movements. Consequently,
PbD requires models of human motion. One example of
a technique to learn a human motion model makes use
of probabilistic Principal Component Analysis (PPCA) [3].
Learning motion models using techniques such as PPCA
requires formatting the raw human demonstrations provided
by the developer. The recorded demonstrations need to be
segmented and temporal differences need to be removed (i.e.
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“alignment” of the demonstrations). Once learned, the mo-
tion models are suitable tools for recognition and prediction
of human motions. Using these motion models, a motion
model database can be constructed containing separate mo-
tion models for every motion type (e.g. squatting, lifting etc.)
that should be recognized and predicted.

Apart from the recognition and prediction of human
motions, the framework takes two more steps into account:
motion onset detection (i.e. detection of the start of a motion)
and phase speed estimation (i.e. estimation of the execution
speed of a motion). Consequently, the framework consists
of four steps: (i) motion onset detection (ii) phase speed
estimation (iii) intent estimation (i.e. recognition of an
ongoing motion) and (iv) conditioning (i.e. fitting the most
probable motion model to observations). The conditioned
motion model is then used to generate predictions.

The contributions of this paper are the following: 1) A
framework is proposed for human intent recognition and
motion prediction. The framework combines several relevant
methodologies and adds a novel motion onset detection
module. To recognize and predict a motion, the framework
makes use of a motion model database. 2) Methodologies are
presented to construct a motion model database starting from
raw (unprocessed) human motion data. PPCA is discussed
as a method to learn motion models. However, a brief com-
parison between PPCA and the rather similar Probabilistic
Movement Primitive (ProMP) method for learning motion
models is made based on the influence of both methodologies
on the performance of the framework. 3) The framework
is evaluated on joint angle data of three different human
motions: squatting, stooping and lifting tasks. Moreover, it
is evaluated on its ability to predict the complete motion
instead of only the end point of a motion.

The next section of this paper will discuss related work
and motivate the choice for probabilistic motion models. A
following section will present the framework. Subsequently,
experiments and results are discussed. The paper ends with
a discussion and some conclusions.

II. RELATED WORK

Some frameworks for human motion prediction have al-
ready been proposed. Luo and Mai as well as Luo, Hayne
and Berenson propose frameworks to predict human reaching
motions [4], [5]. However, these works do not address motion
onset detection and phase speed estimation. Landi et al.
propose a framework to predict if a human is reaching to
grasp an object or not, but consider only one motion type
(reaching motions) [6].
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A key aspect in the proposed framework is how to
model human motions. A first group of motion models
simulates dynamical systems to generate stable motions.
Dynamic Movement Primitives (DMP) is a commonly used
methodology [7]. Khoramshahi and Billard also propose a
dynamical system but explicitly model interaction forces
between human and robot [8].

A second group of motion models uses a probabilistic
representation. An advantage of such models is their ability
to capture the variance displayed by humans when providing
demonstrations and to generate uncertainties on a prediction.
These uncertainties can subsequently be used to adapt the
control policy of a robotic device as discussed by Aertbeliën
and De Schutter in [3]. Probabilistic Movement Primitives
(ProMP) are well known probabilistic motion models [9]
[10]. A lesser known but similar approach is based on proba-
bilistic Principal Component Analysis and has been proposed
by Aertebeliën and De Schutter [3]. It is used by Tanghe et
al. to model gait [11] and by Vergara et al. in the control of a
robotic arm [1]. Other probabilistic approaches use Gaussian
Mixture Models (GMM) to recognize reaching motions [12].
Finally, some works already introduce unsupervised learning
of new motions or sequencing of series of motions [5] [13].

Frameworks for recognition of human motions have also
been proposed outside of the HRC domain in work by
Lee and Nakamura on the classification of 3D whole-body
motions of subjects wearing markers [14] and in work by
Yang, Park and Lee on recognition of reaching or pointing
motions [15]. In these vision based approaches, Hidden
Markov Models (HMM) are used to model motions. How-
ever, processing images leads to higher computational load.
In addition, those works do not discuss predicting ongoing
motions.

Apart from motion recognition and prediction, the frame-
work introduces a novel motion onset detection module
based on Dynamic Time Warping (DTW) [16]. DTW is able
to deal with temporal variations in human motion. It is often
used to align two complete demonstrations. However, for
motion onset detection, one of the demonstrations can be
incomplete, limiting computational load.

Several aspects of the framework have been discussed in
related work such as Tanghe et al [17] and Maeda et al.
[10] and will be combined in this work. Motion models in
the motion model database are learned using PPCA since
it offers the advantages of a probabilistic approach. Given
the similarities between PPCA and ProMP, it is interesting
to quantify the impact of each method for learning motion
models on the performance of the framework.

III. METHODS

Figure 1 gives an overview of the proposed framework.
A motion model database (containing A motions models
a1 . . . aA) is learned offline. The input to the framework
(denoted as “sensor input”) are human motion trajectories.
For each of the tasks to be recognized and predicted, a
motion model is learned and stored in the motion model
database. The framework then exploits knowledge contained
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Fig. 1. Overview of the proposed framework.

in those motion models and outputs a “Conditioned motion
model” used for prediction of the remainder of the human
motion trajectory provided as input. In this paper, the sensor
input is assumed to consist of joint angle trajectories. The
first subsection discusses how to learn motion models for
the database starting from raw joint angle trajectories. Next,
The four steps mentioned in the introduction and visualized
in the figure will be discussed. The acquisition of the joint
angle trajectories for learning the motion models is discussed
in section IV.

A. Learning motion models for the database

1) Formatting joint angle trajectories: This preprocessing
step aims to obtain a set of demonstrations of equal length
in which every demonstration is aligned with respect to a
common time axis. Such a set of demonstrations optimally
captures variability displayed by humans and will be used to
learn a motion model. In a first formatting step, Dynamic
Time Warping (DTW) [16] is used to extract individual
demonstrations out of a series of demonstrations separated
by brief pauses. Second, Local Time Warping is used to
align segmented demonstrations with respect to a common
time axis [18]. It is assumed that the demonstrations do not
contain (partially) occluded datapoints.

Figure 2a) visualizes the segmentation process (for one
dimensional trajectories). One manually segmented demon-
stration is used as a reference. The query sequence is
the sequence to be segmented. The DTW-matrix is build
using the symmetric stepping pattern with slope constraint
zero and a squared euclidean distance as distance measure.
After building the DTW matrix, warping paths are extracted
wherever values of the final column of the DTW matrix
go through a minimum. The first and last element of each
warping path are written as w1 = (i1, 1) and wK = (i2, J) in
which the first and second indices refer to the query and ref-
erence sequence, respectively. K is the length of the warping
path and J the length of the reference series. Indices i1 and
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Fig. 2. The DTW processes for segmentation (part a) and motion onset
detection (part b). The grid represents the DTW matrix. A match between
the two time series is found whenever the values in the grey column
(during segmentation) or row (during motion onset detection) go through a
minimum.

i2 provide the start and end points of the demonstrations in
the query sequence. Note that this corresponds to a relaxation
of the boundary conditions of Sakoe and Chiba [16].

After segmentation, the demonstrations have to be aligned
to remove temporal differences between demonstrations. To
avoid discontinuities when aligning the segmented demon-
strations, Local Time Warping (LTW) is used [18] instead
of the traditional DTW. Aligning a set of trajectories is not
straightforward since a suitable reference sequence has to be
picked. Gupta et al. propose the Nonlinear Alignment and
Averaging Filter (NLAAF) to align sets of trajectories using
DTW [19]. Although the procedure is aimed at symmetric
DTW variants, it is also possible to use it with the asym-
metric LTW variant used here. Using the LTW procedure
in combination with the NLAAF method results in a set
of demonstrations suitable for learning a motion model for
every demonstrated motion type.

2) Learning motion models: A motion f (consisting
of D, simultaneously recorded, joint angle trajectories) is
represented (in discrete time) as:

f̄(tn) =
[
f̄1(tn) . . . f̄D(tn)

]
(1)

f̄ indicates that f has been sampled at N discrete time steps
(with 0 ≤ n ≤ N ).

A common modeling step is the normalization of time in
(1) by replacing it with a phase variable s such that s = 0
at the start of the motion and s = 1 at the end of a motion.
A linear progress model of the phase variable is a common
choice:

sn = v
tn

Tnom
(2)

with Tnom the duration of the demonstrations used to learn
the motion model and tn the time index of the ongoing
motion. v is called the phase speed and can be interpreted

as the execution speed of the motion. v = 1 means the
ongoing motion is being executed at the same speed as the
motion model while v > 1 or v < 1 indicate faster of slower
execution, respectively.

PPCA now describes a model for f̄ using a vector x
containing m latent variables [3] [20]:

f̄
T

(sn) = H̄(sn)x+ b̄(sn) + ε̄ (3)

In which f̄T ∈ RDN×1 and b̄ ∈ RDN×1 represents the mean
trajectory of the motion model. H̄ ∈ RDN×m contains m
basis functions that are weighted by the m latent variables in
vector x. Together, H̄x models the variation displayed by
a subject during the demonstrations. Finally, ε̄ is a DN × 1
Gaussian distributed noise vector ε̄ ∼ N (0, σ2I).

Aertbeliën and De Schutter [3] describe the procedure to
learn values for H̄ , b̄ and σ using the sample covariance
matrix of f̄T , which follows from the aligned set of demon-
strations discussed in the previous subsection. The latent
variables are normally distributed with x ∼ N (µx,Σx).
Initially, this distribution satisfies xinit ∼ N (0, I). However,
the conditioning (discussed later) modifies µx and Σx.

The resulting distribution on f̄ at instance sn now be-
comes:

f̄(sn)T ∼ N (H̄(sn)µx + b̄(sn), H̄(sn)ΣxH̄(sn)T + σ2I)
(4)

Several different PPCA motion models are learned and stored
in the motion model database.

B. Motion onset detection

The motion onset detection module outputs an “Onset
Index” (O.I.). Using this index, only sensor input belonging
to a motion is passed to subsequent modules. The approach
followed is similar to the segmentation procedure (Figure
2b). However, the query sequence is now the “Sensor Input”
from figure 1, while the reference sequence is chosen as the
mean of a motion model.

Once more, for every match between query and reference
series, a warping path can be constructed. The i value of
w1 (i.e. the first element of a warping path) is the O.I. In
some warping paths, several consecutive points in the query
series are matched with a single point in the reference series
(or vice versa). Two additional constraints allow removal
of a match with a warping path showing this behavior. Let
w1 = (i1, 1) and wK = (i2, j2) (with wK the last element of
a warping path), then any matches not satisfying i2−i1 > r1
and j2 − 1 > r2 are removed. This ensures that at least
r1 elements of the query sequence and r2 elements of the
reference sequence are used to estimate a motion onset index.
Finally, if the value of wK in the DTW matrix is too high
i.e. it does not satisfy DTW (i2, j2) < r3, the match is
removed. If multiple matches satisfy all three conditions,
then the match with lowest DTW distance is picked.

The reference series used in the onset detection process is
given by the mean of a motion model. However, it is still
unknown what motion model to pick (this is estimated later
on in the intent estimation module). Therefore, this procedure



is repeated for every motion model in the database. To limit
computation time, a window containing X observations is
chosen. Only the X most recent observations of the “Sensor
Input” are part of the query series.
C. Phase speed estimation

Once a motion onset has been detected, a logical next
step is to select the correct motion model from the database
(i.e. intent estimation). However, intent estimation is difficult
since the phase speed variable (given by (2)) of the ongoing
motion is unknown. On the other hand, estimating the phase
speed variable is impossible without the correct motion
model. Therefore, the phase speed variable is first estimated
for every motion model in the database. Subsequently, the in-
tent estimation module can take into account these estimated
phase speed values.

Given the nonlinearity of the underlying problem, estima-
tion of the phase speed variable is done with an Iterated
Extended Kalman Filter (IEKF) similar to the approach
followed by Tanghe et al. [17]. However, since Tanghe et
al. only considered one motion model, no intent estimation
was needed and the IEKF combined both phase speed
estimation and conditioning. Since phase speed estimation
and conditioning are now split up, the IEKF will estimate
only one variable: v.

A constant process model is proposed for the IEKF:

vn+1 = vn + ρp (5)

with n the n-th time step at which the IEKF is run. ρp is the
normally distributed process noise: ρp ∼ N (0,Q) with Q
the covariance matrix of the process noise (which is a scalar
in the case of only one state variable). The measurement
model follows from a linearization around the current state
estimate:

z = h(vn, tn) +
∂h

∂v

∣∣∣∣
vn,tn

(v − vn) + ρmeas (6)

with ρmeas the normally distributed measurement noise:
ρmeas ∼ N (0,R). h is the measurement function. This
measurement function is equal to (3) but is expressed as
a function of vn and tn using (2) (therefore, h(vn, tn) =
f(sn)T ). The partial derivatives ∂H

∂v and ∂b
∂v are calculated

using numerical differentiation of H and b during the
learning phase of a motion model.

The Kalman filter gain is calculated in this problem similar
as in [17]. This requires writing the posterior state covariance
matrix P̂ n in Joseph form. The Kalman gain is then obtained
by minimizing the trace of this covariance matrix. Two
additional constraints are specified while determining the
Kalman gain matrix:

Kn=arg min trace
K[(

I−K ∂h

∂v

∣∣∣∣
vn

)
P̂ n

(
I−K ∂h

∂v

∣∣∣∣
vn

)T

+KRnK
T

]

subject to An(vn−1 +Kνn) ≤ cn

with νn the innovation of the IEKF such that vn = vn−1 +
Knνn. In this case, the constraints are set such that the
phase variable s satisfies 0 ≤ sn ≤ 1, leading to An =[
− tn

Tnom
tn

Tnom

]
and cn =

[
0
1

]
. The measurement noise covariance

matrix R was set equal to σ2
avgI with σavg the average

standard deviation in the motion model, calculated using the
covariance matrix given by (4). The process noise variance
Q is used as a tuning parameter in the IEKF. The IEKF keeps
running until the difference between two successive estimates
of v falls below λtol (set to 10−6) or if the maximum number
of iterations (set to 200) has been reached.

D. Intent estimation

Classification is done by calculating the posterior proba-
bility of a motion model given its prior probability, estimated
phase speed variable and the “Sensor Input” of figure 1. For
a motion model a, the posterior probability then becomes:

p(a|yobs) =
p(yobs|a)p(a)∑
a p(yobs|a)p(a)

(7)

with p(a) the prior probability of motion model a. Assuming
A motion models, a common choice is to set p(a) = 1/A.
yobs ∈ RD×l specifies a sequence of l observations of the D
dimensional “Sensor Input” at corresponding time instances
tn. p(yobs|a) is calculated by evaluating the multivariate
normal probability density function of model a given by (4)
at the values sn corresponding to tn. Note that p(yobs|a)
will tend to zero as more observations are taken into account.
After evaluating (7) for every motion model in the database,
the model with highest probability is selected.

Finally, note that the onset detection module provides
a first guess of the currently ongoing motion but neglects
information contained in the covariance matrices. Therefore,
this approach is preferred.

E. Conditioning

Once the appropriate motion model is selected, it is
conditioned (i.e. “fitted”) using the available data with the
following equations (based on [9]):

µ[new]
x = µx +L

(
yobs − H̄sµx − b̄s

)
(8)

Σ[new]
x = Σx −LH̄sΣx (9)

with L given by:

L = ΣxH̄
T
s

(
Σyobs

+ H̄sΣxH̄
T
s

)−1

(10)

with Σyobs
expressing the uncertainty on the observations

yobs and subscript s indicating that the preceding parameter
should be evaluated at the indices sn corresponding to
the time indices tn at which the observations yobs were
registered. Notice that these equations correspond to the
update step of a Kalman filter. If a prediction step with
corresponding process noise is specified, the NIS (Normal-
ized Innovation Squared) values can be used to check the
consistency of observations with the motion model. The
process noise is modeled as εcond ∼ (0, ρ2condIm) and a



constant process model is proposed in which ρcond is used
as a tuning parameter. A choice is made to condition on
a new observation every 5% progress. As a consequence, a
model is conditioned on 20 observations spread evenly across
the normalized time axis. Note, however, that phase speed
estimation and intent estimation happens at every time step.

The conditioned motion model is the output of the frame-
work. Generating a prediction of a future time instance tf
is now possible by evaluating (4) at sf corresponding to tf
and in which µx and Σx are modified by (8) and (9).

IV. EXPERIMENTS AND RESULTS

The proposed methods are evaluated using joint angle
data of eight subjects (5 men; age: 27.3 years (±8.8), body
mass index: 21.6 kg/m2 (±4.3)). All participants provided
written informed consent prior to the start of the measure-
ment and the local ethics committee (Universitair Ziekenhuis
Leuven, S61611) approved all study procedures. Subjects
were asked to perform squatting, stooping and lifting tasks
with a box placed on the ground. During the tasks, 3D
marker trajectories were captured using a 10 camera Vicon
system (100 Hz, VICON, Oxford Metrics, Oxford, UK).
The measuring protocol (including marker placement and
the selection of a human model) is identical to the protocol
mentioned in van der Have et al. [21]. Joint angles were
calculated at each frame of the movement using a global
optimization method for inverse kinematics implemented in
OpenSim 3.3 [22], that minimized the weighted sum of
squared differences between experimental and model marker
positions. The shoulder elevation and hip flexion angles were
selected to learn the motion models. The “Sensor Input” Is
assumed to contain the same joint angles. Due to symmetry,
only joint angle data from the right hand side was included
in the motion models.

The squat and stoop procedures are the same as mentioned
in [21]. For the lifting procedure, a rack was set in front of the
participant at five different heights adapted to the individual
participants’ anthropometrics (ground level, knee height, hip
height, shoulder height and 50 centimeters above shoulder
height). Although participants performed the tasks with two
different weights (a weight of 10 kg and a weight equal to
40 % of the arm lifting strength test [23]), no distinction
was made between the corresponding joint angle trajectories
in the evaluations discussed here. Only data from lifting the
box from ground level to knee level and from ground level
to above shoulder height was used. A total of 94 squatting
motions, 94 stooping motions and 87 lifting motions were
registered.

The lifting motions were segmented based on the ve-
locity of the box (start/end point was selected whenever
the velocity of the box rose above/fell below 0.0025m/s)
and subsequently resampled to equal length. The squat and
stoop demonstrations were segmented and aligned using the
methods of section III. This ensured that the squat and stoop
demonstrations included the part of the motion in which the
subjects did not yet pick up the box.

Subsections IV-A until IV-D make use of the squat and
stoop data while subsection IV-E makes use of the squat,
stoop and lifting data. Sections IV-A and IV-B focus on
assessing the performance of the motion onset detection and
phase speed estimation modules and only consider a motion
model database with PPCA motion models. Sections IV-C,
IV-D and IV-E consider a motion model database with PPCA
or ProMP motion models. Following the conclusion of [3],
PPCA motion models were learned with a total of 5 latent
variables. All ProMP motion models were learned with 20
basis functions per joint in the motion model (i.e. 40 basis
functions in total). The evaluations were run on a laptop with
a Intel Core i7-8650U 1.9GHz processor.

All evaluations followed an inter-subject cross validation
scheme: formatted data (i.e. segmented and aligned data)
from all but one subject was used as training data. Sub-
sequently, raw data from the remaining subject was used as
“Sensor Input” data in figure 1. This was repeated such that
data from every subject was excluded once from the training
data set. Note that each raw squat and stoop trial contains
two demonstrations (one to pick up a box and one to put
the box down). In between each demonstration, there is a
limited period (of varying length) without motion.

A. Evaluation of onset detection

A first evaluation focuses only on the onset detection
module using the squat and stoop data. The percentage of
correctly detected motion onsets P+, false positives P− and
false negatives N− are reported (all with respect to the total
number of motion onsets to be detected). Moreover, the raw
data has been manually labeled and the average value of
the absolute difference between manually labeled onset and
detected onset Eabs,avg is reported as well (in number of
indices difference). Note that the sampling interval of the
raw data is 100 Hz, meaning a difference of 10 indices
corresponds to a timing difference of 0.1 s. Since the manual
labeling is subject to interpretation, this metric only serves
as a rough performance measure.

The values of thresholds r1, r2 and r3 were set as follows:

r1 =
2

3
X, r2 =

24

30
X, r3 = X‖q‖22 (11)

with X (the number of observations taken into account for
onset detection) set to 30, and q ∈ RD×1 in which every
element is set to 8. r3 then models an average difference
of 8◦ between query and reference series at every time step
taken into account and for every joint in the query series.

As can be seen in table I, the algorithm is indeed able
to detect most motion onsets. Table I also lists the average
duration Tavg per evaluation of the motion onset detection
module (it is evaluated whenever 10 new observations are
available). Note that all the “missed” motion onsets belonged
to demonstrations in which the subject was already holding
a box.

B. Evaluation of phase speed estimation

This section focuses solely on the phase speed estimation
module. By manually segmenting the raw demonstrations,



TABLE I
RESULTS OF THE ONSET DETECTION EXPERIMENT

P+(%) P−(%) N−(%) Eabs,avg (#) Tavg(s)
squat 93.55 1.06 7.45 15.34 0.095
stoop 94.68 1.06 5.32 18.19 0.096
total 93.62 1.06 6.38 16.78 0.095
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Fig. 3. Phase speed estimation throughout an ongoing motion as well
as the corresponding phase values calculated through (2). The blue curves
correspond to failures of the IEKF i.e. curves for which the estimated phase
remains below 0.7 at the end of a motion.

no motion onset module was needed and demonstrations that
would not be detected by the motion onset module could still
be used to evaluate the phase speed estimation module.

Failure of the IEKF was decided based on the evolution
of the motion phase variable s. As discussed earlier, s should
progress linearly, should always satisfy 0 ≤ s ≤ 1 and
depends on v through (2). Figure 3 shows both the estimates
of the phase speed variable and the corresponding estimates
of the phase progress at every run of the IEKF. A run was
classified as a failure whenever the final phase value was
below 0.7 (shown in blue). Out of the 188 runs of the IEKF
with both squat and stoop motions, failure occurred in 14
runs, leading to a success rate of 92.55%. Subject-specific
tuning of the parameters of the IEKF might further improve
the performance but was not done here. The process noise
covariance matrix Q was set according to [24]. The initial
estimate of v was set equal to 1 and its variance equal to
0.0038691, determined given the differences in execution
time of the manually segmented raw demonstrations.

Finally, the performance of the IEKF was compared with
the Moving Horizon Estimation (MHE) proposed in [11],
with a horizon containing 10 observations. Comparison was
done based on the average cumulative euclidean distance be-
tween estimated phase speed curves (such as shown in figure
3a) and benchmark curves. The benchmark was generated
with a MHE with a horizon spanning a full trajectory. The
average cumulative distance between IEKF and benchmark
and between MHE and benchmark was 11.104 and 10.137,
respectively. The average duration to estimate a phase speed
at one time instance was 0.00341 s and 0.00499 s for the
IEKF and MHE, respectively. While a MHE improves the
performance slightly, it also increases computational load.

C. Evaluation of intent estimation accuracy

In this experiment, the full framework was used to eval-
uate the intent estimation performance. The next subsection
evaluates the prediction performance. Thus, all modules of
figure 1 are active. Whenever the phase variable s reaches

TABLE II
OVERVIEW OF THE INTENT ESTIMATION PERFORMANCE

PPCA ProMP
Total # demo’s 188 188
Total # instances 564 564
→ Onset detection failure
→ IEKF failure
Registered instances 500 513
Correct estimated 435 456
Intent estimation accuracy (%) 87 89
Overall performance (%) 77 81

20, 50 or 80 % of a motion, the estimated motion type is
compared with a ground truth. Since a total of 188 (squat and
stoop) demonstrations are presented to the framework, the
recognition of an ongoing motion is verified at 564 instances.
The prior probabilities of squat and stoop motion (p(a) in
(7)) have been set to 0.5. A maximum of 30 points spread
evenly across the observed motion interval are used for
intent estimation. This evaluation was executed twice: Once
with a database containing motion models generated with
PPCA and once with a database containing motion models
generated with the ProMP methodology. The measurement
noise for the IEKF for ProMP motion models was set as
discussed in the previous section but using equation (12) of
Paraschos et al. [9]. All other parameters of the IEKF were
identical as to the ones mentioned before.

Table II shows the results of this experiment. The intent
estimation accuracy in table II is calculated as the number
of instances at which the motion type (squat or stoop)
was correctly estimated divided by the number of correctly
registered instances. The overall performance is calculated
as the number of correctly estimated instances divided by
the total number of possible instances. As can be seen, using
ProMP motion models leads to a higher overall performance.
This follows from slightly higher success rates in the motion
onset detection, phase speed estimation and intent estimation
modules. Processing the intent estimation module took on
average 0.0039 s for both ProMP and PPCA motion models

D. Evaluation of motion prediction accuracy

At each of the instances mentioned in the previous subsec-
tion, it is also possible to evaluate the prediction performance
of the framework. This is visualized for one of the demon-
strations in figure 4. At 20%, 50% and 80% motion progress,
the selected and conditioned motion model (which is the
output of the framework as shown in figure 1) is plotted. In
all evaluations the conditioning process noise was set equal
to ρ2cond = 0.001. A video visualizing the output of the
framework is available as supplementary material as well.

Several remarks should be made. First, As can be seen,
at 20 % progress, both motion models struggle to accurately
predict both joint angles. However, at 50 % progress, some
prediction errors have been compensated. Second, at 20 %
progress, the phase speed is estimated to be rather high,
leading to the assumption that the motion will end sooner
than it does in reality. This high phase speed estimate is
compensated as well as more observations become available.
Finally, notice that at 50 % progress, the NIS value for the



PPCA motion model does not satisfy a 2 dof chi-squared
consistency test with 2-sided 99% significance levels. Indeed,
around the half-way point, squat and stoop motions are
difficult to predict and show a lot of variability.

In general, predicting the shoulder elevation proves to
be more difficult than the hip flexion (even over a short
time horizon). This is visualized in the supplementary video
indicating a horizon of 0.25s in the future following [17].
As a quantitative measure of prediction accuracy, the average
absolute difference between each element of the mean of the
conditioned motion model and the ground truth is calculated
at the three different phase instances for all values after the
time instance of last conditioning. This is done in such a way
that all the elements of the shortest trajectory are used exactly
once. With PPCA motion models this average difference
amounted to 47.96°, 54.05° and 11.74° at 20%, 50% and
80% motion progress, respectively. Conversely, using ProMP
motion models led to values of 38.21°, 42.96° and 14.65° at
20%, 50% and 80% motion progress. For PPCA and PromP
motion models, the conditioning step takes 6 · 10−5s and
7 · 10−5s, respectively.
E. Evaluation with lifting motions

As mentioned, the lifting data set contains motions in
which subjects lift a box and put it on a rack at knee
height or 50 cm above shoulder height. Lifting a box to a
lower or higher level can be considered the same “task”,
hence a natural choice would be to model it with only
one motion model. However, joint angle trajectories could
vary a lot within this same task. This experiment evaluates
the performance of PPCA and ProMP motion models to
recognize and predict lifting motions. For this evaluation,
the start detection and phase speed estimation module were
turned “off”. The starting point for each demonstration was
simply the first observation and the phase speed value was
manually set equal to one. Apart from a lifting motion model,
the motion model database contained also a squat and stoop
motion model to see if motions were recognized correctly.
The same inter-subject evaluation scheme as discussed earlier
was used.

Classification accuracy was 100 % when using a database
build using PPCA or ProMP’s. The same metric to evaluate
predictions was used. The difference at 20%, 50% and 80%
amounted to 29.71°, 18.69° and 8.62° when using PPCA
motion models and 23.53°, 22.59° and 21.10° when using
ProMP motion models, respectively. At 20 %, the average
difference is considerably lower than the value mentioned
for squat and stoop motions in the previous section (which
can be due to the phase speed being manually set to 1).
Note that the ProMP motion model is not able to accurately
predict the motion or improve its estimates. Moreover, visual
inspection of the results through figures similar to figure 4
indicates that the ProMP motion model is overfitting to the
observed part of a motion.

V. DISCUSSION
The most time-critical step of this framework is the motion

onset detection module which takes 0.09 s to analyze a

window of 30 elements. However, the module does not need
to run with every new observation. The module can run only
whenever 10 new observations are available as was done
here. Moreover, once a motion onset has been detected, this
module can remain inactive until the detected motion has
ended. Nevertheless, more efforts could be made to further
reduce the time complexity of each of the modules to ensure
a timely reaction of a robotic device using this framework.

Second, a range of design choices has been made. The
motion models encoded a complete squatting or stooping
motion although this could be split up in a “going down”
and “coming up” motion. Furthermore, a decision was made
to only include shoulder elevation and hip flexion angles in
the motion models, to assign each motion model an equal
prior and to condition a motion model only every 5 %
progress. All of these decisions influence the performance of
the framework but were manually tuned. Better approaches
to set these variables could lead to increased performance.
Note also that motions were assumed to end first before a
second motion starts. This clear distinction might not always
be present in industrial settings.

Third, choosing PPCA or ProMP to learn motion models
has an impact on the performance of the framework. ProMP
motion models achieve higher prediction performance for
squat and stoop motions but lead to lower prediction per-
formance with lifting motions. However, it should be noted
that PPCA motion models only use 5 degrees of freedom in
the model as opposed to 40 degrees of freedom in the ProMP
models.

Finally, quantitatively evaluating predictions is a tedious
task given the different steps before a prediction can be
generated. Moreover, no metrics exist yet to determine when
a prediction is good enough. Current literature in the field of
Programming by Demonstration often focuses on prediction
the end point of a motion. However, in applications such
as exoskeletons, predicting the entire motion trajectory is of
importance. Additionally, the framework is only able to ac-
curately predict the near future but fails to predict a complete
motion. It is unclear to what extent these predictions would
lead to discomfort if e.g. used to control actuation of the
joints in an exoskeleton.

VI. CONCLUSION

A framework for recognition and prediction of motions
was proposed. Relevant approaches from the literature were
combined and a motion onset detection module was added.
The framework was evaluated on relevant human motion
data. Two different approaches for learning motion models
were evaluated. Good performance was achieved for the mo-
tion onset detection module, phase speed estimation module
and intent estimation module. Performance of the prediction
module is difficult to evaluate quantitatively. Several design
choices were discussed such as setting of priors for motion
models, selecting informative motion segments and joint
angles during modeling phase and tuning of parameters
for groups of subjects. Future work should focus on a
quantitative comparison between this framework and relevant
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Fig. 4. Prediction performance of a PPCA or a ProMP motion model conditioned on data of an ongoing squat motion. The top row shows the shoulder
elevation angle during a motion, the bottom row shows the hip flexion angle. The columns represent the different instances at which the conditioned motion
models are plotted. The blue line indicates the last observation available to the motion model. Thus, everything to the right of it has to be predicted. The
figure also shows the estimated probability of the squat motion as well as the 2 degree-of-freedom (df) NIS values.

methods from the state of the art, further improvements
of prediction performance as well as an integration of this
framework in the controller of a robotic device.
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