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Abstract— This paper proposes a six-DOF task-space admit-
tance controller using the dual quaternion logarithmic mapping,
coupling the translation and rotation impedance in a single
mathematical structure. The controller is designed based on
the energy of the system and the stiffness matrix is build to be
consistent with the task geometry. Moreover, the formulation
is free of topological obstruction and we present a solution for
the unwinding phenomenon based on a switched error function.
The closed-loop system is composed of an inner motion control
loop to ensure the trajectory tracking of the end-effector pose
while an outer loop imposes a desired apparent impedance to
the robot. Experiments executed on a KUKA LWR4+ robot
with a force/torque sensor in the end-effector, together with
statistical analyses, show better performance of the proposed
controller over one of the main six-DOF controllers from the
state of the art. More specifically, our controller presents an
exponential decay in all situations, a task-error closed-loop
behavior closer to the desired one, and it is free from topological
obstruction and unwinding, while presenting a statistically
equivalent control effort.

I. INTRODUCTION

When a robot interacts with the environment, contact
wrenches may appear. For a safe interaction, it is crucial
to ensure a compliant robot behavior, which can be imposed
by controlling its apparent impedance [1], [2]. Considering
the execution of six-degree-of-freedom (DOF) tasks, the end-
effector pose (position and orientation) must be handled, and
the mechanical impedance ought to be defined to have a
stiffness that is physically consistent with the task geometry
to prevent unnatural behavior [2]. Hence, a suitable repre-
sentation of the end-effector rotation related to the contact
moment must be used [1].

In classic approaches, position and orientation are un-
coupled in the control law and the orientation is usually
based on minimal representations, such as the Euler angles,
which have representation singularities [3] and do not lead
to a physically meaningful impedance [1]. Caccavale et al.
propose to use an energy-based argument to develop an
impedance equation, and to use the imaginary part of a unit
quaternion for the orientation displacement, expressing the
mutual orientation between the compliant and the desired
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frames. However, they use different control laws for the po-
sition and orientation and their controller presents a stiffness
that is geometrically consistent only for infinitesimal dis-
placements [1]. Furthermore, their formulation presents the
topological obstruction problem as an unstable equilibrium
point.

Caccavale et al. [2] extend that work [1] to propose a
controller where the stiffness is geometrically consistent not
only for infinitesimal displacements but also for finite ones.
However, the new controller still presents the topological
obstruction problem.

We recently have proposed a coupled six-DOF admittance
controller using the dual quaternion (DQ) logarithm [4].1

Although that controller is simple and the experimental
results have shown its effectiveness, we have not shown
that the closed-loop system is stable. Also, poor choices of
parameters, most notably of the stiffness matrix, may result
in a controller that do not have a physical meaning and is not
geometrically consistent with the task. Another drawback of
that controller is the unwinding phenomenon, where the end-
effector pose may be close to the desired pose and yet rotate
through large angles before reaching the equilibrium [5]. This
current paper addresses all the aforementioned problems.

A. Statement of contributions

The main contribution of this work is a new six-DOF ad-
mittance controller based on the DQ logarithmic mapping of
the task-space displacement that has the following features:

1) the stiffness term is designed to be geometrically
consistent with the six-DOF task, which makes the
controller have a physical meaning;

2) the DQ logarithmic mapping has shown an exponential
decay of the error norm in all situations of free-motion
thanks to the linearity of the stiffness term, which is
not the case if the imaginary part of the unit quaternion
is used to represent the rotation, as in [2];

3) it does not have the problem of topological obstruction,
as in [2], and a solution for the unwinding phenomenon
is proposed based on a switching error function that
maps the two positive invariant sets (PIS) of the space
of unit DQ into a single PIS in the image of the
logarithmic mapping. Moreover, the trajectories of the
closed-loop system always converge to that single PIS
without exhibiting chattering, which would require a
more complex hybrid control strategy [6];

1That work was presented as an extended abstract in the Workshop
Applications of Dual Quaternion Algebra to Robotics, which happened at
ICAR 2019.
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4) the closed-loop system is proven to be passive and thus
stable.

Experiments are done in a KUKA LWR4+ robot and statis-
tical analyses are performed to compare our approach with
the state of the art.

II. MATHEMATICAL BACKGROUND

Dual quaternions have a compact representation, do not
have representational singularities, and their coefficients can
be directly used in the proposed control law. Also, they have
strong algebraic properties and can be used to represent rigid
motions, twists, wrenches, and several geometrical primitives
such as planes, lines, etc. Furthermore, the extraction of
geometric parameters such as translation, rotation axis, and
rotation angle is very simple [7].

Quaternions can be understood as an extension of imagi-
nary numbers, where the three imaginary components obey
ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. The set of quaternions is de-
fined as H ,

{
h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R

}
,

such that, given h ∈ H, the real part is Re (h) , h1
and Im (h) , ı̂h2 + ̂h3 + k̂h4 is the imaginary part.
The subset of pure quaternions Hp ⊂ H contains the
elements whose real part equals zero and the sub-
set of unit quaternions S3 ⊂ H contains only elements
with unit norm. Similarly, the DQ set is defined as
H ,

{
h1 + εh2 : h1,h2 ∈ H, ε 6= 0, ε2 = 0

}
, where ε is

the nilpotent dual unit. The subset of pure DQ, Hp ⊂ H,
contains only elements whose real part equals zero and the
subset of unit DQ, S ⊂ H, contains only elements with unit
norm.

A. Dual quaternion logarithm and its relations

Considering a translation p =
(
ı̂px + ̂py + k̂pz

)
∈ Hp

and a rotation r = (cos (φ/2) + n sin (φ/2)) ∈ S3,
with φ being the rotation angle around the rotation
axis n =

(
ı̂nx + ̂ny + k̂nz

)
∈ S3 ∩Hp, the unit

DQ that combines both p and r can be given
by x = (r + (1/2)εpr) ∈ S, whose logarithm is
Hp 3 logx = (nφ+ εp) /2 [8]. Moreover, the inverse
of x is given by x∗ such as x∗x = xx∗ = 1.

The DQ logarithmic mapping can be used to translate
the spacial difference x̃ between two unit dual quaternions
to the origin [9]. Considering x̃ , x∗xd, where x,xd ∈
S represent poses, x→ xd implies x̃→ 1, which implies
log x̃→ 0.

Letting y , logx, the time derivatives of y and x are
related by means of the matrix Q8 (x) as [10]

vec8 ẋ = Q8 (x) vec6 ẏ, (1)

where vec6 : Hp → R6 and vec8 : H → R8.
Furthermore, there exists E (x) ∈ R6×6 such that

vec6 ζ = E (x) vec6 ẏ, (2)

where ζ = (ω + εv) ∈ Hp, with ω,v ∈ Hp being
the angular and the linear velocities, respectively. More
specifically, since there exists a matrix Q4 (r) ∈ R4×3

such that vec4 ṙ = Q4 (r) d
dt vec3 (nφ/2) [10], where

vec3 : Hp → R3 and vec4 : H→ R4, and ω = 2ṙr∗ [8], we
find by inspection

E (x) ,

[
ĪW (r) 03×3
03×3 2I3×3

]
, (3)

with R4×3 3 W (r) , 2
−
H4 (r∗)Q4 (r) and Ī ,[

03×1 I3×3
]
, where In×n ∈ Rn×n is the identity matrix,

0n×m ∈ Rn×m is a matrix of zeros, and
−
H4 (·) ∈ R4×4 is

an operator that satisfies vec4 (ab) =
−
H4 (b) vec4 a [8].

Theorem 1: The inverse of (3) is given by

E−1 (x) ,

[
1
2Q

+
4 (r)

−
H4 (r) Ī

T
03×3

03×3
1
2I3×3

]
, (4)

where Q+
4 (·) is the left pseudo-inverse of Q4 (·).

Proof: By direct calculation of 2
−
H4 (r∗)Q4 (r), we

find, for all r ∈ S3,

W (r) =

[
01×3
W (r)

]
,

where W (r) ∈ R3×3. Also, since rank
−
H4 (r∗) = 4 and

rankQ4 (r) = 3 for all r ∈ S3 [10], from Corollary 2.5.10
of [11] we have that

rankA+ rankB − 4 ≤ rankAB ≤ min {rankA, rankB}

withA ,
−
H4 (r∗) andB , Q4 (r). Hence, rankW (r) = 3

for all r ∈ S3 and thus rankW (r) = 3. Therefore,
ĪW (r) = W (r) is full rank, which implies that for all
r ∈ S3 the inverse of W (r) exists and is given by

W−1 = (1/2)Q+
4 (r)

−
H4 (r) Ī

T . Indeed, since ĪT ĪW =
W then

W−1W =
1

2
Q+

4 (r)
−
H4 (r) Ī

T
ĪW (r) = I

because
−
H4 (r) =

−
H4 (r∗)

−1 and Q+
4 (r)Q4 (r) = I [10].

Moreover, as W is square and full rank, the left inverse
equals the right inverse—i.e. W−1W = WW−1 = I .
Consequently, E (x) is also full rank and thus invertible.

III. CONTROL STRATEGIES

Given the desired pose xd ∈ S of an end-effector
that interacts with the environment, we consider another
(reference) frame specified by xr ∈ S such that a desired
apparent impedance can be imposed on the pose displace-
ments between xd and xr [1]. The closed-loop system is
composed of a motion controller in the inner loop to control
the end-effector pose according to the reference trajectory
xr (t), while imposing a desired impedance behavior in the
outer loop, as illustrated in Fig. 1.
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Fig. 1: Scheme illustrating the control law composed of an outer loop with
an impedance behavior and an inner loop with a motion controller. The
wrench ς measured by the force/torque sensor at the robot end-effector is
a result of the interaction with the environment.

A. Admittance using the logarithmic mapping (ACLog)
To impose the desired apparent impedance behavior to

the robot, we first define an impedance control law that is
physically meaningful and a stiffness matrix that is consistent
with the task geometry. Similarly to what have been done
in [1], [2], we derive the impedance equation based on the
energy of the system, but using elements of dual quaternion
algebra.

Consider a desired positive definite inertia matrix
Md = diag (I3×3,mI3×3), where m is the mass and
I3×3 ∈ R3×3 is the inertia tensor. The kinetic energy of the
system is given by

K =
1

2

(
vec6 ζ

r

rd

)T
Md vec6 ζ

r

rd
, (5)

where ζr
rd

= ωrrd + εvrrd is the DQ with the angular and
linear velocities from frame Fr to Fd, with respect to frame
Fr.

To obtain the power, we take the time derivative of (5),
which is given by

K̇ =
(

vec6 ζ
r

rd

)T
I# vec6 ς

r
I , (6)

where vec6 ς
r
I , I

#Md vec6 ζ̇
r

rd
is the inertial wrench with

respect to the frame Fr and

I# ,

[
03×3 I3×3
I3×3 03×3

]
.

We also consider a dissipative damping wrench given by
vec6 ς

r
D , I#Bd vec6 ζ

r

rd
, with R6×6 3 Bd > 0.

Now let us give special attention to the stiffness matrix
regarding geometric consistency. Considering a positive def-
inite stiffness matrix K ∈ R6×6, it can be decomposed as
K = UΓUT [12], with Γ = diag (γ1, · · · , γ6) in which γi,
i ∈ {1, . . . , 6} represent the stiffnesses along the principal
axes ui, which are the column vectors of the orthogonal
matrix U ∈ O (6). Therefore, the stiffness matrix can be
specified with respect to a frame with the origin at the
center of stiffness (i.e., the equilibrium point when there is
no deformation), in terms of the stiffness parameters γi and
principal axes ui [2].

Furthermore, the potential energy function of an ideal
stiffness depends only on the relative pose of the two attached
bodies and is port symmetric [2].2 Considering the displace-
ment yr

d
, logxrd, with xrd , x

∗
rxd, the positive definite

2Port symmetry implies that the potential energy is the same whether
seen from Fr or Fd.

matrices Kφ ∈ R3×3 and Kp ∈ R3×3 that represent the
rotational and translational stiffness matrices, respectively,
and that there is no coupling between translation and rotation,
the elastic potential energy is given by

U =
(

vec6 y
r
d

)T
Kd vec6 y

r
d
, (7)

with Kd = 2 diag
(
Kφ,K

′
p

)
, where3

K ′p ,
1

2
Kp +

1

2
Rr
dKpR

rT
d , (8)

with Rr
d = Ī

+

H4 (rrd)
−
H4 (rr∗d ) Ī

T being the rotation matrix
from frame Fr to Fd, which guarantees that the potential
energy is port symmetric.

Deriving (7), the power is given by4

U̇ = 2
(

vec6 ẏ
r

d

)T
Kd vec6 y

r
d

+ 2
(

vec6 y
r
d

)T [03×3 03×3
03×3 Ṙ

r

dKpR
rT
d

]
vec6 y

r
d
. (9)

Using (2) in (9) and the fact that Ṙ
r

d = S (vec3 ω
r
rd)R

r
d

[13], we obtain

U̇ =
(

vec6 ζ
r

rd

)T (
E−T (xrd) 2Kd

+

[
03×3 K ′′p
03×3 03×3

])
vec6 y

r
d
. (10)

with K ′′p = ST (vec3 p
r
rd)R

r
dKpR

rT
d . Substituting (4) in

(10) yields

U̇ =
(

vec6 ζ
r

rd

)T
I# vec6 ς

r
E , (11)

where vec6 ς
r
E , I#K ′d vec6 y

r
d

is the elastic wrench with
respect to Fr, with

K ′d =

[
K ′φ K ′′p
03×3 2K ′p

]
, (12)

where

K ′φ = 2Ī
−
H4 (rr∗d )Q+T

4 (rrd)Kφ. (13)

Hence, the impedance equation is given by
vec6 ς

r
I + vec6 ς

r
D + vec6 ς

r
E = − vec6 ς

r, which leads
to

Mdζ̇
r

rd +Bdζ
r
rd+K

′
dy

r
d = −I#ςr, (14)

where ςr = r∗rςrr is the external wrench acting on the
robot end-effector expressed in relation to Fr. Also,
ζrrd , vec6 ζ

r

rd
, yrd , vec6 y

r
d
, and ςr = vec6 ς

r.
The dual of the impedance is the admittance equation [14],

which is given by

ζ̇
r

rd = M−1
d

(
−I#ςr −Bdζ

r
rd −K

′
dy

r
d

)
. (15)

3This transformation is only needed for translation because log rrd =
− log rdr , but logxrd 6= − logxdr .

4It can be verified by direct calculation that Ṙ
r
dKpR

rT
d is a symmetric

matrix.



Remark 1: The orientation part of the stiffness term in
(14) and (15) (i.e., K ′φ vec3 (nrrdφ/2)) is linear with respect
to the angle φ. As a result, the closed-loop error decays
exponentially, which is not true for other controllers in the
literature, as better discussed in Section IV-E.

Lemma 1: The matrix K ′d in (12) is invertible.
Proof: To prove that K ′d is invertible, it is sufficient

to prove that K ′φ (13) and K ′p (8) are full rank. Since
Kp is positive definite, then Rr

dKpR
rT
d is also positive

definite. Also, the sum of two positive-definite matrices is
also positive-definite, therefore K ′p is positive definite and
thus has full rank [12]. By (13), K ′φ = 4W−TKφ and since
W and Kφ are full rank, so it is K ′φ [11]. Hence, (12) is
full rank and thus invertible.

Theorem 2: Assuming that the inner motion controller
accurately tracks the trajectory generated by the admittance
controller in the outer loop—i.e., the inner loop dynamics
is not taken into account—the closed-loop system given by
(14) is passive, hence stable. Moreover, when in free-motion,
the only equilibrium point is given by yr

d
= 0, which implies

that xr = xd.
Proof: Given the Hamiltonian E = K + U , we use (6),

(11), and (14) to obtain

Ė = K̇ + U̇ = − (ζrrd)
T
I#ςr − (ζrrd)

T
Bdζ

r
rd,

where E is the stored energy and thus positive, −I#ςr is
the system input, ζrrd is the output, and ζrTrdBdζ

r
rd ≥ 0.

Therefore, the system represents a passive mapping from
−I#ςr to ζrrd and is, hence, stable [15]. Moreover, it is
dissipative, with the dissipative power given by ζrTrdBdζ

r
rd.

Furthermore, in the case of free motion (i.e., ςr = 0),
Ė = 0 if and only if ζrrd = 0. Also, because the system is
dissipative, if ςr = 0 and ζrrd = 0, then ζ̇

r

rd = 0. Therefore,
from (14) , we have

K ′dy
r
d = 0, (16)

which implies that yr
d

= 0 is the only equilibrium
point since by Lemma 1 K ′d is invertible. Moreover,
yr
d

= 0 =⇒ xrd = 1 =⇒ xr = xd.
1) Unwinding problem: Although the only equilibrium

point is yr
d

= 0 =⇒ xrd = 1, both xrd = 1 and xrd = −1
represent the same pose [6]. Considering the control laws
(14) and (15), if xrd = −1 the robot will move to reach
xrd = 1, which is undesirable (this unnecessary motion is
called unwinding). To prevent this situation, we propose a
new definition of yr

d
to be used in the impedance/admittance

equation; that is,

yr
d
,

{
logxrd, if ‖xrd − 1‖2 ≤ ‖x

r
d + 1‖2 ,

log (−xrd) , otherwise.
(17)

Therefore, yr
d

will be zero when xrd = 1 and xrd = −1, and
the closed-loop system trajectories will always choose the
smallest spatial distance to the stable points 1 and -1, thus
preventing the unwinding problem.

Theorem 3: The system given by (14) where
yrd = vec6 y

r
d
, with yr

d
defined as in (17) is stable.

Furthermore, it has two stable equilibrium points: xrd and
−xrd.

Proof: Considering yr
d

= loga, by Theorem 2 the sys-
tem is in equilibrium when a = 1. Since according to (17)
a ∈ S can be xrd or −xrd, this means that we have two
equilibrium points, xrd and −xrd, both stable.

B. Inner-loop controller

Since a large class of robots is actuated in velocity, we
use a kinematic controller in the inner loop to track a desired
end-effector trajectory while controlling the desired apparent
impedance by means of the admittance controller in the outer
loop. Using the relations (1) and (2) and their derivatives, the
reference ζ̇

r

rd from (15) is integrated and transformed into
the reference trajectory given by {xr(t), ẋr(t), ẍr(t)}.

To track the trajectory, we first consider the error
x̃ = x∗xr, where x is the current end-effector pose, which
is calculated by using the forward kinematics (we assume a
perfect model), and xr is the reference pose. Thus,

vec8 ˙̃x =
−
H8 (xr)C8 vec8 ẋ+

−
H8 (ẋr)C8 vec8 x, (18)

where
−
H8 (·) ∈ R8×8 satisfies vec8 (ab) =

−
H8 (b) vec8 a

and C8 = diag (1,−1,−1,−1, 1,−1,−1,−1) [7].
Second, we assume that the forward kinematics model

x = f (q), where q ∈ Rn is the robot configuration and
f : Rn → S, and the differential forward kinematics
vec8 ẋ = J (q) q̇, with J (q) ∈ R8×n being the Jacobian
matrix, are available [8].

Finally, considering (1), the time derivative of (18), and
defining the desired closed-loop task error dynamics as

ay , vec8 ¨̃y = −KD vec8 ˙̃y −KP vec8 ỹ, (19)

with R6×6 3KD,KP > 0, the control law is given by

unom , q̈ = N+ (Q8 (x̃)ay + z) , (20)

where z , Q̇8 (x̃) vec6 ˙̃y − Ȧ vec8 x − AJ (q) q̇ − Ṅ q̇,

ỹ , log x̃, N ,
−
H8 (xd)C8J (q), and A ,

−
H8 (ẋd)C8.

Theorem 4: The closed-loop error dynamics of a system
modeled as vec8 ẍ = J̇ (q) q̇ + J (q) q̈ under the control
law (20) is given by

vec6 ¨̃y +KD vec6 ˙̃y +KP vec6 ỹ = 0 (21)

and is asymptotically stable in the Lyapunov sense when
KP ,KD > 0.

Proof: Taking the time-derivative of (18) together with
vec8 ẍ = J̇ (q) q̇ + J (q) q̈ yields

vec8 ¨̃x =
−
H8 (xd)C8

(
J̇ (q) q̇ + J (q) q̈

)
+ 2AJ (q) q̇ +

−
H8 (ẍd)C8 vec8 x. (22)

Since the time derivative of (1) is vec8 ¨̃x = Q̇8 (x̃) vec6 ˙̃y+

Q8 (x̃) vec6 ¨̃y, we replace it in (22) and isolate Nq̈ to obtain

Nq̈ = z +Q8 (x̃) vec6 ¨̃y, (23)



which implies that z and Q8 (x̃) vec6 ¨̃y are in the range
space of N .5 Therefore, replacing (20) in (23) yields
NN+Q8 (x̃)ay + NN+z = z + Q8 (x̃) vec6 ¨̃y. Thus,
Q8 (x̃)ay = Q8 (x̃) vec6 ¨̃y, which implies ay = vec6 ¨̃y
because Q8 (x̃) is full-column rank [10]. Using (19),
we obtain the closed-loop error dynamics given by (21),
which is asymptotically stable in the Lyapunov sense

for the PIS
[(

vec6 ỹ
)T (

vec6 ˙̃y
)T ]T

= 0 ∈ R12 provided
KP ,KD > 0 [16, pp. 229-230].
In case of redundant robots, the joint velocities can be
different from zero even if the system is in equilib-
rium. To prevent that situation, we add a dissipative
term as udis = kdis

(
1n
∥∥vec6 ˙̃y

∥∥− q̇), where 1n is an n-
dimensional column vector of ones and kdis ∈ (0,∞) [17].
Thus, the control law becomes

u = unom + udis. (24)

Remark 2: The solution (17) to the unwinding problem
can also be applied to the kinematic controller (24) by using
ỹ and x̃ instead of yr

d
and xrd, respectively.

IV. SIMULATION AND EXPERIMENTAL RESULTS6

To evaluate our proposed control architecture, simulations
were run in MATLAB using the DQ Robotics library [18].
Experiments were run on a KUKA LWR4+ robot manipula-
tor, equipped with a computer with two Intel Xeon 2.4 Ghz
hexacore processors with 32 Gb of RAM each, and a 64-
bit Anarchy Linux version 1.4 (Linux 4.19.50-rt22-2-rt-lts)
using the C++ version of DQ Robotics. The robot is equipped
with one ATI Mini 45 force/torque sensor at its end-effector,
and it only reacts to wrenches applied at the end-effector.7

Since the KUKA LWR4+ is actuated in position, the
control input (24) is numerically integrated twice, using
Newton’s first-order approximation, to obtain velocity (q̇)
and position signals (q). To prevent reaching the joints
maximum velocities, they were saturated in 0.2 rad/s.

Both simulations and experiments were run with a
sampling time of 5 ms. The matrices in (15) were cho-
sen as Md = 1.5I6×6, Bd = 300I6×6, Kp = 80I3×3, and
Kφ = 80I3×3, whereas in (24) they were chosen as
KP = 25I6×6, KD = 10I6×6, and kdis = 1. In the kine-
matic controller, the pose x(q) is given by the forward
kinematics, which is obtained by using dual quaternion
algebra [8].

A. Simulation of unwinding

We performed a simulation of a free-flying rigid body to
show that, when using (17), the end-effector follows the
smallest path towards the desired pose, whereas without

5Given s∈Rn and G∈Rn×m, if s∈rangeG then GG+s = s. [11]
6See the accompanying video and its extended version at https://

youtu.be/SMXQC6B6DTg.
7If the robot is equipped with torque sensors at the joints, the joint

torques τ may be projected onto the end-effector by using the well-known
relationship τ = JTG (q) vec6 ς , where JG is the geometric Jacobian.
Hence, the admittance controller can be used to encompass compliant
motions with distributed contacts [19].
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xd1
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xd1
xr
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Fig. 2: Simulation of a free-flying rigid body under the unwinding phe-
nomenon (a and c), and path using solution (17) (b and d).

ς

Exerting wrench on the end-effector

No wrench acting on the end-effector

1 2 3

Fig. 3: The experiments are divided in two parts: from 1 to 2, where a
wrench is applied to the end-effector, which makes xr be different from
a constant xd; and from 2 to 3, where the controllers are applied in free-
motion, such that xr returns to xd.

considering (17), the end-effector performs an unnecessary
rotation. Fig. 2 shows the simulation for two different initial
displacements between xr and xd, namely xrd1 and xrd2 .
In the first case, (Figs. 2a-2b), xrd1 = cos (π + 0.1) +

k̂ sin (π + 0.1) is closer to −1 than to 1. Thus, without
using (17), the body executes a rotation of almost 2π to
reach the desired pose (Fig. 2a). When considering (17),
the rotation is much smaller (Fig. 2b). In the second case
(Figs. 2c-2d), xrd2 = −1− ε (1/2) 0.3ı̂ is closer to −1 than
to 1 and consists of a pure translation. In this case, without
the solution for the unwinding problem, the body executes a
rotation of 2π, whereas with the solution it translates while
keeping its orientation.

B. Experimental setup

Consider xr(0) = xd(0) , x0. When an external contact
wrench acts on the end-effector, the reference pose xr
becomes different from xd to ensure the desired apparent
impedance, and the end-effector follows the trajectory given
by xr(t) . This situation is illustrated in the movement from
1 to 2 in Fig. 3. When the contact is released, xr (and
consequently x) returns to the desired pose xd, thanks to
the dynamics determined by the admittance controller, as
illustrated by movement from 2 to 3 in Fig. 3.

Two different experiments were performed: first, an ex-
ternal wrench acts on the end-effector (first part of Fig. 3);
second, the robot performs a free motion (second part of
Fig. 3).

The following analyses were made to compare our pro-
posed controller (15) with one of the main admittance
controllers in the state of art, given by (25), named here
as ACIm (see Appendix A). The inner-loop controller was
the same for both cases and both admittance controllers.

C. Experiments with an external wrench

To apply a wrench at the end-effector, a person pushes the
manipulator, which moves complacently. The translation and
orientation of the current end-effector pose x, the reference
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Fig. 4: Results for the experiment in which a contact wrench acts on the
robot end-effector. The figure shows the position and orientation of current,
reference, and desired poses.

pose xr, and the desired pose xd are shown in Fig. 4, for
both controllers. Being exerted by a human, the wrench is
not exactly the same for the two controllers. However, both
controllers generated a reference trajectory xr different from
xd, as expected, to ensure a compliant behavior according
to the desired impedance, and this trajectory was followed
by the end-effector, thanks to the inner-loop controller.
Moreover, the results showed a control signal u with similar
magnitude for both controllers.

D. Experiments in free-motion

Since the experiment of human-robot interaction with a
contact wrench is limited for comparison, as it is more
susceptible to variations in the interaction wrench, deeper
analyses were made in the second part of the movement,
when there is no wrench acting on the end-effector. As a
way to see if there is a significant difference between the
performance of the two controllers ((15) and (25)), statistical
analyses were performed considering

1) the difference between the desired error dynamics and
the experimental one;

2) the control effort, maximum and mean values of the
control signal, regarding the admittance controller;

3) the control effort, maximum and mean values of the
control signal, regarding the kinematic controller.

Given an initial pose, different desired poses are generated
randomly and each generated pose is the same for each
controller to allow for a fair comparison.

1) Statistical methodology: We used the Wilcoxon Rank
Sum Test [20], which is a nonparametric test used to check
whether two independent samples are from populations with
the same distribution. Also, we use the following concepts:

1) p-value, which is the lowest significance level that
would lead to the rejection of the null-hypothesis.
This occurs if and only if the p-value is smaller than
the significance level α, which is the probability of
occurrence of a false positive;

2) power of the test, which is given by (1− β), where β
is the probability of occurrence of a false negative;

3) minimally interesting effect, which is the smallest dif-
ference between the controllers we are interested in
detecting, regarding each one of the aspects 1, 2, and
3.

TABLE I: Minimally interesting effect, for each comparison.

Error discrepancy Control signal of
outer loop

Control signal of
inner loop

δ∫ ẽ 20 δ∫ ‖ẍr‖ 10 δ∫ ‖u‖ 25
δµẽ 0.01 δµ‖ẍr‖ 0.01 δµ‖u‖ 0.1
δmax(ẽ) 0.02 δmax(‖ẍr‖) 10 δmax(‖u‖) 25

2) Estimation of the appropriate number of samples: Each
controller was initially run 30 times to determine the neces-
sary number os samples based on the variance of the data.
To generate these 30 pairs of initial/final end-effector poses,
one initial robot configuration q0 was arbitrarily chosen
and 30 different configurations were generated by a normal
distribution N (q0, 0.5), and the end-effector poses were
calculated by using the forward kinematics. We calculated
the variance for each run, and chose a significance level of
α = 0.05, a power of 0.85, and a minimally interesting effect
as shown in Table I. With those parameters and the variance,
the number of samples was calculated using the two-sample
t-test power calculation available in R, resulting in a value
lower than 30 for all cases. Hence, the analyses were made
with the 30 samples already collected.

3) Statistical analyses of the error dynamics: We first
analyze the difference between the desired and the actual
error norm decay. More specifically, the error is given by

e , 2 vec6 (logxrd) =
[
(vec3 (nrrdφ

r
d))

T
(vec3 p

r
rd)

T
]T

,
and the desired error dynamics ed(t) is given by the solu-
tion of the equation Mdë+Bdė+Kde = 0, with Kd =
diag(Kφ,Kp). Therefore, given a discrepancy function de-
fined as ẽ (t) ,

∥∥‖ed (t)‖ − ‖e (t)‖
∥∥,8 the first analysis

concerns the total discrepancy, given by
√∫ T

0
ẽ (t)

2
dt, for

T = 35 s, along the trajectory. Fig. 5 shows that the total
discrepancy is very small for the ACLog, but this difference
presents larger values for the ACIm. The same is observed
for the maximum value of the discrepancy function (Fig. 5a)
and its mean value µẽ(t) (Fig. 5a). Moreover, the ACIm
presents outliers in all three cases, indicating a even larger
discrepancy for some cases. The p-values for the Wilcoxon
Rank Sum Test were respectively 1.675×10−12, 2.753×−9,
and 5.998 × 10e−13, all smaller than the significance level
α = 0.05, therefore the null hypothesis that the population
are of the same type is rejected. By the box-plot and the
Wilcoxon Rank Sum Test, we conclude that the ACLog
obtained a better performance. The larger error discrepancy
of the ACIm over the ACLog may be partially explained by
the non-linearity of the former, as described in Section IV-E.
Nonetheless, this difference may not be critical for general
applications.

4) Statistical analyses of the outer-loop control signal:
A similar analysis was done for the control signal of the
admittance controller. We considered the control signal as the
DQ acceleration ẍr, since it represents the trajectory passed
to the inner loop, and is directly related to the ζ̇

r

rd through

8The norm of the error has an exponential decay, but the same is not
always true for each individually coefficient of the error. Therefore, the
discrepancy function is defined as the difference between the error norms
instead of the norm of the difference between the errors.
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the relations (2), (1), xrd = x∗rxd, and their derivatives.

Figs. 6a—6c show the control effort
√∫ T

0
‖ẍr (t)‖2 dt, the

maximum value of the control signal maxt (‖ẍr (t)‖), and
its mean value µ‖ẍr(t)‖, respectively. The hypothesis tests
resulted in p-values equal to 0.328, 0.328, and 0.3817 for
the effort, maximum, and mean values, which are all greater
than the significance level α = 0.05. Therefore, the null-
hypothesis cannot be rejected and there is no significant
statistical difference between the control signals of the two
controllers.

5) Statistical analyses of the inner loop control signal:
The same analyses were made for the control signal of the

kinematic controller, that is, control effort
√∫ T

0
‖u (t)‖2 dt,

maximum value of the control signal maxt (‖u (t)‖), and its
mean value µ‖u(t)‖. The p-values for the Wilcoxon Rank
Sum Test were 0.7412, 0.7191, and 0.8776, for the control
effort, maximum value, and mean value, respectively. Again,
all the values were larger than α, indicating that there is no
significant statistical difference between the control signal
of both controllers. This is expected because the reference
signal for the inner loop is generated by the outer loop,
and the outer loop generates statistically equivalent control
signals for both ACLog and ACIm, as shown in Section IV-
D.4.

6) Analyses of special cases: Besides the statistical anal-
yses with 30 different samples, we also analyzed four special
cases:

1) the closed-loop system under the admittance controller
ACIm starts in the unstable equilibrium set (i.e., when
φ(0) = π);

2) the closed-loop system starts near this unstable equi-
librium point;

3) a situation where the unwinding phenomenon appears
(xrd = −1);

4) a situation where xrd is closer to −1 than to 1.
For case 1, we considered an initial displacement of
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Fig. 7: Closed-loop system during free-motion: time-evolution of the error
norms in the four special cases.

xrd = cos (π/2) + k̂ sin (π/2), which consists of a pure ro-
tation of π around the z axis. Fig. 7a shows that, whereas
the error norm decays when using the ACLog, it remains
unchanged for the ACIm, which is undesirable as the current
pose is different from the desired one. This is due to the
topological obstruction [5], which means that, when the
initial state of the closed-loop system is within the unstable
equilibrium set, the control signal is zero, trapping the
system in that set.9 This situation is common in bimanual
tasks, in which the end-effectors may be symmetric to the
manipulated object, with an initial rotation angle of π rad,
and have to align themselves, such as the tasks of folding
a sheet of paper, closing or opening a bottle, and also in
tasks such as rotating a crank by π rad. Although a small
perturbation around the unstable equilibrium set may remove
the system from it [1], case 2 occurs.

For case 2, we initialize the displacement
near the unstable equilibrium point (i.e.,
xrd = cos (π/2− 0.002) + k̂ sin (π/2− 0.002)). In that
case, the closed-loop error decays when using the ACIm,
but much slower than when the ACLog is used, as shown
in Fig. 7b, because the control signal near the unstable
equilibrium point tend to be very small.

In case 3, the initial pose already equals the desired one,
but the closed-loop system under the control law ACLog
is in the PIS −1. Fig. 7c shows that the error is always
zero, indicating that the end-effector does not move for any
controller. More specifically, the ACLog does not drive the
system towards the PIS 1, which would make the end-effector
move. Therefore, there is no unwinding.

Lastly, we considered xrd = cos (π + 0.5) + k̂ sin (π + 0.5)
to represent case 4. In this case the error norm for both
controllers decay at the same rate, which indicates that the
end-effector is converging to −1 instead of 1, performing
the smallest path, as desired.

Simulation results show that when there is an external
wrench applied at the end-effector under special cases 1–
4, both controllers behave analogously to when they are
in free-motion. More specifically, ACIm suffers from the
problem of topological obstruction and loses performance
near the unstable equilibrium set, whereas ACLog neither
suffers from topological obstruction nor unwinding. Those
simulation results were omitted due to space constraints.

9To verify that behavior, consider (25) with ςr = ζrrd(0) = 0, φ = π,
prrd = 0, and nrrd ∈ Hp ∩ S3 such that Kφ vec3 nrrd = λφ vec3 nrrd
with λφ ∈ (0,∞). Then ζ̇

r
rd = −M−1

d K′′dh
r
d, with K′′dh

r
d =

[(2λφS(vec3 n
r
rd) vec3 n

r
rd)

T 01×3]
T = 06×1. Therefore, ζ̇

r
rd = 0.



E. Qualitative comparison between ACLog and ACIm

Besides the problem of topological obstruction in the
ACIm (25), which is not present in the ACLog (15), another
difference in both formulations is the stiffness term. More
specifically, because the stiffness term in the ACIm is given
by

K ′′dh
r
d = K ′′d

[(
vec3

(
nrrd sin

(
φ
2

)))T
(vec3 p

r
rd)

T

]T
,

the term related to the orientation is nonlinear due to the sine
function, differently from the stiffness term in the ACLog,
which is linear in the orientation angle (see Remark 1).
This non-linearity in the ACIm stiffness generates a non-
exponential error decay, which may explain why the error
discrepancy is larger for the ACIm, as shown in Fig. 5.
Moreover, in case 2 of Section IV-D.6, the error decay is
slower for the ACIm than the ACLog due to the small values
of the control signal close to the unstable equilibrium point.

V. CONCLUSION

This paper proposed a six-DOF coupled task-space ad-
mittance controller using dual quaternion algebra. Based on
the energy of the system and on an appropriate algebraic
representation, the proposed controller has a clear physical
meaning and the stiffness term is consistent with the ge-
ometry of the 6-DOF task for arbitrary rigid motions. The
use of unit DQ prevents the occurrence of representational
singularities and, thanks to the use of the DQ logarithmic
mapping, there are no trigonometric functions in the vector
of motion displacement in the stiffness term, which improves
the closed-loop error dynamics. Theoretical analyses, sim-
ulations, and experimental results show that, whereas one
of the main controllers of the state of the art (ACIm) [2]
suffers from topological obstruction, our switched controller
(ACLog) does not. A thorough statistical analysis showed
that when the ACLog is used, the closed-loop task error
dynamics is closer to the desired specification than when the
ACIm is used, whereas their control efforts are statistically
equivalent.

APPENDIX

A. Admittance control using the imaginary part of the rota-
tion quaternion (ACIm)

Caccavale et al. [2] proposed a similar controller as (14),
but they used the imaginary part of a unit quaternion to
represent the rotational displacement in the stiffness term.
More specifically, their admittance controller is given by10

ζ̇
r

rd = M−1
d

(
−I#ςr −Bdζ

r
rd −K

′′
dh

r
d

)
. (25)

where hrd ,
[
(vec3 Im (rrd))

T
(vec3 p

r
rd)

T
]T

, with
Im (rrd) = nrrd sin (φ/2), and

K ′′d =

[
2E′T (rrd)Kφ

1
2K
′′
p

03×3 K ′p

]
, (26)

10We changed the order of the rotational and translation terms in hrd and
ζrrd to be consistent with our notation.

with E′ (rrd) = Re (rrd) I3×3 − S (vec3 Im (rrd)) and
Re (rrd) = cos (φ/2) [2]. As shown by Caccavale et al. [1],
the closed-loop system has two sets of equilibrium points,
one stable and the other one unstable. The latter consists
of rotations of π rad around a rotation axis parallel to any
eigenvector of Kφ. If the initial state is inside this unstable
set, the system gets trapped. This is the so-called topological
obstruction [5].
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