
Contact Point Estimation along Air Tube Based on Acoustic Sensing of
Pneumatic System Noise

Shinichi Mikogai1, Kazumi B. D. Chandrasiri2, and Kentaro Takemura3

Abstract— Active acoustic sensing is being widely
used in various fields, with applications including
shape estimation of soft pneumatic actuators. In a
pneumatic system, air tubes are frequently adopted,
and thus it is essential to detect failures along the
air path. Although acoustic sensing has been used for
detecting contact and identifying the contact position
along a tube, it has not been applied to pneumatic
systems. We devised an acoustic sensing method to
this end for air tubes in a pneumatic system. As pneu-
matic system noise propagates through the air tube,
we employed this type of noise instead of the con-
ventional method of using a sound source or emitting
vibration with an additional oscillator. We conducted
several experiments that confirm the feasibility of the
proposed method, succeeding to estimate the contact
point on a 16 m air tube.

I. Introduction
Recently, soft pneumatic actuators (SPAs) have been

widely adopted as fingers in robotic hands [1] to safely
and delicately grasp soft objects (e.g., fruits). Such sys-
tems are controlled using air pressure, and their config-
uration consists of an air compressor (or pump) and air
tubes, besides the SPA itself. However, these actuators
present some problems regarding management. When
an air tube is entangled to the joints of a robot, the
actuator does not work correctly, and the system must be
timely recovered by detecting the tube contact position
to prevent malfunction or damage.

Generally, contact sensors are used for determining
the contact position in robot skins, but no suitable
sensor is available for the air tube surface. Therefore,
we propose contact point detection and estimation using
the pneumatic system noise emitted from the pump
of a pneumatic system, as illustrated in Figure 1. In
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Fig. 1. Diagram of sensing technique for contact point estimation
of tube air in pneumatic system

previous works, active acoustic sensing has been used
for contact position estimation. Unlike this approach,
we leverage the propagated pneumatic noise as sensing
variable, omitting the necessity of an additional sound
source.

The rest of this paper is organized as follows. Section
II describes related work and our contribution. Section
III explains the acoustic sensing for contact point esti-
mation, and Section IV reports the results of evaluation
experiments and presents a discussion. Applications of
the method to a robotic gripper and a user interface are
presented in Section V. Finally, we draw conclusions and
provide directions of future work in Section VI.

II. Related work
A. Acoustic sensing

Passive and active acoustic sensing for recognizing
human activity and gestures has been actively studied in
human–computer interaction. In these applications, pas-
sive acoustic sensing uses sounds generated from events
related to human movements. For instance, Harrison
et al. [2] proposed Scratch Input to recognize scratch
patterns using the sound produced when a fingernail
scrapes the surface of an object. Additionally, touch
interaction has been enhanced by distinguishing tapping
styles, such as using the finger or fingernail, based on
acoustic sensing [3][4]. However, passive acoustic sensing
requires a sufficient force or movement to generate a
detectable sound, limiting its applicability.

In contrast, active acoustic sensing relies on a sound
source, and thus it can be applied to interactions in
which a detectable sound is not generated from unreliable
sources. For instance, Ono et al. [5] proposed a method
for detecting touch by attaching a piezoelectric speaker
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and a microphone to an object. The contact force is
determined by analyzing the acoustic spectral response
of the object [6]. Additionally, active acoustic sensing
has been used in wearable devices for sensing human
information such as joint angles [7], contact force [8], and
gripping force [9]. Recently, active acoustic sensing has
been used in SPA, as described in the following section.

B. Active acoustic sensing for SPAs

SPAs are very popular because they provide an al-
ternative to rigid actuation. When a robotic gripper
is constructed using several SPAs, for example, an ob-
ject can be grasped without damaging it [10]. Various
sensing techniques for SPAs have been proposed, and
the corresponding sensors should be flexible and easy
to install. For instance, Zöller et al. [11] developed a
soft pneumatic actuator which a microphone is installed
in, and the contact location has been estimated. The
method is categorized in passive acoustic sensing because
an oscillator is not required as a sound source. On the
other hand, the active acoustic sensing is also used for
a soft pneumatic actuator. Takaki et al. [12] proposed a
method to measure the actuator length based on active
acoustic sensing. This method fulfills some requirements
of sensors for SPAs, and we believe that active acoustic
sensing is suitable for such actuators.

An SPA needs tubes for feeding air to its structures,
and thus sensing should include the tubes. In fact, a tube
entangled in a robot joint should be detected as soon
as possible for correction. Contact sensing for tubes has
been proposed using air pressure waves [13] and ultra-
sonic waves [14]. Likewise, Tejada et al. [15] proposed a
method for contact position estimation based on active
acoustic sensing. Although these methods have enabled
contact sensing on the tube surface via active acoustic
sensing, they have not been implemented in pneumatic
systems. We noticed that a pneumatic system produces
stationary noise. Therefore, we propose a method for
contact position detection and estimation along a tube
by leveraging the pneumatic system noise. Using this
noise omits the necessity of an oscillator, which is usu-
ally employed for active acoustic sensing, thus notably
simplifying the system configuration.

In summary, the contributions of this paper are fol-
lows.

• The key idea is to employ pneumatic noise instead
of an emitter, such as an ultrasonic transducer and
a speaker, for contact-position estimation, allowing
for the air path to be reserved for the SPA.

• The contact position is estimated by data-driven
approach using a convolutional neural networks in-
stead of a theoretical physics model.

• A soft gripper controller based on our proposed
method was implemented for indicating the feasi-
bility of user interfaces for soft robotics.

(a) Pneumatic system noise

(b) Pneumatic noise

Fig. 2. Spectrogram of pneumatic system noise
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Fig. 3. Hardware configuration of the pneumatic system

III. Methodology
A. Pneumatic noise

Pneumatic systems have pumps that emit noise while
feeding air to the tubes. We use this pneumatic noise for
contact point estimation instead of an additional sound
source for active acoustic sensing. Thus, the system con-
figuration is simplified in comparison with active acoustic
sensing based on a speaker. When the pump is activated,
pneumatic system noise is generated, and given that the
air tube is split by intermediate equipment, a contact
microphone can be integrated into the system. Figure
2(a) shows the spectrogram of pneumatic noise, which
occurs on the frequency band up to about 900 Hz.
When the contact microphone is close to the pump, the
acquired signal includes pneumatic and system noise,
which together we call pneumatic system noise. In con-
trast, noise has a spectrum up to 600 Hz when the
contact microphone is located after the system regulator
as shown in Figure 2(b), and we call it pneumatic noise.

B. System configuration
The overall system configuration is shown in Figure

3. The pneumatic system consists of a pump (BTC
IIS; Parker Hannifin, Hollis, NH, USA), a regulator
(ITV1000; SMC, Tokyo, JP), air tubes (TIA07-100;



SMC, Tokyo, JP), and Pneu-Nets [16] as silicon SPA.
The employed tube is made of nylon, and the inner
and outer diameters of the tube are 4.57 and 6.35 mm,
respectively. The tube is relatively hard for inserting the
air pressure, and is therefore not deformed by touch;
the putative contact is of low pressure. Additionally, the
sensing device consists of a contact microphone (CM-
01B, TE Connectivity, Schaffhausen, CH) to acquire the
pneumatic system noise acting as a sound source. The
estimation method is proposed for a general pneumatic
system, which includes soft robotics. Therefore, the air
path has to be reserved without oppilating the terminate
of a tube, and the contact microphone is fixed to the
surface of the air tube with a 3D-printed attachment, and
the interference of environmental sounds is mitigated by
employing the contact microphone. A digital-to-analog
converter (Analog Discovery 2; Digilent, Pullman, WA,
USA) is used to acquire the pneumatic system noise at
sampling frequency 44.1 kHz, and the propagated noise
is analyzed for contact point estimation.

C. Contact point estimation along air tube
When the air tube is touched or pressed by a hand

or an object, the propagated pneumatic system noise
changes its characteristics. We amplify the acquired noise
by 40 dB and calculate the amplitude spectrum using
the short-time Fourier transform (STFT) to obtain a
spectrogram with frameshift length of 50 ms. Figure
4 shows spectrograms generated under two conditions,
namely, with and without contact between the regulator
and SPA. The amplitude spectrum of the propagated
pneumatic system noise notably changes with contact,
and thus the spectrogram can be used to extract fea-
tures for contact estimation. We generate spectrograms
within 1000 ms for training and estimation, and they are
considered as image data of 300 × 20 pixels. These data
are used as input for classification using a convolutional
neural network (CNN) designed based on the VGG16
architecture [17]. The VGG16 network mainly consists
of 5 max-pooling layers and 13 convolutional layers
followed by 3 fully connected layers. Aiming to shorten
the training time, we use a smaller architecture mainly
consisting of 2 max-pooling layers and 4 convolutional
layers followed by 3 fully connected layers, as shown in
Figure 5. In a pneumatic system, air pressure varies to
control the SPA, and thus we consider the influence of
changing air pressure. Figure 6 shows the spectrogram
obtained while varying the air pressure. A striped pattern
appears lightly on the timing of increasing air pressure.
As the spectrum amplitude varies with the increase in
air pressure, we trained the CNN under different air
pressures. For illustration purposes, we defined three
contact points for classification and estimation of seg-
ments as being red, yellow, and green from the closer
to the farther contact position along the tube. After
training, the identification label was indicated on the
display correctly when the contact point was touched, as

(a) Non-contact condition

(b) Contact condition

Fig. 4. Spectrograms from pneumatic noise with and without
contact to air tube
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Fig. 5. Architecture of convolutional neural networks for classifi-
cation

Fig. 6. Spectrogram from pneumatic noise under continuous
variation of air pressure

shown in Figure 7. The spectrogram can be generated
continuously, and the estimation rate is 20 Hz. The
estimation was executed under changing air pressure
conditions, the air pressure was varied from 0 to 62.1
kPa. The contact location can be accurately estimated
even under changing air pressure.

IV. Evaluation experiments
A. Contact point estimation on split air tube

As mentioned above, the pneumatic system for this
study consists of a SPA, a regulator, and a pump.
The air path is split by the regulator, and thus the
recognition rates were evaluated in the experimental
conditions (a) and (b), as shown in Figure 8. In the
experimental condition (a), the contact microphone is
located on the air tube which connects to the pump.
On the other hand, the contact microphone is attached
to the air tube which connects to the soft pneumatic
actuator in the experimental condition (b). The length



Fig. 7. Snapshots of contact point estimation in air tube
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Fig. 8. Experimental conditions for evaluating different sensor
locations

of each air tube is 500 mm. Numbers 1–9 indicate equal
contact position segments along the tube starting from
the pump, and number 0 indicates no contact. Data were
recorded for each condition defined by the identification
numbers over 31 seconds per condition. Moreover, we
varied the air pressure while recording the data for robust
contact point estimation. After recording the data, 600
spectrograms were obtained per contact point and the
non-contact condition as input data for the CNN. We
employed fivefold cross-validation for evaluation. Figure
9 shows the recognition rate for each class using confusion
matrices for air tubes before and after the regulator. The
mean recognition rates were approximately 97% in both
tube positions. Hence, we confirmed that the recognition
rate is not affected by the regulator. If we apply the
proposed method to the failure detection of a pneumatic
system, the method can detect the contact points on the
whole air tube.

B. Features and machine-learning techniques for estima-
tion

CNN is well-known as a powerful tool for classification,
and we employed the CNN-based estimation for indicat-
ing a high recognition rate. However, a trade-off exists
between the recognition rates and number of datasets,
and annotation work is relatively difficult to apply in a
CNN-based approach. Therefore, we tried to estimate the
contact position using neural networks (NN) as a simple
machine-learning technique. The experimental condition
and dataset are similar to those described in Section

(a) Pump – Regulator (b) Regulator – SPA

Fig. 9. Confusion matrices of contact estimation for two measure-
ment areas

Fig. 10. Confusion matrix of contact estimation using neural
networks

IV-A and presented in Figure 9(b). The spectrogram is
used as a 2D feature to input in the proposed method.
The power spectrum is used as a 1D feature for the NN.
Figure 10 shows the recognition rate of 10 classes, and the
average of the recognition rate is 86.4%, which is lower
than that of CNN; however, we confirmed the feasibility
of using NN. Therefore, we can select a machine-learning
technique for the estimation, depending on applications.

C. Evaluation of varying air pressure
We further evaluated the tolerance of estimation to

varying air pressure. In this experiment, we attached
the contact microphone to the air tube connected to
the SPA. The identification of contact points as well as
data acquisition was the same as the condition of Figure



(a) Various air pressures for
training

(b) One air pressure for training

Fig. 11. Confusion matrices of contact estimation for varying air
pressure

9(a) from the experiment mentioned in Section IV-A.
We increased the air pressure from 0 to 41.3 kPa at
intervals of 10.3 kPa during data collection. Then, 600
spectrograms were obtained per contact condition.

Again, we evaluated the recognition rate by fivefold
cross-validation, obtaining the confusion matrix shown
in Figure 11(a). The recognition rate is around 99%, con-
firming that the proposed estimation is accurate under
various air pressures. In contrast, Figure 11(b) shows the
recognition rate when the CNN was trained with data at
0 kPa to classify data at 41.3 kPa for comparison. The
mean recognition rate is around 20%, and the contact
point is not identified correctly. Therefore, the proposed
method trained with data at varying air pressure pro-
vides robust classification.

D. Evaluation of air tube length

After verifying the feasibility of the proposed estima-
tion method for different sensor locations and several
air pressures, we evaluated its performance according to
the air tube length. Specifically, we changed the length
between the regulator and SPA at 5 m increments and
obtained the corresponding recognition rates at contact
positions of 500 mm intervals. The air tube length from
the pump to the regulator was 500 mm, and the contact
microphone was attached to the air tube located next
to the SPA. In addition, we fixed the air pressure to
10.3 kPa. Again, data collection and evaluation were
performed as in the previous experiments.

Figure 12 shows the recognition rate per evaluated
length, confirming no drop in estimation accuracy. As the
longest air tube available was 16 m as shown in Figure 13,
the recognition rate for this tube length is also indicated.
The mean recognition rates are approximately 98% in
all lengths, confirming that pneumatic noise is suitably
propagated through long air tubes for accurate contact
estimation. The dominant frequency in the pneumatic
noise is distributed in a low-frequency band under 600
Hz, and thus the vibration can be propagated on long
distances.

Fig. 12. Recognition rates of contact estimation for several air
tube lengths

Fig. 13. Photograph of experiment using 16 m air tube

E. Evaluation of contact position resolution
In our current implementation, we employed a classi-

fier to estimate contact points at distinguishable intervals
of 500 mm. Although this resolution is suitable for
detecting an error in a pneumatic system, the proposed
method may be used in various applications such as
user interfaces and contact sensing with shock absorber.
Considering the requirements for these applications, we
evaluated higher resolution of 25 mm and calculated the
recognition rate on a 500 mm air tube. Data collection
and evaluation were the same as those in the previous
experiments, with air pressure being fixed at 10.3 kPa.

Figure 14 shows the recognition rate for this exper-
iment using confusion matrices. The mean recognition
rates for resolution of 25 mm is approximately 93%,
showing an accuracy reduction for the 25 mm resolution.
Still, the recognition rate remains above 90%, confirming
the ability of the proposed method to handle a high
density of contact points.

We employed a CNN classifier for estimating contact
points given the difficulty to formulate analytical solu-
tions based on pneumatic system noise as a sound source.
Therefore, we required to collect a large dataset for CNN
training and label the acquired

V. Robotic gripper based on SPA and user
interface via air tube

SPAs are being increasingly adopted in various ar-
eas, such as robotic grippers and user interfaces. We
implemented a robotic gripper featuring the proposed
method. Three Pneu-Nets [16] were integrated using



Fig. 14. Confusion matrices of estimation for short intervals
between distinguishable contact points

(a) Soft pneumatic gripper
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Fig. 15. Robotic gripper constructed using three Pneu-Nets

a 3D-printed attachment (Mojo; Stratasys, Commerce
Way, MN, USA) for constructing the robotic gripper, as
shown in Figure 15. Additionally, the air paths are split
for feeding air to all the fingers simultaneously.

A. Evaluation of multiple air channels
Although we conducted various experiments for con-

firming the feasibility of the proposed method, we did
not evaluate the use of multiple air channels. For the
gripper, we evaluated the recognition rate at each air
path. In the robotic gripper, the length of each air path
is 500 mm. We set contact points in intervals of 50
mm and attached a single contact microphone to the air
tube before splitting. Data collection was conducted as in
the previous experiments, obtaining 600 data segments
per path. Figure 16 shows the recognition rates using
confusion matrices for paths A, B, and C, which are
96%, 94%, and 95%, respectively. Thus, we confirmed
that the proposed method is accurate for a pneumatic
system with multiple air channels.

B. Robotic gripper operation using air tube contact
An application of the proposed method is detecting

failure in a pneumatic system. In addition, user interfaces

can be achieved based on tube contact. Thus, we imple-
mented a user interface to control the robotic gripper to
illustrate the proposed method. Contact point estimation
was used for touch sensing on the interface to control
the opening and closing of the gripper. We prepared six
grasping objects such as ”masking tape”, ”box cutter”,
”flathead screwdriver”, ”remote controller”, ”wallet”,
and ”squeaky hammer”. The maximum weight of the
grasp objects is 245 g. In the current implementation,
the air is fed when the contact is detected on the air
tube. Figure 17 shows snapshots of this gripper control
example, which was successfully executed.

VI. Discussion and limitation
A. Measurable length of air tube

The frequency of pneumatic noise is lower than that of
ultrasonic sound, and the attenuation of the propagated
vibration is low when the pneumatic noise is used for
sensing. Therefore, the proposed method would espe-
cially work well for a long air tube. In the experiment,
the contact position was estimated using a 16-m air tube.
Although the length is not a limitation, we confirmed
high performance of the method when using a long tube.

B. Annotation work for training data
We employed a CNN classifier for estimating contact

points, given the difficulty in formulating analytical solu-
tions based on pneumatic system noise as a sound source.
This requires a large dataset for CNN training and label-
ing of the acquired data; this process is time-consuming,
and represents a limitation of the proposed method. Nev-
ertheless, labeling of data obtained through pneumatic
system noise is less burdensome than that for image-
based object recognition, in which the labelling includes
the manual data entry of segmented area. Therefore,
we believe that automatic data collection of pneumatic
system noise can be achieved using a robotic system. A
robotics system can systematically obtain labelled data
from different contact points by using actuators, thus
replacing the manual contact for data collection adopted
in this study.

C. System configuration
The system configuration includes a pneumatic pump

without an air tank, and the implementation of a user
interface via the air tube. Pneumatic noise was cre-
ated continuously in our system, with uninterrupted
estimation. In contrast, if the system is built using an
intermediate air tank or a CO2 cylinder, the pneumatic
noise will be reduced. Figure 18 shows the spectrograms
with and without contact with the tube, when the CO2
cylinder is used instead of the pump. As expected, pneu-
matic noise was not observed, and thus, the system does
not function as an active sensing scheme. However, the
vibration generated by contact could be observed clearly.
Therefore, it might be used for passive contact sensing.
Our current implementation is limited in the sense that



(a) “A” (b) “B” (c) “C”

Fig. 16. Confusion matrices for contact estimation on every path

Fig. 17. Snapshots of robotic gripper control by touching air tube
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Fig. 18. Spectrograms with and without contact to air tube when
CO2 cylinder is employed instead of the pump

a system configuration must be selected based on the
application. However, it is possible to spread the system
applicability by integrating active and passive sensing.

Additionally, we considered the use of a pneumatic
valve because it can be used for actively controlling
the actuator. The microphone can be adjusted to any
location on the tube, and the optimal position where
the pneumatic noise can be received can be selected.
Therefore, we confirmed that the method works without
any problems when a pneumatic valve is implemented
onto our system.

D. Material and size of the air tube
The soft tube is not always more suitable than the

hard tube because the vibration propagation on hard
material is greater. Additionally, we confirmed that the

proposed method does not work when the tube is too
small. Tejada et al. [15] reported that a large tube is
more suitable than a small tube but their reasoning
was completely different from ours. In their method
that functions according to shape-changing, the sound
is propagated inside the tube. However, the pneumatic
noise is propagated mainly on the surface of the tube,
and the variance of the propagated vibration depends on
the contact area.
E. Applications

The contact-point estimation can be used to detect
failures according to an obstruction in pneumatic sys-
tems. The proposed method can be widely applied to
general pneumatic systems, and the estimation could
detect instances of air leaks. Additionally, we imple-
mented the user interfaces via the air tube for the robotic
gripper, and confirmed the method’s high potential in
soft robotics. In our implementation, it is not necessary
to change the system configuration, and the sensor at-
tachment to the tube surface is optional. Therefore, the
method is versatile and has a wide-spread applicability.

VII. Conclusion
We propose a method for estimation of contact point

position along an air tube using pneumatic system noise.
We evaluated the feasibility of the proposed method
under varying experimental conditions including sensor
position, air pressure, and air tube length. Also when we
used the 16 m air tube as the longest tube, we could con-
firm that the recognition rate of estimating contact posi-
tion was approximately 98%. Moreover, we implemented



a robotic gripper using three Pneu-Nets actuators as
fingers, confirming that the proposed method provides
accurate contact point estimation in a pneumatic system
with various air paths. As acquiring and labeling the
dataset for CNN training were time-consuming tasks
in this study, we will consider a robotic system for
automated data collection and labeling as future work.
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