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Abstract— For in-hand manipulation, estimation of the object
pose inside the hand is one of the important functions to
manipulate objects to the target pose. Since in-hand manip-
ulation tends to cause occlusions by the hand or the object
itself, image information only is not sufficient for in-hand object
pose estimation. Multiple modalities can be used in this case,
the advantage is that other modalities can compensate for
occlusion, noise, and sensor malfunctions. Even though deciding
the utilization rate of a modality (referred to as reliability value)
corresponding to the situations is important, the manual design
of such models is difficult, especially for various situations. In
this paper, we propose deep gated multi-modal learning, which
self-determines the reliability value of each modality through
end-to-end deep learning. For the experiments, an RGB camera
and a GelSight tactile sensor were attached to the parallel
gripper of the Sawyer robot, and the object pose changes were
estimated during grasping. A total of 15 objects were used in
the experiments. In the proposed model, the reliability values
of the modalities were determined according to the noise level
and failure of each modality, and it was confirmed that the
pose change was estimated even for unknown objects. 1

I. INTRODUCTION

Robots are expected to not only work in factories, but also
in home situations where they are expected to grasp objects
in various environments. Reaching the target grasp pose in
a direct motion is difficult when there are obstacles in the
environment. In such situations, the robots need to grasp the
object once and then place it on a surface such as a desk to
grasp it again, in order to achieve the target pose. Another
way is to rearrange the object inside the hand, also known
as in-hand manipulation. Though commonly seen as the
easier solution, placing and re-grasping an object generally
takes more time and steps compared to in-hand manipulation.
Furthermore, surfaces to place the object on do not always
exist in environments, therefore this method can not always
be used. For robot manipulation tasks, particularly in-hand
manipulation, object pose estimation within a robotic hand
is one of the important functions to manipulate objects to
the target pose accurately [1], [2].

Although many researchers have developed object pose
estimation based on image information only, images alone
are not sufficient for in-hand manipulation, where the object
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Fig. 1: An illustration of in-hand object pose estimation with image
and tactile data through our proposed network, deep gated
multi-modal learning, which can decide the reliability value
for each modality.

is likely occluded from the camera by the object or the hand
itself (e.g. the gripper hides the object). Furthermore, large
objects can go outside the field of vision of the camera
or hide parts of themselves as depicted in Fig. 1. One of
the approaches to address these challenges is to combine
multiple sensor modalities. One of the advantages of using
multiple modalities is that other modalities can compensate
and provide information from different perspectives, even
in the case of occlusions, noise, or malfunctions in some
of the other modalities. In such situations, it is necessary
to predict how much each modality should be considered.
For the remainder of this article, we refer to the utilization
ratio of each modality as its reliability value. However, it is
difficult to manually design a model that can decide a given
modality’s reliability value, especially if the model has to
deal with a wide variety of environments and situations.

In this paper, we propose a method that we call deep
gated multi-modal learning (DGML), which uses end-to-end
deep learning to predict and determine the reliability value
of each modality by DGML itself (See Fig. 1 and Fig. 2). By
virtue of end-to-end deep learning, this method is capable of
generalizing to unknown objects without assuming a known
3D model when doing in-hand pose estimation.

The rest of this paper is organized as follows. The con-
tribution is explained in Section II and works related to
this paper are described in Section III, while our proposed
method is detailed in Section IV. Section V outlines our
experiment setup, and evaluation settings with the results are
presented in Section VI. Finally, future work and conclusions
are explained in Section VII.
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II. CONTRIBUTIONS

The target of our method was to estimate the object pose
changes inside the hand using image and tactile sensors
as robustly as possible, despite occlusions, noise, sensor
malfunctions and other possible obstructions. Note that we
track changes (plural) since we estimate a time-series of
how the object pose evolves per time step. What should
also be noted is that our method estimates in-hand relative
object pose changes during grasping instead of the absolute
object pose with respect to the robot base, meaning that we
estimate how much the object moves within the hand after
the robot first makes contact with the object (when it has
grasped). This new method is able to dynamically determine
the reliability value and scale each modality’s contribution
appropriately instead of focusing on only one modality or
the other.

The main contributions of this article are as follows:
• Proposed a new approach in which the network itself

determines the reliability of each modality dynamically
and uses that reliability value to scale each modality’s
contribution.

• Proposed a new approach in which end-to-end learning
combines image and tactile data without assuming a 3D
model to estimate the pose changes of unseen objects
which is robust against occlusions, noise, and sensor
malfunctions.

• Investigated details of noise, malfunction, and occlusion
behavior in sensor information unique to the robot field.

III. RELATED WORKS

A. Object Pose Estimation with Depth and Image Data

Object pose estimation is a well-studied problem in
computer vision and is important for robotic tasks. Many
researchers have particularly been developing methods using
depth data (point cloud) or RGB-D data [3]–[5]. Classical
approaches with depth data are mainly based on point cloud
matching methods such as iterative closest point (ICP) [6].
These methods can achieve high accuracy, but since these
methods require 3D models of the objects in advance, they
cannot be used for unknown objects.

Recently, deep learning has become an active research area
and especially the computer vision field has achieved suc-
cess. Image based object pose estimation methods through
combination of deep learning with model-based approaches
have been studied [7]–[9]. The convergence to the final result
of ICP heavily relies on the choice of the initial position, but
the convergence error can be suppressed by giving a proper
initial position through deep-learning methods. However,
these methods still require a 3D model, thus adapting to
unknown objects remains challenging. Some state-of-the-arts
pose estimation methods that do not require 3D models have
been realized through deep learning [10]–[13].

B. Tactile-based Object Pose Estimation

As described in Section III-A, most of the existing pose
estimation methods use images and depth information only.

During in-hand object manipulation, the object is occluded
from the camera and depth sensor by the hand or the object
itself (See Fig. 1 as examples of occlusions).

Tactile sensors are gaining attention since they can ob-
serve the contact state even with occlusions [14]–[17]. The
majority of these sensors fall in either of the following two
categories:

1) Single-axis multi-touch sensors, which can only sense
normal force [18]–[21]

2) Three-axis single-touch sensors [22]
Two of the few exceptions are the uSkin [15] and the
GelSight [17], [23] which are multi-touch sensors that can
measure shear force as well as normal force. The com-
mercialized uSkin sensor [15] utilizes embedded magnets
inside a silicone rubber and measures the deformation of
the silicone during contact by monitoring changes in the
magnetic fields. Using this method, it is able to measure
both normal as well as shear force per sensor unit. The
prototype supports 16 different points of contact [14]. Instead
of magnets, GelSight [16], [24] is an optical-based tactile
sensor, which uses a camera to capture and measure the
deformation of the attached elastomer during contact with
a surface.

There are some works using tactile sensors for pose
estimation such as [25], but a 3D model of the object is
required a priori. It is challenging to estimate the pose of
an object using only the tactile information of the grasped
part since there is little information from only a single
grasp. Therefore, some work has been done in which tactile
and image information are combined [24], [26], [27], and
the effectiveness of this fusion was demonstrated in object
grasping tasks. Some of the works performed object pose
estimation through model based approaches using known 3D
models [28]–[30]. In these studies, a 3D model of the object
is often required to estimate absolute object pose because it
is assumed that the pose of the object is unknown when
the object is grasped. However, we expect that even the
methods that work on unknown objects described in III-
A can be improved by using additional tactile information
for dealing with occlusions. The object pose can namely be
estimated before the robot grasps an object, through methods
without a 3D model of the object such as [10]–[12] earlier
mentioned in III-A. If we then keep track of the object pose
changes using a tactile sensor after the robot first makes
contact (when it has grasped the object and thus occludes
it), we will be able to track the absolute object pose without
using a given 3D model. In addition, our hypothesis is that
tactile sensors improve the object pose estimation accuracy
compared to using images only (Details of our experiment
results to test this are described in Table II in section VI-B).

C. Attention Based Learning

A variety of attention methods has been studied. Regarding
the division of attention to each modality, the majority of
these methods fall in either of the following three categories,
except for our proposed method:

1) Equal attention to all modalities: Each modality is fed
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Fig. 2: The proposed network architecture for deep gated multi-modal learning. Inputs are sequences of image and tactile data, and the
output is a time-series of object pose changes. The gate values (α and β) represent the reliability of each module, and the values
are acquired by the network itself. After training, a low gate value results in a low reliability value, whereas a high gate value
results in a high reliability value.

into their respective networks to extract features, and the ob-
tained features are simply combined to estimate information
such as grasping point and motion. For example, the combi-
nation of image and tactile data described in Section III-B,
motion and image [31], force and image [32], language and
image [33], and, image and sound [34].

2) Attention within modalities: Only the important parts of
the given modalities are used. Within each modality, the part
to focus on is extracted by the network itself. For example,
in the case of images, the pixel of interest is used instead of
the whole image [35], [36]. This case does not necessarily
use multiple modalities as it can also be done when using a
single modality.

3) Cancellation of irrelevant modalities: Only the impor-
tant modalities are used while other modalities are ignored.
The network decides which modality should be used from
all modalities. For example, choosing to utilize language or
images according to the situation [37].

The new approach we developed does not fit in these
categories, since it determines the contribution ratio of each
modality dynamically and uses that reliability value to scale
each modality’s contribution.

IV. DEEP GATED MULTI-MODAL LEARNING

We propose a method that we call deep gated multi-modal
learning (DGML) for in-hand object pose changes estimation
with image and tactile information based on end-to-end deep
learning. The DGML estimates a time-series of relative
in-hand object pose changes during grasping instead of
the absolute object pose. Figure 2 shows the concept of the
proposed network model. The main concept of DGML is
that the network itself dynamically decides how much each
modality it should be relied on, in other words to decide
the reliability value per modality. We aimed to design a
network with a structure that is as simple as possible, but still
sufficient to show the effectiveness of the deep gated multi-
modal unit. Increased complexity of the network architecture
will most likely improve the accuracy, but the concept of
reliability values can be used in the same way. The details
of the network structure will be described in section V-D.

DGML is composed of three components for in-hand pose
estimation:
• Feature extraction unit to extract features from image

and tactile data
• Deep gated multi-modal unit for calculation and appli-

cation of a reliability value for each modality
• Object pose changes estimation unit to estimate object

pose changes using time-series input information
For training and inference of the network, a sequence of
image and tactile data are the input, and the output is a
sequence of object pose changes. A training dataset D =
{(input1, output1), ..., (inputT , outputT )}n consists of n
sequence with T steps.

As a feature extraction unit, convolutional neural networks
(CNNs) are used to calculate image features ximg(t) and
tactile features xtac(t) at step t from image input Iimg(t)
and tactile input Itac(t), respectively.

Then, the reliability value α for image in step t is given
from Gate as:

α(t) = Gate(ximg(t), xtac(t))

= Sigmoid(FCimg(ximg(t)) +

FCtac(xtac(t))) (1)

where FCimg and FCtac are fully connected (FC) layers to
reduce the number of dimensions, and Sigmoid is used as
activation function for the gate. The reliability values α(t)
for image and β(t) for tactile data are conditioned to sum
up to 1:

α(t) + β(t) = 1 (2)

α(t) and β(t) are one-dimensional scalars. The gate deter-
mines each modality’s reliability values from all modalities’
information through equations (1) and (2).

The extracted feature vectors for each modality, ximg(t)
and xtac(t), are then scaled by multiplying them with their
respective reliability values, giving us the scaled feature
vectors himg(t) and htac(t) for time step t:

himg(t) = α(t) · ximg(t)
htac(t) = β(t) · xtac(t) (3)
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Since a sigmoid function is used and the total sum of
reliability values is 1, the reliability values are continuous
values from 0 to 1, instead of being only 0 or 1. The lower
the reliability, the smaller the contribution to the output.
On the other hand, the greater the reliability, the greater
the output contribution. In addition, if the reliability value
becomes 0, the modality is completely ignored. Therefore,
it is not necessary to manually determine which sensor to
enable/disable in advance, because the network will auto-
matically ignore them if they are not helpful. Note that
the reliability values are not absolute, but relative. We
chose to use relative values to learn the correlation between
multiple modalities. This however means that the method
simply assigns a higher reliability value to a given modality,
if said modality performs better than any other modality.
Thus, all modalities could be noisy or under-performing, but
our method will still assign reliability values by comparing
the modalities’ performances with each other. The downside
of this is that the robot will continue to operate even if none
of the sensor modalities are performing well. Rather, it tries
to make the best out of the situation and attempts to focus on
only the good modalities of the data it has. Detecting when
the robot should give up trying or improving the quality of
the data however is out of scope of our work.

As the object pose changes estimation unit, long short-
term memory (LSTM) with its output connected to FC is
used. Input of the LSTM is a sequence of himg(t) and
htac(t), whereas the output of FC is O′(t) = ∆p′(t)∈Rd,
which is the estimated sequence of object pose changes from
the LSTM.

Since our proposed method works without 3D models
given in advance, we estimate the relative object pose
(object pose changes) during grasping instead of the
absolute pose. Thus, object pose change ∆p(t) is the current
object pose at step t with respect to the initial object pose
at step 1 when the robot first grasps the object and makes
contact. When t = 1, O(1) = ∆p(1) = 0.

The loss function L is minimized as follows:

min
ξ

1

mT

m∑
i=1

T∑
t=1

L(O(t), O′(t)) (4)

where ξ are the parameters to be trained, m(5 n) is the
number of sequences for mini-batch training, and O(t)∈Rd

is the teaching signal.
There is no teaching signal for the reliability values α

and β because these are calculated by the network itself
to minimize the output error by equation (4). Then, the
reliability values are multiplied by each modality in equation
(3).

V. EXPERIMENTAL SETUP

The purpose of the experiments is to verify DGML in
situations with occlusion, noise, and sensor malfunctions.

We note that our values of the hyper-parameters provided
in this section are tuned by random search.

Fig. 3: Setup used in our experiments. Custom printed end-effector
with both a tactile skin sensor and a web camera. The
Sawyer robot let the gripper move to the minus x-axis, y-
axis direction and rotation of yaw.

Fig. 4: Trained objects (red) and unknown objects (blue)

A. Hardware Setup

1) Tactile sensor: The GelSight tactile sensor we du-
plicate from article [16], [24] is an optical-based tactile
sensor, which captures a 640 × 480 image by a camera,
which can then be used to calculate the 3D model and the
applied normal and shear force in the x, y, and z axes in
Newton. However, instead of using the 3D model and the
force in Newton we directly use the captured raw image
from the GelSight (See Fig. 1). Because the silicone layer
from the sensor’s container tears when an excess amount
of force is applied, we applied baby powder on this layer
to reduce friction between the surface and the grasped
object. The reason why we chose GelSight is that it is a
multi-touch sensor that can measure both normal and shear
forces as opposed to other types of tactile sensors described
in section III-B. It is also relatively cheap and simple to
reproduce.

2) Gripper: We developed a gripper to grasp objects
shown in Fig. 3. This gripper is a parallel gripper which has
two fingers driven by a servo motor (Dynamixel XM430-
W350-R). A GelSight tactile sensor is attached to one
fingertip, and the other fingertip has a sponge. A camera
(BUFFALO BSW200MBK) is mounted at the center of the
gripper.

3) Sawyer: To perform our experiments, we use a Sawyer
7-DOF robotic arm with the gripper as end-effector (See
Fig. 3). The Sawyer, GelSight sensor, gripper, and camera are
connected to a PC running Ubuntu 16.04 with ROS Kinetic.
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TABLE I: Network Design1

Layer In Out Filter
size

Activation
function

Fe
at

ur
e

E
xt

ra
ct

io
n

U
ni

t

Im
ag

e
fe

at
ur

e
ex

tr
ac

tio
n 1st conv. 1 32 (3,3) ReLu

2nd conv. 32 32 (3,3) ReLu
Ave. pooling 32 32 (4,4) -

3rd conv. 32 32 (3,3) ReLu
4th conv. 32 32 (3,3) ReLu

Ave. pooling 32 32 (2,2) -
5th conv. 32 32 (3,3) ReLu
6th conv. 32 32 (3,3) ReLu

Ave. pooling 32 32 (2,2) -

Ta
ct

ile
fe

at
ur

e
ex

tr
ac

tio
n 1st conv. 1 32 (3,3) ReLu

2nd conv. 32 32 (3,3) ReLu
Ave. pooling 32 32 (4,4) -

3rd conv. 32 32 (3,3) ReLu
4th conv. 32 32 (3,3) ReLu

Ave. pooling 32 32 (2,2) -
5th conv. 32 32 (3,3) ReLu
6th conv. 32 32 (3,3) ReLu

Ave. pooling 32 32 (2,2) -

D
G

M
U

ni
t

G
at

e

1st FCimg 1120 1 - -
(ximg(t))

1st FCtac 2240 1 - -
(xtac(t))

2nd Gate 2 1 - sigmoid
(α(t))

O
PC

E
U

ni
t

L
ST

M 3360 sigmoid
LSTM (himg(t), 170 - &

htac(t)) tanh

FC

1st Output 170 3 - -
(O′(t))

1 In and out are the number of channels for image and tactile data, and these are the
number of neurons for the gate, LSTM, and FC. Batch normalization is applied after
the n-th convolution. Stride and padding for the n-th convolution in image and tactile
are (1, 1). Input is composed of an 80×120 RGB image for Iimg(t) and a 160×120
image for tactile data for Itac(t), and the output is a sequence of estimated object
pose changes, O′(t) = ∆p′(t) = (∆x′(t),∆y′(t),∆θ′(t)).

B. Objects

For the target objects, we have prepared 15 objects with
various size and shape (See Fig. 4). 11 of these objects are
used for training, while the remaining 4 were used to evaluate
our trained network as unknown objects.

C. Data Collection

Figure 3 shows one of the initial positions of the robot
from which it starts to manipulate the object for data collec-
tion (The attached video shows more examples of the initial
positions). A table is placed in front of the robot and the
object is fixed on the table with double-sided tape. After
the robot grasps the object, the gripper posture, image, and
tactile data are recorded while the robot slides the object in
its hand. Since we use a parallel gripper popular in robotics,
the object pose is limited to translation in the xy plane and
rotating θ around the z axis. We estimate the three DoF object
pose changes given the coordinate system of the hand, which
is depicted in Fig. 3.

The ground truth object pose change ∆p(t) is calcu-
lated from homogeneous transformation matrix O1

Ot
H =

R
O1
H
−1R

Ot
H , where R

Ot
H is the pose of the object at time

t with respect to the robot. RO1
H is the pose of the object

when the robot first grasps the object and makes contact.
The pose of the object is the inverse transformation of the
posture of the gripper, since the object is stationary and only
the gripper moves along the object. So R

Ot
H = R

Gt
H
−1; this

can be calculated easily through forward kinematics.

Since we define object poses with respect to the gripper
pose at initial grasp contact, what we really estimate are the
relative object pose changes between the pose at the current
step t and initial step 1 when the robot first makes contact
with the object (when it has grasped). Thus, the object pose
change is not the absolute pose of the object. However, the
absolute pose can be calculated if the robot can estimate
the absolute object pose before grasping as described in
section III-B. Thus, the teaching signal and ground truth O(t)
are defined as follows:

O(t) = ∆p(t) = (∆x(t),∆y(t),∆θ(t)) (5)

We decided to collect the teaching signals/ground truth
though means of forward kinematics and by fixing the object
to the table because this results in a higher accuracy as
compared to other non-fixed methods such as AR marker
tracking. We also prepared the movement patterns including
both translational and rotational motions, and collect data
for each object (The attached video shows examples of the
motions). In order to prevent learning features from the
background as the robot moves, we covered the background
and desk in green clothes. The maximum movement in
translation was about 30 mm and for rotation the maximum
was about 40 degrees. For small objects like tapes, cups,
scale, and wrench, only rotational movement was performed
(See Fig. 4). For each object, the number of motions for
translation, rotation, and a combination of both of them are
10, 10, and 12, respectively. Each grasp posture is different in
each motion. Note that even if the gripper does not occlude
the object, the object can still be out of view of the camera if
the object is large, and thus “occlude“ itself. For the trained
objects in Fig. 4, 6 out of 10 translations, 6 out of 10
rotations, and 8 out of 12 combined motions are used for
training, and the remaining sets are used for evaluation.

Images, tactile, and object poses were acquired at 30 Hz,
and the dataset used for training was re-sampled to 15 Hz.
The captured images were converted to gray-scale because
the object pose is independent of the color of the objects.
One motion of the training dataset has a length of about 150
steps, and each step is composed of an 80×120 pixels image,
a 160 × 120 pixels tactile image, and a 3 DoF object pose
change, (∆x(t),∆y(t),∆θ(t)).

D. Network Design

The architecture of our network model is composed of
two CNNs, gate, and LSTM with FC to perform DGML as
shown in Fig. 2 and as described in Section IV. We used
Chainer [38]–[40] as deep learning library for implementa-
tion. More details on the network parameters are shown in
Table I. For training, we used the Huber loss as loss function
L. Due to computer resources, we reset the history of LSTM
every 20 steps. All our network experiments were conducted
on a machine equipped with 256 GB RAM, an Intel Xeon
E5-2667v4 CPU, and eight Tesla P100-PCIE with 12GB
resulting in about 24 to 48 hours of training time.
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Fig. 5: Learning curves and gate values of DGML. Note that the
values of α and β are the average from all training data
during training per epoch. The values of α and β are not
fixed but are rather calculated from the gate through the
image and tactile features at step t and are inferred during
run-time.

VI. RESULTS

A. Learning Curve of DGML

As a comparison with DGML, we prepared several net-
works that use only images, only tactile data, and both
images and tactile data with a simple connection, which is
without using a gate. The number of layers and parameters
of CNN and LSTM are the same in all comparison models.
However, if one modality is disconnected, the number of
input neurons of LSTM changes, since the number of input
neurons is the sum of the number of neurons connected
per modality. In addition, a simple connection without using
a gate is the same as DGML with fixed reliability values
α(t) = 1 & β(t) = 1.

Figure 5 shows the learning curves and average reliability
values of all sequences in DGML. Note that the reliability
values of α(t) and β(t) are not constants but change dy-
namically depending on the input Iimg(t) & Itac(t). As for
the reliability values of α(t) for image and β(t) for tactile,
α(t) is greater than β(t) at first, but it can be seen that
the reliability value for tactile features gradually increases.
This means that the network gradually relies more on tactile
data as opposed to images, which is most likely because
the images become less reliable due to occlusions. As one
of the characteristics of DGML, the computational epoch
until convergence is the fastest of all models since training
progresses from easy-to-train modalities.

TABLE II: Inference error of in-hand object pose changes estima-
tion

Cond. Model Known obj. Unknown obj.
Trans.
[mm]

Rot.
[deg]

Trans.
[mm]

Rot.
[deg]

Normal

Image 2.10 1.45 3.25 5.47
Tactile 5.99×10−1 1.43 1.09 2.04

w/o gate 7.48×10−1 8.38×10−1 1.01 1.70
DGML 6.89×10−1 8.41×10−1 1.11 1.63

w/o
image

w/o gate 3.00 8.13 3.01 9.00
DGML 1.04 2.35 1.39 3.33

w/o
tactile

w/o gate 5.17 1.35×101 5.02 1.44×101

DGML 3.49 1.19×101 3.87 1.39×101

TABLE III: The average relative value of α for images and β for
tactile data

Cond. Known obj. Unknown obj.
α:image β:tactile α:image β:tactile

with image & tactile 0.261 0.739 0.272 0.728
w/o image 0.069 0.931 0.072 0.928
w/o tactile 0.994 0.006 0.994 0.006

Note that the size for Itac is twice the size of that of
Iimg , but this is merely a result of the parameter search
we performed, and it gave us the best performance of the
network used in this study. As a result, the size of xtac(t) is
twice as large as ximg(t) for the same reason. The reliability
values of α(t) and β(t) can change depending on these
parameters. However, the focus of this work is to improve the
performance by introducing DGML with reliability values,
so comparing the accuracy when the same input size per
modality is used is out of the scope of this work.

B. Inference Result of Object Pose

Table II shows the object pose changes inference accuracy
during in-hand manipulation. The accuracy for translation
and rotation is the average difference between the ground
truth (∆x(t),∆y(t),∆θ(t)) and inferred object pose change
(∆x′(t),∆y′(t),∆θ′(t)) at each time step and is calculated
according to equation (6):

acctrans =
1

nT

n∑
i=1

T∑
t=1

(|∆x(t)−∆x′(t)|+

|∆y(t)−∆y′(t)|)

accrot =
1

nT

n∑
i=1

T∑
t=1

(|∆θ(t)−∆θ′(t)|) (6)

The ground truth is the object pose change as calculated
during the data collection (see section V-C and equation (5)).
We evaluated the models under normal conditions, but also
by substituting either image or tactile input with random
noise. Under these conditions, we compared four different
models: a model using only image input, a model using only
tactile input, a model using both image and tactile (but no
gate), and the proposed model.

From the results under normal conditions, the results are
always better when tactile information is included as we
already expected in section III-B. In addition, the models
including tactile information can predict correctly for both
known objects and unknown objects.

From the results with one of the modalities muted in
Table II, we can see that the performance of the proposed
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Fig. 6: Histogram of image reliability values α with different
magnitudes of noise applied to the tactile input data

DGML is the best. When the image input is absent, the α
value is much smaller than the β value (See Table III). On
the other hand, in the case of absence of tactile input, the
β value becomes almost 0. This is because the gate decides
that the reliability value of a modality should be reduced if
that modality’s input is absent, resulting in near ignorance
of said modality (See Table III). Even though the training
dataset does not include data where a modality is completely
absent, the gate of DGML can still deal with these situations.

C. Gate Values under Noise

In this section, we discuss the change of reliability values
when noise is applied to the input of a modality. The noise is
applied to tactile input since in-hand pose changes estimation
relies more on tactile information than image information
according to section VI-B. Figure 6 shows a histogram of the
reliability value α for images when the network infers from
the original dataset, but with noise added to the tactile input
Itac(t). The noise is generated from a normal distribution
with different variances σ2: 400, 450, and 500 (See Fig. 6).

From Fig. 6, it can be seen that the reliability value for
images increases as the noise to the tactile input increases.
The gate can correctly recognize the noise applied to the
tactile input data. The strength of using DGML is that
DGML helps to understand the network behavior through
the reliability values of the gate because the gate represents
how much each modality should be used. Furthermore, if a
sensor is broken, the reliability value for that sensor is always
close to 0, thus DGML can recognize sensor failures.

D. Reliability Values of Objects

In this section, we discuss the change of the reliability
values of objects due to object shape, size, and occlusions.
We visualize the reliability value of images, α, by creating a
histogram with all the inferred values of α through untrained
motions with both known and unknown objects (See Fig. 7).
Most of the reliability values of α are smaller than 0.5, which
indicates that the network relies more on the tactile features
in those cases. From the comparison between only using
images and only using tactile data in section VI-B, we draw
the hypothesis that the reliability values for images are low
because the method that uses only tactile data has higher
accuracy than the one using only images (See Table II),
which seems to indicate that tactile data is more useful for
this task.

The objects are depicted on the most frequently occurring
α on the histogram in Fig. 7. The ratio between the object
sizes in the image and the actual object sizes is the same.
Since objects with α values between 0 and 0.2 such as tapes,

Fig. 7: Histogram of image reliability values α. The objects sur-
rounded by a red color frame are known objects, whereas
the objects surrounded by a blue color frame are unknown
objects. The size of the object in each image is the same
as the ratio of the actual size.

wrenches, and cups tend to provide rich tactile information
due to their unique shape and/or surface, the network relies
more on tactile information for these objects. Conversely,
image information is reliable for objects with no surface
irregularities and are displayed with α values between 0.4
and 0.6 such as boxes and cans, for which tactile features
are difficult to observe from. Although some objects have
no tactile features on the surface, the reliability of the image
is low when such an object is large and thus occludes itself
or doesn’t fit within the camera view, as opposed to small
objects (See top row of Fig. 7). For example, the wood,
the plastic coffee bottle, and the orange triangle are small,
thus their movements can be observed from images. In
contrast, large objects such as the mustard and green plastic
bottles create occlusions, which reduces the reliability of
image information, therefore the network uses more tactile
information. Therefore, we can say that the proposed method
is effective in determining the reliability value of each
modality according to the object shape, size, and occlusions.

VII. CONCLUSION

In this paper, we proposed a method for in-hand object
pose changes estimation using image and tactile data, while
also predicting the modalities’ reliability values, called deep
gated multi-modal learning (DGML). The proposed method
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can estimate not only known object pose changes but also
unknown object pose changes during grasping, since it
doesn’t need 3D models. Moreover, the modalities’ reliability
values can be changed dynamically and automatically by the
network depending on situations such as sensor failure and
different magnitudes of noise. Visualization of reliability val-
ues helps to understand the network behavior such as which
modality should be utilized and how much. Furthermore,
by using the proposed method, computation efficiency for
training has been improved.

For future work, we will develop a system of in-hand
object manipulation to integrate the object pose estimator.
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