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Abstract— We present the Evolved Grasping Analysis Dataset
(EGAD), comprising over 2000 generated objects aimed at
training and evaluating robotic visual grasp detection algo-
rithms. The objects in EGAD are geometrically diverse, filling
a space ranging from simple to complex shapes and from easy
to difficult to grasp, compared to other datasets for robotic
grasping, which may be limited in size or contain only a
small number of object classes. Additionally, we specify a
set of 49 diverse 3D-printable evaluation objects to encourage
reproducible testing of robotic grasping systems across a range
of complexity and difficulty. The dataset, code and videos can
be found at https://dougsm.github.io/egad/

I. INTRODUCTION

The ability to grasp previously unseen objects is a fun-
damental trait for robots that need to interact with their
environments, and underpins many higher-level manipulation
capabilities. The last few years have seen a large amount of
work focused on visual grasp detection, greatly driven by
advanced deep learning techniques. As such, the need for
diverse object dataset specific to robotic grasping is crucial
for both training and evaluating these systems.

The need for large and diverse datasets for training robust
deep learning algorithms that generalise well to unknown
conditions is widely recognised. However, many current
visual grasp detection algorithms are trained on either very
small, manually collected datasets, or datasets of objects
adapted from other domains with a small number of semantic
classes, which may not be representative of the type of
challenges faced in robotic grasping.

Furthermore, there currently exists very little standard-
isation between the physical objects used for evaluating
robotic grasping algorithms. While some physical object
datasets do exist, they have not been widely adopted by the
robotic grasping community. Instead, researchers tend to test
their algorithms using sets of random “household” objects,
relying largely on the author’s intuition as to the diversity
and complexity of the test set, making effective comparison
difficult. For evaluation, results are typically reported as the
average grasp success rate over an object set, however this
does not allow for easy identification of system limitations or
performance of a function of object difficulty or complexity.

To address these issues, we use evolutionary algorithms to
generate a dataset of objects that is diverse in the space of
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Fig. 1. 49 3D-printed evaluation objects chosen from over 2000 diverse
objects in EGAD. The objects provide a range of objects from simple to
complex geometry (left to right), and easy to difficult graspability (bottom to
top), allowing for improved and reproducible evaluation of robotic grasping
algorithms.

shape complexity, grasp difficulty and geometric similarity,
aimed specifically at training and evaluating visual grasp de-
tection algorithms. The Evolved Grasping Analysis Dataset
(EGAD) contains over 2000 generated objects, including
a specified 3D-printable subset of 49 evaluation objects
(Fig. 1). As such, EGAD can be used for training and
evaluating robotic grasping algorithms in both simulation and
the real world. To summarise our contributions, in this paper
we:

• Use evolutionary algorithms to create EGAD, a large
dataset of over 2000 diverse objects, which fill a space
of both shape complexity and grasp difficulty;

• Release EGAD as both 3D mesh files and in the
commonly used Dex-Net [1] database format, with over
1 million precomputed grasp poses and the ability to
easily create vision-based datasets for training grasp
prediction networks;

• Specify a set of 49 diverse objects from the dataset
which can be used as a reproducible, real-world testing
suite, along with guidelines for reproducing objects and
reporting results; and

• Perform robotic experiments using a state-of-the-art
grasp detection algorithm as a template for using the
evaluation set, and use the results to gain insights for
future improvement of the algorithm.
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II. RELATED WORK

A. Visual Grasp Detection

Within the larger scope of robotic manipulation, visual
grasp detection algorithms are used to predict the poses of
stable robotic grasps on previously unseen objects using
visual information. Many different approaches to visual
grasp detection have been proposed in recent years, with
the majority using deep learning techniques [1–22]. Such
approaches provide two key challenges. The first is the
availability of diverse and high quality data, which is widely
recognised as an important prerequisite for training robust
and generalisable models [23, 24]. The second is providing
standardised, reproducible and comparable evaluation meth-
ods and metrics.

In other domains, large, curated datasets exist to accelerate
research and standardise evaluation, e.g. ImageNet [25] or
COCO [26] for computer vision. However, the physical na-
ture of robotics makes benchmarking and comparing work in
robotic manipulation particularly difficult, with results easily
influenced by robotic hardware and choice of evaluation
objects. Mahler et al. [27] provide a set of best practices for
robotic grasping to ensure fair evaluation and comparison
across all system aspects. In this work we focus specifically
on the aspect of object sets.

B. Object Datasets for Robotic Manipulation

The YCB object set [28] comprises a set of common
household objects along with high-resolution 3D scans,
aimed at evaluating a number of common robotic grasping
and high-level robotic manipulation tasks. However, the
physical nature of this dataset means it is limited in size
and object diversity from a training point of view.

On the other hand, virtual datasets for robotic grasping
have been created by repurposing existing databases of 3D
object meshes. Goldfeder et al. [29] created the Columbia
Grasping Dataset using 1800 3D meshes from the Princeton
Shape Benchmark (PSB) [30]. Similarly, Mahler et al. [1]
compiled the Dex-Net dataset from 1500 3D meshes from
3DNet [31] and the KIT object database [32]. Such datasets
have proven vital for training machine-learning based grasp
detection algorithms. However, the underlying object sets are
derived from 3D object recognition tasks which contain only
small number of semantic classes (10 classes for 3DNet),
resulting in low geometric diversity within the data sets.

Rather than rely on realistic object models, Tobin et al.
[11] show that simulated objects, generated by randomly
combining convex shape primitives, can be successfully used
to train a grasping algorithm that generalises to real-world
objects. We build on this promising result by creating a
dataset of objects that are geometrically diverse and provide
a gradient of grasping difficultly and shape complexity.

The Cornell Grasping Dataset [33] provides 885 top-down
RGB-D images of single objects placed on a table, hand-
labelled with positive and negative grasp examples repre-
sented by a rectangle. Due to the manual collection process,
the dataset is limited in size, containing only approximately

TABLE I
SURVEY OF USE OF EVALUATION DATASETS IN VISUAL GRASP

DETECTION LITERATURE. THE MAJORITY OF WORK USES

IRREPRODUCIBLE “HOUSEHOLD” OBJECTS FOR EVALUATION.

Reference Evaluation Objects

Lenz et al. [2], 2015 C-R -
Redmon et al. [3], 2015 C--
Pinto et al. [4], 2016 R
Johns et al. [5], 2016 SR
Wang et al. [6], 2016 C-R
Mahler et al. [1], 2017 D---C-R
Pas et al. [7], 2017 R
Mahler et al. [8], 2017 R
Kumra et al. [9], 2017 C--
Viereck et al. [10], 2017 SR
Tobin et al. [11], 2017 Y----
Zhou et al. [12], 2018 C--
Depierre et al. [13], 2018 JC-R
Chu et al. [14], 2018 C-R
Morrison et al. [15], 2018 DAY----
Morrison et al. [17], 2019 DAYJC-R
Morrison et al. [16], 2019 D-----R
Mahler et al. [18], 2019 R
Satish et al. [19], 2019 D----SR
Asif et al. [20], 2019 C-R
Yu et al. [21], 2019 R
Liang et al. [22], 2019 Y---R

Legend (See text for full details)

Random (“Household”) Objects R
Objects in Simulation S-
Cornell Grasping Dataset (IoU Metric) [33] C--
Jacquard SGTs [13] J---
YCB Objects (or subset) [28] Y----
APB Objects (or subset) [34] A-----
Dex-Net Adversarial Objects [1] D------

8000 labelled grasps. The Jacquard dataset [13] overcomes
this limitation by using a simulator to generate 54k images
of 11k objects, labelled with over 1 million grasps using
the rectangle representation. However, as these datasets are
image-based and don’t provide 3D models of objects, they
are limited to training for top-down, tabletop grasping.

C. Evaluation for Robotic Grasping

Previous work has specified datasets of physical objects
and protocols for manipulation, with notable examples being
the YCB dataset [28] and ACRV picking benchmark [34].
However, despite the prevalence of these datasets, Table I
clearly shows that neither has become commonplace for
evaluating visual grasp detection systems. Instead, authors
often opt to test on sets of random “household” objects,
making comparing results between different algorithms very
difficult, as the decision of which items are included is
ultimately left to the intuition of the researchers.

Mahler et al. [1] proposed a set of eight adversarial objects
with complex geometry which allow testing of algorithms
under difficult conditions. The objects are easily reproducible



Fig. 2. Overview of our method for creating EGAD. We define a discretised search space for objects in terms of shape complexity and grasp difficulty.
Shapes are encoded using 3D CPPNs, which are queried to generate a voxel grid and processed into a 3D mesh. We compute the shape complexity and
grasp difficulty metrics to place the object in a cell of the search space. Only the most geometrically diverse objects are kept at each cell. At each iteration,
objects are are sampled from the search space and evolved to create new objects, until the search space is full of diverse objects.

with 3D-printing, removing the need to purchase matching
objects. As such, the objects are also scalable relative to
gripper size, allowing for fairer comparisons between robotic
systems. We expand on this idea by specifying a larger and
more diverse set of reproducible objects of varying com-
plexity and difficulty that can be used to comprehensively
evaluate a visual grasp detection algorithm.

A common method of evaluation is an offline metric using
the Cornell Grasping Dataset or Jacquard dataset. A pre-
dicted grasp is successful if it has an intersection-over-union
(IoU) of greater than 25% with and is within 30◦ of a positive
labelled grasp when using the grasping rectangle representa-
tion [33]. While reproducible, this metric is susceptible to a
large number of false-positive and false-negative detections
due to the sparse labelling of the dataset, and low require-
ments for considering a match. The Jacquard dataset [13]
provides a cloud-based physics simulator where results are
evaluated using Simulated Grasping Trials (SGTs), however
this relies on a closed-source evaluation server. Recent work
has also shown that offline performance on either dataset
may not be representative of real-world performance due to
the domain shift from the dataset to reality [17].

III. DATASET GENERATION

To facilitate both learning and evaluation for robotic grasp-
ing, we aim to provide a large set of objects that is diverse in
terms of geometry, shape complexity and grasp difficulty. For
this we use evolutionary algorithms. Compared to gradient
based methods, the benefit of evolutionary algorithms in this
case is the ability to handle complex, non-linear objectives
in a high-dimensional design space. Evolutionary algorithms
have been widely used to generate complex 3D designs, with
applications ranging from art [35] to engineering [36] and
robotics [37, 38].

To summarise our approach, we first define a discretised
two-dimensional search space for objects in terms of shape
complexity and grasp difficulty. Objects are encoded using
Compositional Pattern Producing Networks (CPPNs) [39,
40], from which 3D meshes are obtained. We compute
the grasp difficulty and shape complexity of each mesh to
assign it to a cell in the search space. New objects are
compared to all other objects in the search space, and only
the most geometrically diverse objects in each cell are kept.
The dataset is evolved using the MAP-Elites algorithm [38],

where at each iteration, objects are sampled from the search
space and evolved into new, different shapes. This process
is repeated until the search space is full of diverse objects.
An overview of our approach is shown in Fig. 2, and the
following sections describe each component in more detail.

A. Search Space

Our search space is defined by two features, shape com-
plexity and grasp difficulty, and is discretised uniformly
into cells. Given an object represented by a 3D triangular
mesh, it is assigned to a cell in the search space using the
shape complexity and grasp difficulty metrics defined below.
A maximum number of objects is allowed at each cell. If
the number of objects in a cell exceeds the maximum, the
objects are compared to all other objects in the search space,
and the least geometrically diverse object (as per the metric
below) is removed. This ensures that the search space is filled
uniformly and with geometrically diverse objects.

1) Shape Complexity: To compute a measure of shape
complexity, we use the measure of morphological complexity
from [41, 42]. The measure is based in information theory
and has been shown to also correlate well with humans’
intuition about shape complexity [43]. To compute the com-
plexity metric for a given mesh, we first compute the angular
deficit Φj for each vertex j:

Φj = 2π −
∑
i

φi (1)

where φi is the internal angle of each triangle i where it
meets vertex j. The deficit values are placed in a histogram
over the range [−2π, 2π) with bin width ∆, which is
normalised as a probability density function (PDF) such
that each bin b contains a probability p(Φb). The shape
complexity is then equivalent to the entropy of the PDF:

H = −
∑
b

p(Φb) log p(Φb) (2)

2) Grasp Difficulty: To estimate a single scalar feature
representing grasping difficulty per object, we use the 75th

percentile method described by Wang et al. [44]. Using the
Dex-Net analytical grasp planner [1], we sample a number
of antipodal grasps on each object and compute the robust
Ferrari-Canny quality metric for each. The grasp difficulty



feature is then obtained by taking the 75th percentile grasp
quality of all sampled grasps.

3) Geometric Diversity: In order to compute the geo-
metric diversity of an object, we first define a metric of
geometric similarity between any two objects. We use the
Topology Matching metric based on Multiresolutional Reeb
Graphs (MRGs) proposed by Hilaga et al. [45], which
provides a shape similarity score sim ∈ [0, 1] between
two object meshes that is robust to translation, rotation,
scale and changes in mesh connectivity (e.g. through mesh
resampling or decimation). This method has been shown to
work effectively with arbitrary meshes and CAD models [45,
46]. We define the distance dist between two object meshes
m1 and m2 as the inverse of similarity:

dist(m1,m2) = 1− sim(m1,m2) (3)

Similar to [47], we then define the diversity of a mesh
ρ(m) as the mean distance to the k most similar meshes to
m in the whole search space:

ρ(x) =
1

k

k∑
i=1

dist(m,mi) (4)

B. Evolutionary Algorithm

1) Shape Encoding: We use Compositional Pattern Pro-
ducing Networks (CPPNs) [39, 40] to encode and generate
3D shapes. Each CPPN is an arbitrary neural network, which
allows for a compact, functional representation of a 3D
volume obtained by querying the network at discrete spatial
coordinates (e.g. x, y and z), and thresholding the scalar
output to create a voxel grid. The voxel grid is converted to
a triangle mesh representation using marching cubes [48] and
smoothing is applied. In the case that multiple disconnected
meshes are generated, we keep only the largest volume mesh.
Small features that would prevent 3D-printing are removed
by performing a morphological opening.

CPPNs are evolved by the principles of NeuroEvolution
of Augmenting Topologies (NEAT) [49] using the NEAT-
Python library [50]. At each evolution, the CPPN architecture
is mutated by randomly adding and removing network nodes
and connections, and changing weights, biases and activation
functions. CPPNs also undergo crossover, where components
of two CPPN architectures are combined into a new CPPN.
As such, the CPPNs and their resulting shapes build up
complexity and diversity over time.

2) Search Algorithm: Many traditional evolutionary al-
gorithms are very effective optimisation algorithms, but are
susceptible finding local minima and not exploring the search
space. To overcome this, we use the Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) algorithm [38].

Our implementation of MAP-Elites begins with a popula-
tion of randomly initialised CPPNs, which are queried and
placed into their respective cells of the search space. At each
subsequent iteration, a population is randomly sampled from
the search space to undergo evolution and produce a new
population of objects, which are subsequently evaluated and
assigned to cells in the search space. If any cell contains

TABLE II
PARAMETERS USED FOR DATASET GENERATION

Parameter Value

Population Size 100
Evolution Steps 200,000 (2000 steps × population 100)
Search Space Size 25×25
Max Objects per Cell 4
Probability of Crossover 0.5
Difficulty Feature Range [0.0005, 0.004]
Complexity Feature Range [1, 5]
Histogram Bin Width (∆) 4π/512

Sampled Grasps per Object 100
Diversity neighbours (k) 10
CPPN Resolution 25× 25× 25

CPPN Inputs x, y, z,
√
x2 + y2,

√
x2 + z2,√

y2 + z2,
√
x2 + y2 + z2

x, y, z ∈ [−1, 1]

CPPN Activation Functions sin, sigmoid, gaussian, idenity

more than the maximum number of individuals, the lowest
performing (least geometrically diverse) occupants are itera-
tively removed until all cells contain at most the maximum
number of occupants. The diversity of all occupants is
recalculated after each removal.

IV. EVOLVED GRASPING ANALYSIS DATASET

Using the method described in Section III and the parame-
ters defined in Table II, we generate a set of objects which we
call the Evolved Grasping Analysis Dataset (EGAD). In this
section we present the dataset with analysis of the objects
and a comparison to other existing grasping datasets.

A. Overview

In total EGAD contains 2331 objects which uniformly fill
the search space. While the total size of the search space
is 2500 (25 × 25 cells × 4 objects per cell), some cells at
the extremes were unable to be filled, e.g. objects that are
in the simplest geometric column but difficult to grasp, or
geometrically complex and easy to grasp. The coverage of
EGAD is thus 93% of the search space. The distribution of
objects and their diversity is shown in Fig. 3.

The diversity of the objects ranges from 0.07 to 0.27, with
a mean of 0.19. Unsurprisingly, the lowest diversity objects
largely found in the area of simple shape complexity, and
the object diversity increases with higher shape complexity.

Many of the objects exhibit symmetry about multiples
axes, which is a result of the CPPN inputs which provide
distances to the x, y and z planes and origin in addition to
the x, y and z positions. This is advantageous, as it makes
the grasping difficulty of the objects less sensitive to changes
in orientation.

B. Dataset Comparison

For comparison, we also embed the YCB and Dex-Net
2.0 object datasets into the same search space (Fig. 3), with
a quantitative comparison also given in Table III. Due to
the small number of objects, the YCB has only very sparse



Fig. 3. The distribution and diversity of EGAD in our object search space, compared to the object models found in Dex-Net 2.0 and YCB object sets.
NB: For YCB objects, only models with an associated laser scan were used. High resolution versions are available on the project webpage.

TABLE III
COMPARISON OF EGAD WITH OTHER GRASPING DATASETS

Diversity

Dataset Size Coverage Min Max Mean

YCB [28] 78 0.03 0.11 0.65 0.19
Dex-Net 2.0 [1] 1497 0.37 0.03 0.26 0.11
EGAD 2331 0.93 0.07 0.27 0.19

Fig. 4. Examples from the Dex-Net compatible database of EGAD objects
with pre-computed grasps. Colours indicate the robust grasp quality metric,
ranging from red to green.

coverage of the object search space, filling 3% of all cells.
The small number of objects leads to an overall high object
diversity mean of 0.19. However, this is still equivalent to
EGAD which contains orders of magnitude more objects.

The Dex-Net 2.0 object dataset is much larger than YCB,
but still only covers 37% of the space, and also exhibits much
lower geometric diversity than EGAD on average. This is
due to the small number of semantic classes of the object
models, many of which are geometrically simple shapes (e.g.
the container, fruits and foods categories from 3DNet), and
similarly, the more complex parts of the space are largely
filled by very similar instances of aircraft and chairs.

C. Mesh Dataset

We release EGAD in two formats. The first format is a
set of 3D triangular meshes, which can be easily adapted
to many robotics tasks such as training grasping algorithms
or simulation. Compared to other available mesh datasets
(e.g. [30, 31]), EGAD provides a number of benefits, in
particular: (1) the dataset has been created specifically for
robotic manipulation, so it provides a diverse set of objects
which are applicable to the task, rather than meshes repre-
senting only a small number of semantic classes; (2) objects
are labelled according to their complexity and difficulty,
and provide a range in both of these dimensions; (3) the
generated meshes are watertight, cohesive (i.e. no missing
faces, inverted normals, etc.) and don’t contain unnecessary
internal detail, making direct usage in simulation, render-
ing/visualisation and reality easier (not the case for other
datasets [1, 31]); and (4) meshes have been post-processed to
allow 3D-printing, making sim-to-real comparisons possible.

To aid adoption of EGAD, the second format leverages
the widely used Dex-Net project [1] to create a Dex-Net
compatible database of EGAD objects. Each object is pre-
labelled with up to 100 antipodal grasps labelled with a
robust grasp-quality metric (Fig. 4). The Dex-Net project
provides extra functionality, including the ability to label ob-
jects with other grasp sampling strategies or quality metrics,
add custom grippers, and generate large image datasets for
training visual grasp detection algorithms.

In addition, we provide code to enable the creation of cus-
tom object datasets for specific applications. While EGAD
is specific to antipodal grasps, other gripper types, e.g.
multifinger, can be accommodated by replacing the grasp
sampling method in Section III-A.2. Similarly, domain or
task specific object distributions can be created by imposing
geometric constraints on the CPPN output.
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Fig. 5. 75th percentile grasp quality (Section III-A.2) as a function of object
size as a fraction of maximum gripper width for three objects, highlighting
the importance of object size when reproducing grasping experiments.
Shaded area shows 65-85th percentile.

D. Evaluation Set

As robotic grasping is an inherently physical problem,
we believe that testing on a physical robotic system is the
most important step in evaluating such systems. As such, we
designate a set of 49 objects from EGAD as an evaluation
set, which can be 3D-printed and used to test real-world
robotic systems (Fig. 1). 49 objects serves as a practical
number for manual robotic testing while also providing a
good spread of difficulty and complexity. The objects were
chosen in an automated manner from the full dataset such
that they are uniformly representative of the object space in
a 7× 7 grid while minimising geometric similarity between
objects within the evaluation set. For evaluation, these objects
provide a gradient of complexity and difficulty, which can
identify the strengths and limitations of visual grasp detection
algorithms better than collections of commonly used items.

Objects are labelled alphanumerically according to their
position in a 7×7 grid (Fig. 1) with A0 being the simplest and
easiest object, and G6 being the most complex and difficult.

E. Effect of Object Size

One factor that effects the grasping difficulty of an object
is its size relative to the gripper. Fig. 5 illustrates this on
three different objects from EGAD, highlighting that the size
effects the overall graspability in a nonlinear way depending
on the object’s geometry. Compared to 3D printing, a down-
side to datasets comprising commercial products is that grasp
performance may be largely effected by the choice of robotic
gripper, making isolation and direct comparison of the visual
grasp prediction aspect more difficult.

To ensure uniformity in our results and to aid in re-
producibility, we use a constant scaling factor throughout
all of our experiments, for both dataset generation and in
producing the physical evaluation set. Each object is scaled
such that its minimum bounding box dimension is no more
than 80% of the gripper width. Along with our dataset,
we also release a Python script for re-scaling the provided
meshes by this metric for a given gripper width to allow fair
results comparisons.

V. ROBOTIC EXPERIMENTS

In the following sections we use the EGAD evaluation set
to evaluate a state-of-the-art visual grasp detection network.
In doing so we provide a template for presenting results. The
diversity of the evaluation set allows us to gain insights into
the strengths and limitations of the visual grasp detection
approach, providing future research directions to improve
upon these baseline results.

A. Visual Grasp Detection

We use the Generative Grasping Convolutional Neural
Network (GG-CNN) from [15, 17] as a visual grasp detection
algorithm. GG-CNN is a fully convolutional network that
provides a one-to-one mapping from an input depth image
to a prediction of grasp quality and pose at every pixel in
realtime. Each pixel in the output defines a top-down grasp
pose, defined by g = (c, φ, w, q), where c = (x, y, z) is
the position of the grasp’s centre, φ is a rotation around
the vertical axis, w is the desired width of the gripper and
q represents a grasp quality. GG-CNN was trained on the
Cornell Grasping Dataset [33].

B. Equipment

For robotic grasping experiments we use a Franka Emika
Panda robot, fitted with 3D-printed fingers with silicone
tips based on [51]. The maximum opening of the fingers
is 75mm, and the evaluation objects were scaled according
to this. An Intel Realsense D435 depth camera is attached to
the end effector of the robot to provide visual input. Videos
of the experiments are available on the project webpage.

C. Procedure

We perform 20 grasp attempts on each of the 49 3D-
printed evaluation objects in isolation, for a total of 980
grasp attempts. Objects were placed one at a time into the
workspace of the robot. For each grasp attempt, a depth
image was captured from a fixed viewpoint and the best
predicted grasp from GG-CNN was executed by the robot.
The grasp success rate is the fraction of grasps after which
the robot successfully lifted and held the object 40cm above
the table. If the grasp was successful, the object is dropped
into the workspace to randomise the pose and position for the
next grasp attempt. Objects that fall outside of the workspace
are replaced.

D. Results and Discussion

Fig. 6 shows the grasp success rate for each of the 49
3D-printed evaluation objects individually. The right-hand
column shows that the grasp success rate decreased from
69% for the easiest 7 objects (A row), to 40% for the 7 most
difficult (G row). The overall success rate across all objects
was 58%. While this is lower than previously reported results
for GG-CNN [15–17], this is expected since the EGAD
objects are more complex and difficult than those previously
used.

Despite the trend in difficulty, there are some clear outliers.
For example, objects C1 and D1 performed much worse



Fig. 6. Average grasp success rate for each object in the evaluation set.
Labels correspond to the evaluation objects as shown in Fig. 1. Outer cells
show the mean over the respective axes.

than their neighbours, and objects E5, F4, F5 and G3 that
performed much better despite being difficult objects. Using
the EGAD evaluation objects in this way allows us to analyse
these results in a more introspective way than reporting a
single success rate on a non-diverse object set. In the rest
of this section we discuss some identified strengths and
limitations of GG-CNN with regards to these results, and
propose future improvements.

Grasp Depth A number of simpler and easier objects, in
particular E0, C1 (pictured in Fig. 7) and D1, have very low
grasp success rates. This highlights a major failure case for
GG-CNN, where the depth of the grasp is computed relative
to the grasp’s centre, resulting in grasps that are too shallow
resulting in failure. Round objects in the range A0 to B2
were also effected in the same way. A major improvement
to GG-CNN may be to also encode the required depth of the
grasp in the input or prediction.

Orientation Bias The grasps generated by GG-CNN
are often oriented perpendicular to an object’s major axis.
For example, on object E0 this results in a high number
of failures due to the sloping sides (Fig. 7). Meanwhile,
grasping the object lengthways would provide a stable grasp
on the object’s flat ends. This bias is likely caused by the lack
of similar examples in the training data, in which grasps on
long objects are heavily biased towards perpendicular grasps,
and could be corrected with improved training data.

Top-Down Grasping Like many other visual grasp detec-
tion algorithms, GG-CNN is limited to producing top-down
(4-DoF) grasps. However, for objects such as C2, there are
limited ways to grasp the object from a top-down orientation
(Fig. 7). This provides a strong motivation for using 6-DoF
grasps that align to the graspable parts of objects.

Grasping Object Parts Unlike many other visual grasp
detection algorithms, GG-CNN predicts the gripper width
for each grasp. This is advantageous for objects such as B1
(in certain orientations), G3 and F5 (Fig. 7), where precise,
narrow grasps are required to avoid collision with object
parts, resulting in a higher than average success rate despite

E0 C1 C2

B5 E1 D6

G3 B1 F5

⨯ ⨯ ⨯

⨯ ⨯ ✓

✓ ✓ ✓

Fig. 7. Examples chosen from experimental grasp attempts to highlight
strenghts and limitations of GG-CNN. × indicates grasp failure and X
indicates success. Refer to Section V-D for details.

these objects’ complexity and difficulty. On the other hand,
a number of failures were noted for objects such as B5 and
E1, where depressions in the objects cause grasps that result
in collisions and grasp failures.

Finger Material In addition to visual aspects, physical
properties of the gripper also effect the results. Objects such
as E5 and D6 (Fig. 7) are largely difficult due to their
uneven surface with many acute protrusions, making grasps
performed with a rigid gripper surface unstable. However, the
compliant nature of the silicone fingertips used, as explored
by [51], largely accounts for this by moulding to the surface
resulting in stable grasps and a high success rate for these
objects.

VI. CONCLUSION

We presented EGAD, a dataset of over 2000 evolved
3D objects for training and evaluating robotic grasping and
manipulation. The objects uniformly fill a space of shape
complexity and grasp difficulty, compared to other similar
datasets which are limited in both size and diversity. This
provides the necessary diversity for training robust visual
grasp detection algorithms. Additionally, we specify a diverse
evaluation set of 49 objects which are 3D-printable to allow
for reproducible testing of grasping algorithms over a wide
range of complexity and difficulty.

Using the EGAD evaluation set, we were able to identify a
number of limitations of a state-of-the-art grasping algorithm
GG-CNN, which has previously not been possible on simpler
sets of “household” objects. In future work we propose
to use these insights to improve on the baseline results,
and to investigate the effect of diverse training data on the
robustness of visual grasp detection algorithms.
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