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Abstract— We discuss surveillance with multiple unmanned
aerial vehicles (UAV) that minimize information idleness (the lag
between the start of the mission and the moment when the data
captured at a sensing location arrives at the base station) and
constrain latency (the lag between capturing data at a sensing
location and its arrival at the base station). This is important in
surveillance scenarios where sensing locations should not only
be visited as soon as possible, but the captured data needs to
reach the base station in due time, especially if the surveillance
area is larger than the communication range. In our approach,
multiple UAVs cooperatively transport the data in a store-
and-forward fashion along minimum latency paths (MLPs) to
guarantee data delivery within a predefined latency bound.
Additionally, MLPs specify a lower bound for any latency
minimization problem where multiple mobile agents trans-
port data in a store-and-forward fashion. We introduce three
variations of a heuristic employing MLPs and compare their
performance with an uncooperative approach in a simulation
study. The results show that cooperative data transport reduces
the information idleness at the base station compared to the
uncooperative approach where data is transported individually
by the UAVs.

I. INTRODUCTION

Advances in the field of aerial robotics have increased
the interest in the use of unmanned aerial vehicles (UAVs)
for various civilian applications including disaster response
missions [9], [28], [17].

In this work we consider a path planning problem for
multiple UAVs (or other types of mobile robots) that are
visiting points of interest (denoted as sensing locations, SL),
which is typically required in disaster response scenarios
for acquiring information from areas of interest. Since the
area is potentially large, existing wireless communication
technology used on aerial vehicles is not able to establish a
fully connected network all the time due to range limitations
while the UAVs move to the SLs. Direct communication to
the base station (BS) can also be prohibited while flying
close to the ground or within a building. In these scenarios it
is not only important that SLs get visited as soon as possible,
but also that the data captured by the UAV arrives at the BS
in due time. This allows human mission operators to quickly
assess a situation or is a precondition for a prompt analysis
of the captured data.

We present a novel cooperative data delivery approach
where UAVs visit SLs and transport the captured data
in a store-and-forward fashion to the BS. This is differ-
ent from our previous work on persistent multi-UAV/robot
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Fig. 1. Three points in time (left to right) with UAVs (triangles) and the
BS (square). The top UAV is visiting SLs along a path (waved line) and the
other UAVs collaboratively transport the data to the BS on MLPs (straight
solid line). Dashed lines indicate that UAVs exchange data.

surveillance where permanent [25], [27] or intermittent [26]
connectivity to the BS was considered. The paths for the
UAVs are planned such that two UAVs meet at points that
are within their communication range. The data is sent from
one UAV to the other, which travels along a path to meet
another UAV. By following so called minimum-latency paths
(MLP) the data travels towards the BS with a guaranteed
latency (see Figure 1 for an illustration).

The rationale behind cooperative data transportation is that
UAVs do not need to travel to the BS individually for data
delivery but can spend more time on visiting SLs while the
previously captured data travels to the BS in a coordinated
way over multiple UAVs. This eliminates large detours if the
communication range is large compared to the travel speed
and SLs are far away from the BS, or no-fly-zones block
movement but not communication.

The contributions of this paper are as follows: (i) We
define the problem of surveillance with cooperative data
transport considering data latency, (ii) model MLPs as short-
est path problem with time windows (SPPTW) [8], (iii)
present heuristics using MLPs for constraining the latency
of data from SLs, and (iv) provide simulation results that
show that our heuristics can outperform an approach where
UAVs transport the data individually to the BS regarding
different metrics.

The paper is organized as follows: Section II reviews
the literature. Section III introduces the minimum infor-
mation idleness with latency constraints (MILC) problem.
Section IV introduces MLPs and describe three heuristics
for MILC. Section V describes the simulation results and
Section VI concludes the article.

II. RELATED WORK

While minimizing idleness in surveillance, exploration and
patrolling applications is a common optimization goal [21],
[10], [23], [2], minimizing latency has received much less
attention in literature. Banfi et al. [3] present a MILP (mixed
integer linear program) formulation and heuristics for the
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problem of finding a patrolling path for each UAV with
the goal to minimize the latency. Each UAV follows a path
containing SLs and intermediate detours to communication
sites where the data can be transmitted to the BS. A MILP
formulation and a heuristic for a similar problem with task
revisit constraints are presented in [19]. Acevedo et al.
[1] investigates in patrolling considering the propagation of
information among the UAVs. A decentralized algorithm
maintains a grid shaped partition of the area where each
UAV is traveling along a circular path within its subarea.
UAVs exchange data on the border of their subareas with
each UAV of the neighboring subareas, which minimizes the
propagation time of information in this grid shaped partition.
Exploration with recurrent connectivity constraints has been
considered in [6] where robots are forced to build connected
trees from frontiers to the BS recurrently.

A similar problem of exploration considering information
update at the BS has been considered in [29]. While the
possibility of cooperative data transport is discussed, in
the implementation robots move individually to the BS to
transmit the data, and the frequency of returns is determined
by a number that controls the importance of exploration
versus information update at the BS.

In contrast to related work, we consider a cooperative data
transport by multiple UAVs to a single BS by investigating
which UAVs should meet when and where. Other work fo-
cuses on recurrent connectivity without explicitly minimizing
data latency [22], [11], [16], [18]. All these works have in
common that which robots should meet is determined in
advance. Recurrent connectivity of the full robot network,
e.g. with the aim for planning and coordination of the next
tasks, has been considered in [15], [4].

III. PROBLEM DESCRIPTION

In this section we formally define the MILC problem.
The set of UAVs is denoted as R = {1, . . . , r}, |R| = r.
The problem is modeled with help of a weighted undirected
movement graph GM = (V,EM ,W

M ), with a set of vertices
V describing locations in the environment, where the UAVs
can move from one vertex v to another w within time
WM
vw if there is an edge (v, w) ∈ EM . Vertex v0 ∈ V

identifies the BS. The set of vertices VS ⊆ V are SLs
which have to be visited by at least one UAV. The set
VC ⊆ VS contains SLs in communication range of the BS.
The undirected communication graph GC = (V,EC ,W

C)
models the communication connectivity between vertices. If
there is an edge (v, w) ∈ EC then two UAVs or the BS
and a UAV can communicate if one is at v and the other
is at w at the same time. The edge weights WC describe
the duration of the data transmission for every edge. The
latency for a certain SL is defined as the time between the
collection of the data at a SL and the arrival of the data at
the BS. To collect data at v ∈ VS a UAV must be at v but
data is not necessarily collected each time a UAV is at v.
Data collection at a SL is scheduled such that the latency
Lc can be ensured, which requires that data is captured by
a UAV on a SL only if it is guaranteed that the data can be
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Fig. 2. A small scenario with V = {0, . . . , 26}, VS = {24, 25, 26}. Here
EM = EC and the edges are depicted by the lines between the vertices,
WM

vw = 1, WC
vw = 0 for all edges. The BS is the quadratic vertex 0, and

the number of UAVs r is 3.

t: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 0 4 6 9 12 16 18 21 24 21 18 16 14 11 7
2 0 3 6 3 0 0 0 4 4 0 0 4 8 7 4
3 0 4 8 11 14 17 20 23 25 26 23 19 15 13 14

Fig. 3. The rows show the sequence of the positions (vertices) of three
UAVs for the optimal solution from the sample scenario in Figure 2. The
bold numbers indicate visits at the SLs and the underlined numbers when
a UAV transmits its data to another UAV or the BS. At t = 11, UAV
3 transmits its data to UAV 1, at t = 13 UAV 1 transmits the data
to UAV 2, and finally at t = 14 UAV 2 transmits the data to the BS.
For comparison the algorithms presented in Section IV (with Lc = 6)
achieve the following results for (WII, FII,WL): H1: (29, 13, 5), H2:
(22, 14, 6), H3: (22, 14, 6), SH (Lc = ∞): (15, 15, 7). In this small
example SH is close to the optimal solution.

transmitted on a subsequently scheduled MLP (which will
be guaranteed by the algorithms described in Section IV-B).

We discuss the objective function for the MILC problem
using a sample scenario with three SLs and three UAVs
(Figure 2). If the objective is to visit all SLs as fast as
possible, each UAV travels to a different SL on the shortest
path starting from the BS, resulting in a solution with
objective value 8 (at time 0 the UAVs are at the BS, and
the edges length is 1). If individual data delivery to the BS
is also considered, the objective value is 15 (a UAV transmits
the data from a vertex in communication range to the BS).

On the other hand, if the objective is to minimize the
time (from the beginning of the mission) the data from each
SL have arrived at the BS (the UAVs can transmit data to
each other), the objective value of the optimal solution is 14.
Figure 3 depicts the optimal solution where UAVs 1 and 3
visit the SLs and UAV 2 is only transporting data back to the
BS. This solution has been determined by solving a MILP
for the problem (adaptation of [3] to allow data transmissions
between UAVs). When there are many SLs, minimizing the
time until the data from all SLs have arrived at the BS might
not be the desired objective, because it can happen that the
BS does not receive any data for a long period of time. This
motivates us to consider path planning with intermediate data
transports to the BS by constraining the latency of the data.

We consider three different metrics for the problem: (i)
the lag between the start of the mission and the moment
when the data from all SLs have arrived at the BS (worst
information idleness, WII), (ii) the first time after the start
of the mission until data from any SL have arrived at the
BS (first information idleness, FII), and (iii) the maximum
latency (lag between capturing data at a SL and the arrival
of the data at the BS) over all SLs (worst latency, WL).
We call the problem of minimizing WII and FII and
constraining WL minimum information idleness with latency



constraints (MILC). The example solution in Figure 3 has
WII = FII = 14 (the unit is time, it takes 1 unit to move
along an edge from EM and 0 units to transmit the data along
an edge from EC), since data does not arrive before time 14
at the BS. The worst latency is determined by the SLs 24 and
25, i.e. WL = max{14− 8, 14− 8, 14− 9} = max{6, 5}.

Determining the optimal tour for visiting all SLs as soon
as possible on a graph is related to the NP-complete traveling
salesperson problem (TSP) [13]. Since MILC with one UAV,
a sufficiently large latency bound (e.g. sum of all edge
weights), and zero communication range (the UAV can send
data to the BS only when it is in close proximity) is equiv-
alent to TSP, MILC is NP-hard too. This requires designing
heuristic algorithms that can produce a (suboptimal) solution
in an acceptable time. In Section IV we describe heuristic
algorithms for solving this problem efficiently.

Graphs are commonly used for modeling motion and
connectivity [3], [4], [20]. Obstacles are easily incorporated
by omitting the appropriate edges in the graphs. The problem
of determining SLs for image acquisition has been con-
sidered in [24]. We assume a simple sensor model where
data can be captured in neglectable time when the UAV
is present at the SL. The communication graph is consid-
ered static and captures the communication delay for fixed
sized data. Various work on more complex communication
and network models for multi-UAV systems are intensively
investigated (e.g. [14], [5]) but beyond the scope of this
paper. Nevertheless, when UAVs execute the planned paths
they can cope with unforeseen deviations from the schedule
by simply waiting for the predecessor or successor on the
MLP. Additionally, we assume that UAVs are able to avoid
collisions such that they can be at the same vertex at the
same time.

IV. ALGORITHM DESCRIPTION

A. Minimum-latency path

The problem of transporting the data as fast as possible
from a source s ∈ V to a destination d ∈ V with a given
number of UAVs can be modeled as a shortest path problem
with time windows (SPPTW) in a graph G = (V,A) [8].
We refer to this path as MLP, and the problem of finding a
MLP is a special case of SPPTW. SPPTW is the problem
of finding a shortest path in a graph with a traversal cost
Wvw and a traversal duration Tvw associated with each edge
(v, w) ∈ A. The sum of edge traversal times along the path
is constrained to be in a time window [Lv, Uv] at v ∈ V .

The problem is NP-hard in general, but there exist dynamic
programming algorithms for the problem instance with in-
teger Tij [8]. The dynamic programming approach converts
the problem to a shortest path problem in a graph with at
most

∑
v∈V (Uv − Lv + 1) vertices. In our case, Wij is the

time it takes to traverse the edge (v, w) ∈ EM , and Tvw is
the number of UAVs necessary to traverse the edge (1 for
every edge (v, w) ∈ EC), the lower limit is Lv = 0 and the
upper limit is Uv = r − 1 for all vertices.

Figure 4a depicts an example graph. If there are two types
of edges (from EM and EC) between two vertices v and w,
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Fig. 4. (a) Graph with edges from EM (solid lines, WM
vw = 1 for all edges)

and edges from EC (dashed lines, WC
vw = 0 for all edges). (b) Converted

graph from (a) for the dynamic programming approach of SPPTW with
r = 2. Only vertices and edges corresponding to vertices 5, 6, 7 are shown.

there are two possible ways to transport the data from v to
w. Either one UAV moves from v to w, which takes WM

vw

time, or one UAV is placed at v and the other at w and the
data is transmitted in time WC

vw. In the latter case the edge
“consumes” one UAV. In our example, with WM

vw = 1 and
WC
vw = 0 for all (v, w) ∈ A, there are different optimal paths

in terms of the latency depending on the number of available
UAVs. If r = 1, the MLP from s to d is (s, 5, 4, 3, 2, 1|) with
a latency of 5. This notation means that the UAV moves
from s to 1 along the solid edges and stops at vertex 1 to
transmit the data to the destination d. If r = 2, the MLP
is (s, 5, 6|7, 1|) or (s|4, 3, 2, 1|) with a latency of 3. In the
first case the first UAV moves from s over 5 to 6 and stops
there to transmit the data to the second UAV waiting at 7.
This UAV finally transports the data to 1. In the second case
the first UAV does not move and transfers the data to the
second one waiting at 4. Finally, if r = 3, the optimal path
is (s|6|7, 1|) with a latency of 1.

This description of a MLP, assumes that a UAV j is at the
appropriate vertex (which is the start vertex of its subpath on
the MLP) when the predecessor i on the MLP arrives at the
end vertex of its subpath where i transmits the data to j. In
the first example with r = 2 above, the first UAV starts at s
(which is a SL), and the second UAV is already at 7, when
the first UAV arrives at 6. In the path planning algorithm
(Section IV-B) waiting times will have to be introduced to
guarantee the latency of the gathered data.

Figure 4b shows parts of the converted graph for r = 2.
The vertex (5, 0) on a valid path from s to d represents the
fact that only one UAV has been used so far. From this vertex
the path can continue over (6, 0), which means that the edge
(5, 6) ∈ EM is used. If the path continues to vertex (6, 1),
then the edge (5, 6) ∈ EC is used, which means that the
first UAV stops at 5 and transmits the data to 6. From (6, 1)
there is no path to (7, 0) or (7, 1) because (6, 7) /∈ EM and
two UAVs have already been used. The edge length in the
converted problem is 1 for a movement on an edge from
EM or 0 for transmitting the data over an edge from EC .
The problem of finding the shortest latency path reduces to
finding the shortest path in the converted graph.

Our implementation for computing a MLP with r UAVs,
|V | vertices, and the edges EC and EM given as adjacency
matrices has time complexity O(|V |2 · r) for generating the
adjacency matrix for the new graph (with |V | · r vertices),
and O(|V |2 · r2) for calculating the shortest path (Dijkstra’s
algorithm [7]) in this new graph.



Algorithm 1 Heuristic for MILC (MILC-H1)
Input:

graphs GM , GC , SLs VS , number of UAVs r, latency bound Lc

Output:
subtours t1, . . . , tk , MLP and schedule (st(v), svv, evv, stv) ∀v ∈ VS

1: γv ←∞ ∀v ∈ VS

2: for i = r downto 1 do // All MLPs from all v ∈ VS to the BS with i UAVs:
3: (d1, . . . , d|VS |)← min latency(VS , v0, i, GM , GC)
4: if dv ≤ Lc then γv ← i, ∀v ∈ VS

5: if ∃v ∈ VS : γv > r then exit “Problem is infeasible!”
6: γ ← maxv∈VS\VC

{γv}
7: k ← br/γc
8: T ← solve tsp(VS , GM )
9: (t1, . . . , tk)← split tour(T, k)

10: for i = 1 to k do
11: Ri ← {(i− 1) · γ + 1, . . . , i · γ}
12: v′ ← v0
13: for each v on path ti do
14: (svv, evv, stv, etv)← mlp(v, v0, γv, GM , GC)
15: for l = 1 to γv , ∀m ∈ Ri do
16: Alm ← st(v′) + etv′ (m) + distGM

(evv′ (m), svv(l))

17: M ← minmax matching(A)
18: for m ∈ Ri do
19: svv(m)← svv(M(m)); evv(m)← evv(M(m))
20: stv(m)← stv(M(m)); etv(m)← etv(M(m))

21: st(v)← st(v′) + minm∈Ri
{etv′ (m)+

distGM
(evv′ (m), svv(m))}

22: v′ ← v

B. Heuristics for MILC

The basic idea of the heuristics is that for each v ∈ VS
UAVs move to the initial positions along the MLP from v
to the BS v0 and wait, if necessary, for its preceding UAV
on the MLP that transmits the data captured at v. It then
moves to its final position on the MLP to transmit the data
to its successor on the MLP. The order at which SLs are
visited is determined by the TSP tour (a high-level view of
the resulting behavior is shown in Figure 1). The outputs of
the algorithms are mappings from UAVs to its start vertex
(svv), end vertex (evv), and start time (stv) on a MLP for
every vertex v ∈ VS . The start time determines the time that
it has to wait for its preceding UAV on the MLP to transmit
the data of v.

The first heuristic MILC-H1 (Algorithm 1, “H1” for short)
determines the minimum number of UAVs necessary to
achieve Lc for each SL v and stores the value in γv (Line 4).
Function min latency returns the minimum latencies that
can be achieved with a given number of UAVs i for all paths
from vertices v ∈ VS to the BS v0. The variable γv is the
minimal number of UAVs for a MLP starting at v such that
the latency can be achieved along the MLP. If there is a
vertex v with γv > r, the problem is infeasible because it is
not possible to transport the data with the available number of
UAVs within time Lc to the BS (Line 5). Given the number
of UAVs necessary, a TSP tour is split into multiple subtours
(Line 6 to Line 9). For splitting the tour k-SPLITOUR from
[12] can be used, which tries to minimize the length of the
largest subtour.

The rational for splitting the tour is the idea that multiple
subtours can be traversed by groups of UAVs in parallel to
reduce the time for visiting all SLs. The subtours are then
assigned to different groups of UAVs (loop in Line 10). For
every vertex v ∈ VS on a subtour the MLP is calculated

(a)

TimeWaiting time
     for

(b)

Fig. 5. (a) The MLPs for two consecutive SLs v′ and v on a tour and
three UAVs r1, r2 and r3. The waved lines depict a path in GM and the
dashed lines edges in GC . The straight arrows show the transition from the
end vertex evv′ on the MLP for v′ to the start vertex svv for the MLP of v
for each UAV. (b) Timing diagram for the scenario above. Horizontal solid
lines denote the movement, horizontal dashed lines denote that a UAV is
waiting at a vertex, dots denote the start and end vertex of a UAV on the
MLP, and oblique lines depict the MLPs (transmission times WC are 0 in
the example). The values on the time axis are labeled only for UAV r2.

with mlp(), which returns the start and end vertices (svv
and evv) and the start and end times (stv and etv) for every
UAV along the MLP (Line 14).

Which UAV should actually move to which start vertex on
the MLP for v ∈ VS is determined by a matching calculated
based on its end vertex evv′ and end time etv′ on the MLP
for the predecessor v′ ∈ VS of v on the subtour. The value
st(v) determines the time the first UAV on the MLP for v can
start to move from v to its end position evv and is measured
from the beginning of the mission. The start time stv and
end time etv are relative to the start of the first UAV (stv = 0
for the first UAV). The element Alm of the weight matrix
A, calculated in the loop starting in Line 15, is the earliest
time UAV m can arrive at the potential new starting vertex
svv(l) after moving from svv′(m) over evv′(m) to svv(l).
The matching between UAVs and start vertices minimizes the
latest time a UAV can be at its start vertex and is calculated
with minmax matching() (Line 17). Finally, the mappings
are updated according to the matching (Line 18), and the start
value st(v) is calculated based on the latest time all UAVs
can be at their start vertex (Line 21). Function distGM

(s, d)
returns the length of the shortest path from s to d in GM .

Figure 5a depicts an example situation with two consec-
utive SLs v′ and v on a TSP tour (i.e. v gets visited after
v′) and their MLPs for 3 UAVs r1, r2 and r3. For v′ UAV
r1 starts at v′ = svv′(r1) and moves to evv′(r1) where it
transmits the data to r2, which starts at svv′(r2) and moves
to evv′(r2). There, r2 transmits the data to r3. The timing
diagram is shown in Figure 5b. The start time st(v) (and
therefore the time r1 can start at v) is determined by r3,
because r1 has to wait such that it does not arrive at evv(r1)
before r2 has arrived at svv(r2). UAV r2 in turn has to wait



for UAV r3. Note that r1 and r2 can start before r3 reaches
svv(r3), and r2 will arrive at evv(r2) and transmit the data
to r3 exactly when the latter one arrives at svv(r3). Since
the first UAV has to wait at v ∈ VS , the latency bounds are
met because v can be considered as visited right before the
first UAV leaves v, and the corresponding data will arrive
within the bound at the BS.

The second heuristic H2 is similar to the first one. For
every SL the number of UAVs γv is calculated such that the
latency cannot be decreased on a MLP with additional UAVs
(which is different from the loop in Line 2 in Algorithm 1).
This is equivalent to minimizing the length (latency) of
the MLP and therefore the latency for each SL. If there
is a number of UAVs available that is at least a multiple
k of maxv∈VS

γv , then the tour is split into k subtours.
The algorithm then tries for each subtour to visit as many
SLs as possible with one UAV along the TSP tour before
transporting the data with help of the others to the BS such
that Lc is not violated. This is different from H1 where UAVs
transport the data immediately to the BS after visiting a SL
(cf. Line 13 in Algorithm 1). Another difference is that in
each subtour the same UAV is visiting all SLs (i.e. it is not
part of the matching, cf. Line 17 in Algorithm 1).

The third heuristic H3 is a combination of the other two.
For every SL the minimum number of UAVs is calculated
such that Lc is not violated (similar to H1). If possible, the
tour is also split into subtours. The algorithm visits in every
subtour as many SLs as possible such that Lc is not violated
(similar to H2).

For all heuristics the TSP tour is shortcut if a SL has
been visited on the MLP of another SL already. This is valid
because the latency constraint is met for these SLs.

Since the communication graph GC with weights WC

are inputs, we assume a constant transmission time on each
edge independent of the amount of transmitted data. This
assumption is valid for H1 if the amount of data captured at
each SL is constant. We can relax the fixed data assumption
for the other heuristics by recalculating the weights WC

after the visit of a SL with the consequence that determining
whether a feasible solution can be generated, cannot be done
before iterating through the vertices of a calculated path, as
it is done in Algorithm 1 (cf. Line 13).

C. Complexity analysis

We briefly analyze the computational complexity of our
heuristics. Algorithm 1 starts with the MLP computation
from all SLs to the BS for each number of available robots
(Line 2). This can be done with the Dijkstra single source
shortest path algorithm [7]. The converted graph described
in Section IV-A is asymmetric, and a MLP from a particular
SL to the BS can be computed by determining a path in the
converted graph with the Dijkstra algorithm from a source
to a destination vertex representing the SL and the BS,
respectively. To compute the MLPs from all SLs to the
BS, the single source Dijkstra algorithms has to be used
on the reversed graph (all edges in the converted graph are
reversed) with the BS as source. With the complexity of the

Dijkstra algorithm of O(|V |2 · r2) on the converted graph
(described in Section IV-A) the loop has the time complexity
of O(|V |2 ·r3). We denote the complexity of solving the TSP
on the SLs and splitting the tour with O(TSP (|VS |)) and
O(Split(|VS |)), respectively.

The statements within the nested loops in Line 10 and
Line 13 are executed |VS | times, since the subtours are
disjunct and the outer loop iterates over the subtours. As-
suming that the MLPs have been computed and stored
already in the loop in Line 2, the statement in Line 14 is
a simple lookup for the MLP of vertex v. Similarly, the
shortest paths in GM (computed by function distGM

) can be
determined beforehand with the Floyd-Warshall algorithm in
O(|V |3) [7], and the inner statement of the following loop
(Line 15) is executed O(r2 · |VS |) times. The complexity of
minmax matching (solving the linear bottleneck assign-
ment problem, LBAP) is denoted with O(LBAP (r)). The
statements in the loop Line 18 are executed O(|VS |·r) times.
This gives an overall complexity of Algorithm 1 of O(|V |3+
|V |2·r3+TSP (|VS |)+Split(|VS |)+|VS |·LBAP (r)), which
is the same for H2 and H3.

D. Suboptimality analysis

For a preliminary analysis we consider a simplified al-
gorithm that tries to minimize WII and ignores WL (as
considered in the example in Section III where the objective
was to minimize WII). We assume that the set of UAVs is
partitioned into k sensing UAVs and r−k data transportation
UAVs (a predefined value of k may arise from the fact that
not all UAVs are equipped with sensors). Furthermore, we
assume that the triangular inequality holds in GM , that GM
is connected, and that WC

ij = 0 for all (i, j) ∈ EC . For
the heuristics described above, the value of k is determined
by the latency constraint. Here we assume that k is given
and leave the determination of the optimal value of k and a
suboptimality analysis considering also the latency as future
work. The simplified algorithm can be sketched as follows:

1) G′(VS ∪ {v0},W ′) ← compute complete graph with
vertices VS ∪{v0} where the edge weights W ′ are the
lengths of the shortest paths in GM

2) T ← solve the TSP in G′

3) (t1, . . . , tk) ← split T into k subtours with k-
SPLITOUR [12], ti = (v0, v

i
1 . . . , v

i
l(i), v0), 1 ≤ i ≤ k

4) Each sensing UAV follows its subtour (from v0) to vil(i)
where the data is finally transported on a MLP to v0
with help of (r − k)/k UAVs (for each subtour there
is a fixed number of data transportation UAVs).

The cost of a solution produced by this algorithm is
denoted with Ĉk. Here we assume that the data transportation
UAVs are at their starting positions of the MLPs in time such
that the sensing UAV i does not have to wait for the data
transportation UAVs at the last vertex of its tour, vil(i). A
lower bound for the optimal solution that minimizes WII
(without distinguishing between sensing and transportation
UAVs) is determined by a set of r paths starting from v0
and visiting all SLs such that the longest path is as short
as possible. The reason is that WII cannot be smaller than



the time it takes to visit all SLs as soon as possible with r
UAVs. We denote the cost of such a solution with CO∗r (“O”
indicates that the paths are open tours, i.e. do not terminate
in v0). The cost (which is WII) of the optimal solution
minimizing WII is denoted with C∗, and the cost of the
optimal solution with k sensing UAVs is denoted with C∗k ,
therefore CO∗r ≤ C∗. Note that C∗ = C∗r .

First, we establish that

Ĉk ≤ 2CO∗k (e+ 1− 1/k) , (1)

where e is the approximation factor for the TSP heuristic, i.e.
L ≤ eC∗1 , and L is the length of the TSP tour in step 2. The
proof is similar to the one in [12] but has to be modified
slightly because the triangular inequality does not always
hold in the presence of MLPs, and the algorithm replaces
paths in GM by MLPs in the last step. Note that W ′v,v0 is
an upper bound for the MLP from v to v0 with any number
of UAVs, because in the worst case the shortest path in GM
from v to v0 is also the MLP, i.e. cmax := maxv∈VS

W ′v,v0
is an upper bound for all MLPs from any v to v0.

k-SPLITOUR produces subtours with lengths
at most L/k + 2(1− 1/k)cmax. Inequality (1)
follows from L ≤ eC∗1 , cmax ≤ CO∗k , and
C∗1 ≤ k(CO∗k + cmax) ≤ 2kCO∗k .

To establish a relationship between CO∗k and CO∗r we
describe a procedure for iteratively merging paths from
an optimal solution with r paths until a solution with
at most k paths remains. The procedure starts from
the initial solution with cost CO∗r and merges br/2c
pairs of paths by connecting a pair of paths pi =
(v0, v

i
1, . . . , v

i
l(i)) and pj = (v0, v

j
1, . . . , v

j
l(j)) to a new path

(v0, v
i
1, . . . , v

i
l(i), v

j
1, . . . , v

j
l(j)). The new solutions has a cost

of at most c(pi) +W ′
vi
l(i)

,vj1
+ c(pj) ≤ 3CO∗r because of the

triangular inequality in G′. Here c(p) denotes the length of
the path p in G′. If an unmerged path remains, it is merged
in the next iteration. There are at most dlog(r)− log(k)e+1
iterations until a solution with at most k paths is reached,
which has a cost of C̄Ok . Therefore,

CO∗k ≤ C̄Ok ≤
(

2dlog(r)−log(k)e+1 − 1
)
CO∗r

≤
(

2log(r)−log(k)+2 − 1
)
CO∗r ≤ (4r/k − 1)CO∗r . (2)

Combining (1), (2) and CO∗r ≤ C∗ results in

Ĉk ≤ 2 (e+ 1− 1/k) (4r/k − 1)C∗. (3)

It remains to show that there is a constant e such that
L ≤ eC∗1 . Because of c(MST (G′)) ≤ CO∗1 ≤ C∗1 , the cost
of the minimum spanning tree in G′, c(MST (G′)), is also
a lower bound for the cost of the optimal solution with one
sensing UAV, C∗1 . Therefore, the factor is the same as for
the MST heuristic for TSP with e = 2.

The sensing UAVs in H2 and H3, which meet Lc if they
can find a solution, have to send the data to a relaying UAV.
This introduces a waiting time until the first relaying UAV is
at its start vertex of the next MLP or a time span caused by
traveling to the end vertex of the MLP and traveling to the

next SL on the tour. The delay of such a detour is at most
2cmax for each data transport after a SL (H2 and H3 visit
multiple SLs consecutively before transporting data to the
BS). The number of such detours α for each of the k sensing
UAVs is at most dĈk/βe, with β := min{cmin, Lc − cmax}
(instead of cmax the length of the longest MLP from any SL
with (r − k)/k UAVs can be used for a lower bound), and
cmin := minv,w∈VS

W ′v,w. Thus, WII of H2 and H3, ĈHk , is
bounded ĈHk ≤ 2αcmax+ Ĉk = 2cmax+ (2cmax/β+ 1)Ĉk.

V. SIMULATION RESULTS

In this section we describe the results from simulation
experiments with the aim to assess the performance of
our three heuristics and compare it with a single-hop (SH)
approach. In the single-hop approach the UAVs do not
cooperatively transport the data but each UAV has to travel
to a location where it can send its data directly to the BS.

The environment is modeled as rectangular grid of cells
of unit size, and time is discretized into time steps. A
UAV can move from one cell of the grid to one of the
8 neighboring cells (which determines GM ) or stay at the
same cell within one time step. The communication range
RC (measured in number of cells) determines which cells
are within communication range (and therefore determines
GC). We set WC to zero for all edges. The BS is in the cell
at the lower left corner. The size of the environment is 5×50
cells (|V | = 250) where the area of 5× 5 cells (|VS | = 25)
with the largest distance to the BS are SLs.

In this scenario an optimal open tour through all SLs is a
lawn mower pattern on the SL cells. This tour is split evenly
into subtours for multiple UAVs. We have implemented our
heuristics in Matlab using simple algorithms for solving the
TSP and splitting the tour. Solving the LBAP is done opti-
mally with the state-of-the-art solver Gurobi. Alternatively,
the assignment can be calculated with the Hungarian method
in O(r3). The runtimes of all heuristics for all problems were
less than 3 seconds on a Core i7-6700K.

The single-hop approach is not always able to meet Lc

because the time to travel from a SL to a location where
the data can be transmitted to the BS is larger than Lc. In
this case a UAV travels directly to a location where it can
send its data to the BS after visiting a SL and the resulting
worst latency WL is recorded for the simulation results. The
single-hop approach is equivalent to H3 with a sufficiently
large latency bound, e.g. Lc =∞. In this case a subtour for
each UAV is generated and a UAV visits SLs on its subtour
consequently until the latency would be larger than Lc. This
effectively results in the optimal solution for visiting all SLs
as soon as possible, and a UAV does not transmit data to the
BS before it visited all SLs on its subtour.

Figure 6 (left column) shows a comparison of WII , FII
and WL between the heuristics H1, H2, and H3 for varying
latency constraint Lc. The number of UAVs n is 6 and
the communication range RC = 8. The counter intuitive
behavior of H1 and H3, which show an increasing WII
with increasing Lc, results from the fact that the algorithms
minimize the number of UAVs necessary to meet the latency
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Fig. 6. WII , FII , WL for the MILC heuristics for varying Lc (left, r = 6, RC = 8), for varying number of robots r (center, Lc = 20, RC = 8),
and for varying area sizes (right, r = 6, Lc = 20 RC = 8). The numbers above the bars show the numbers of subtours.

constraints for each SL. This results in longer durations for
the transportation of the data to the BS. The drops in WII
happen when the number of subtours increases due to a
splitting of the original tour. H2 is not able to split the tour
with the available number of UAVs since in all cases the
latency could be further decreased with an increasing number
of UAVs. For H3 the number of subtours is the same as for
H1. In contrast to H1, H3 can benefit from an increasing
latency bound, since more SLs can be visited without data
transportation to the BS. Figure 6 further shows that Lc

directly influences the time when the first data arrives at the
BS FII , and necessarily WL ≤ Lc for the MILC heuristics.

To justify the cooperative data transport, a comparison
between the single-hop approach with effectively unlimited
latency and the MILC heuristics is necessary. Figure 6 (left
column) shows that FII and WL of the single-hop approach
is worse than for any Lc for all three MILC heuristics. The
WII of the single-hop approach is larger than for H2 in
general, and for H1 and H3 with low latency bounds. With
Lc = ∞, H3 is equivalent to the single-hop approach, and
with low Lc H1 and H3 are equivalent.

Figure 6 (center column) depicts the simulation results for
a varying number of UAVs. Lc = 20 and RC = 8 have been
set such that at least 4 UAVs are necessary to transport the
data within Lc to the BS. The increasing WII of H1 and
H3 for an increasing number of UAVs results from splitting
of the tour into multiple subtours. The number of UAVs per
subtour is largest with r = 6, resulting in a low latency along
the MLP such that the UAV, which is visiting SLs, does not
have to wait for the UAVs on the MLP. Because H2 tries to
minimize the latency for each SL by using as many UAVs as
possible for the MLP, this heuristic does not show the effect
of increasing WII . This leads to the behavior that sensing
UAVs can make faster progress along their subtours.

Figure 6 (right column) shows a comparison for different
area sizes 5 × w (i.e. distances of the block of 25 SLs to
the BS) for w = 20, . . . , 60. The benefit of cooperative data
transport increases with the distance of the SLs to the BS.

We have further tested the algorithms to environments
of size 5 × 50 where the positions of 25 SLs have been
randomly sampled over the whole area. The average values
(WII, FII,WL) for 10 runs (r = 6, Lc = 20) are: H1:
(109.6, 5.5, 4.5), H2: (94.6, 23.2, 19.4), H3: (89.5, 23, 19.2),
SH (Lc =∞): (89.6, 19.9, 46.6). Because the SLs are closer
to the BS on average, WII and FII for SH (Lc = ∞)
are comparable to the corresponding values for the MILC
heuristics, but WL is much worse.

To summarize our simulations, the simplest heuristic H1
performs worst (regarding WII) in all experiments and
serves as baseline, whereas H2 outperforms the other heuris-
tics with the expected behavior of a non-increasing WII
with increasing Lc, RC and r. As shown in our simulation
study, cooperative data transport is clearly justified when
the SLs are not within the communication range of the
BS and the mission objectives require an early arrival of
the data from SLs at the BS. These two conditions are
relevant for various surveillance applications including large
area surveillance and first responder support. Although a
manually constructed1 solution using relay chains performs
comparable, relay chains might lead to a large latency and
detours for sensing UAVs and might be inferior to MLPs in
more complicated environments.

VI. CONCLUSION

We presented a multi-UAV surveillance problem with
cooperative data transport with the aim to minimize the time
until data captured by UAVs at SLs arrive at the BS. We
achieved prompt data delivery by constraining the latency
to a predefined bound. This enforces the UAVs to transport
the data cooperatively to the BS in a store-and-forward
fashion. The presented heuristics are based on MLPs, which

1Manually constructed solution on the 5×50 area with a block of 25 SLs:
k UAVs visit the SLs (the assignment of SLs to UAVs and the order in which
they are visited is determined manually) and transport the data to a relay
chain to the BS established by 6 − k UAVs. The values for k = 1, . . . , 5
are: (75, 75, 29), (73, 64, 27), (72, 72, 26), (80, 79, 35), (86, 86, 41).



guarantee the latency bound. We evaluated the performance
in simulation experiments, which show that the baseline
heuristic H1 performs worst. H2 outperforms the other
heuristics with the expected behavior of a decreasing worst
idleness with increasing values of the latency bound and the
number of robots. Additionally, we show that cooperative
data transport can outperform uncooperative data transport
with respect to the defined metrics.

This work provides a first theoretical investigation in coop-
erative data transport with dedicated objectives and require-
ments. A validation considering further important aspects
(e.g. physical properties, advanced communication models)
and incorporation of technical limitations (e.g. limited flight
time) are still needed for real-world deployment. Scalability
and robustness is limited by the fact that a centralized entity
has to generate the solution before the mission starts.

We identify several directions for future work. First, the
heuristics rely on TSP tours through all SLs, which have been
generated with traditional algorithms that try to minimize
the length of the tour. An open issue is the generation
of tours that support the joint minimization of information
idleness and latency. Second, the scheduling of UAVs can
be improved to minimize the number of idle UAVs (that do
neither sensing nor transporting data) at each time instant.
The team of UAVs is divided into a fixed partition of
teams and only one UAV in a team does sensing while
the other UAVs transport the data to the BS although not
all of them might be necessary to meet the latency bound.
These improvements could also include the design of tree-
shaped MLPs where UAVs transport the data from more
than one sensing UAV. Third, investigations into mixing the
discussed strategies or adjusting the latency for optimizing
the metrics would be a promising direction. For example, at
the beginning of the mission it could be beneficial to quickly
transport data to the BS but more resources could be assigned
for visiting SLs in the course of the mission execution. We
also envision the situation which allows the mission operator
to choose from multiple solutions generated by different
algorithms depending on the mission requirements.
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