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Abstract— This work presents an asynchronous multi-robot
adaptive sampling strategy through the synthesis of an inter-
mittently connected mobile robot communication network. The
objective is to enable a team of robots to adaptively sample
and model a nonlinear dynamic spatiotemporal process. By
employing an intermittently connected communication network,
the team is not required to maintain an all-time connected
network enabling them to cover larger areas, especially when
the team size is small. The approach first determines the next
meeting locations for data exchange and as the robots move
towards these predetermined locations, they take measurements
along the way. The data is then shared with other team
members at the designated meeting locations and a reduced-
order-model (ROM) of the process is obtained in a distributed
fashion. The ROM is used to estimate field values in areas
without sensor measurements, which informs the path planning
algorithm when determining a new meeting location for the
team. The main contribution of this work is an intermittent
communication framework for asynchronous adaptive sampling
of dynamic spatiotemporal processes. We demonstrate the
framework in simulation and compare different reduced-order
models under full, all-time and intermittent connectivity.

I. INTRODUCTION

Distributed mobile robot networks have gained more and
more interest in recent years due to their ability to cover
larger areas and work together on a task. Their mobility
and ability to carry sensor equipment make them very well-
suited for the tracking and modeling of dynamic processes.
Examples of processes of interest include the monitoring of
ocean currents for efficient navigation of cargo ships and
weather forecasting, wildlife and nature monitoring as in
tracking of endangered animal populations or the distribution
of plankton in an area of the ocean and modeling of events
like oil spills in the ocean or forest fire boundaries. In gen-
eral, it is difficult to adequately capture the spatiotemporal
dependencies of complex, nonlinear dynamic processes using
only static sensors since optimal sampling locations can
change over time, are unknown a priori, and may require
large quantities of sensors to ensure proper coverage of the
space. Mobile robots can mitigate this by adaptively chang-
ing their sampling locations which significantly reduces the
number of required units for any given workspace.
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Network connectivity is critical for any multi-robot and/or
robot swarm task objective, but is often unreliable and diffi-
cult to maintain in practice. Works on preserving connectivity
at all-times in a centralized [1]–[3] and distributed [4]–[6]
fashion mostly focus on maintaining the Fiedler value of
the underlying communication network graph above some
acceptable value. Maintaining all-time network connectivity
often overly constrains robot motions. To overcome this
issue, intermittent communication frameworks have been
developed. Intermittent communication can be achieved by
having a periodic reconnection of the complete network
within a given time horizon as in [7]. The need to reconnect
the complete network is overcome in [8]–[12], where the
network is guaranteed to connect over time, infinitely often.
The main idea is to connect teams of robots at a common
location in space and allow them to pursue their task in
between the communication events, thus removing the con-
straint of maintaining the network connectivity at all times.
By carefully assigning robots to multiple subgroups and/or
selecting the periodicity and location of communication
events, the information is guaranteed to propagate across the
entire network in a finite time.

A perfect example to demonstrate the need of intermit-
tently connected robot networks consists of the sampling
and tracking of spatiotemporal processes. Many of these spa-
tiotemporal processes often occur at large spatial scales, in
uncertain dynamic environments that are difficult to model,
and driven by a complex interplay of physical, chemical,
and/or biological processes. This means that robots tasked
to monitor these processes must not only be robust to fail-
ures, but also be able to operate with potentially significant
communication constraints. Furthermore, in situations where
only sparse measurement data is available, robots must have
the ability to operate in a distributed fashion, often with
intermittent network connectivity, while simultaneously ex-
tracting as much information from the obtained data in order
to successfully estimate and track the process of interest.

Modeling complex, nonlinear dynamic processes is gen-
erally a challenging task, but there are existing techniques
to accomplish this in an online fashion. One such method
are Gaussian Processes (GPs) [13] which use a model free
approach to optimize hyperparameters to fit a kernel function
to the underlying process. While generally applied to sta-
tionary processes [14]–[16] for spatial field estimation, GPs
can be extended to include temporal components of the pro-
cesses as in [17]. Another method is the proper-orthogonal
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decomposition (POD) [18]. POD has been extensively used
to determine the placement of static sensors for modeling and
estimation of various spatiotemporal processes [19]–[22]. In
[23], a distributed POD was presented to determine the best
sensing locations for a team of robots to adaptively track
and sample a dynamic spatiotemporal process assuming a
fully connected mobile robot communication network. What
all these methods have in common, is that they disregard
the communication constraints on the mobile robot network.
Assuming full connectivity or maintaining an all-time con-
nected network is unfeasible in large spatial scales with a
reduced number of mobile robots but can be overcome with
the introduction of an intermittently connected network.

In this work, we take inspiration from [23], [24] and
present an asynchronous adaptive sampling and reduced-
order modeling framework for multi-robot teams via inter-
mittently connected mobile communication networks. Taking
inspiration from [24], we employ the use of communication
events to create an intermittently connected network. Differ-
ent from [24], the communication events in this work are not
constrained to a common location in space but to a connected
subnetwork for every team somewhere in continuous space.
Towards this end, we consider the development of a reduced-
order model (ROM) of the process of interest when robots
must rely on measurements obtained online and shared
across an intermittently connected communication network.
Similar to [23], we assume our team size is small and
each robot’s sensing radius is finite and thus the team is
unable to achieve full coverage of the workspace. Thus,
a ROM of the spatiotemporal process is computed using
sparse measurements obtained by the team and the ROM
is employed to estimate field values in regions not covered
by the team. Different from [23], we explicitly address the
planning of trajectories that will enable the robots to move
to the most informative sampling locations.

The main contribution of this work consists of an inter-
mittent communication framework for distributed multi-robot
teams adaptively sampling and modeling nonlinear dynamic
spatiotemporal processes. To the best of our knowledge, this
is the first framework that explicitly addresses the estima-
tion of dynamic spatiotemporal processes via asynchronous
updates within an intermittently connected communication
network. Our solution allows the efficient modeling of a
dynamic process while guaranteeing communication between
robots with constrained communication abilities. The ROM
enables the robots to infer measurements of the dynamic
process at unseen locations and to plan their paths to reduce
the model uncertainty of the dynamic process of interest.
The algorithm can be scaled to larger networks of robot
teams due to its inherent distributed nature and intermittent
communication. Finally, we show in simulation studies for
different scenarios how the algorithm compares to fully and
all-time connected robot frameworks and outperforms them.

The rest of this work is organized as follows, in II the
problem is formalized, in III the intermittent connectivity
framework is presented, in IV the simulation setup is de-
scribed, the results of the simulations are shown in V and

conclusive remarks in VI summarize the work.

II. PROBLEM FORMULATION

Consider modeling a dynamic process P in a continuous
spatial region Ω ⊂ R2. We can discretize Ω into n spatial
points at which measurements of the dynamic process P
can be obtained. Let there be R mobile robots, where R�
n, which live in Ω, that can collect measurements of the
dynamic process according to

y(t,x) = P (t,x) + z, (1)

where y ∈ Rm are the measurements of a single robot at
discrete time steps t = 1, ...,m at locations x ∈ Ω and
z ∼ N (0, w) is the measurement noise with variance w.

Furthermore, assume robots have a limited communication
range cr � Ω so that they can only communicate with other
robots in close physical proximity. This introduces a strong
constraint on the mobility of robots if they are to maintain a
communication network at all time. Therefore, we propose
an intermittent communication which requires only a subset
of the robots to form a connected subnetwork at a spatial
location. Robots are assigned to M ≥ 1 teams Ti for i =
1, ...,M which define the subset of the subnetwork and each
robot is part of exactly two teams. The teams are designed
so that there exists a sequence of teams, where consecutive
teams have non-empty intersections, connecting every two
teams of robots. This ensures that information can propagate
in the network.

Consider a team of robots Ti, we define a graph
GTi

(VTi
, ETi

) with nodes VTi
as the locations of the robots

and edges ETi
as the communication links between robots in

Ti, as the communication graph of team Ti. Whenever GTi

forms a connected network, we have a communication event
in team Ti. To ensure communication events over time for
all teams, we require that GTi

is connected infinitely often
over time for all teams. This requires that paths of the robots
in each team are planned in order to form a connected graph
while sampling at informative locations in Ω along the paths
to construct a model of P .

Problem Statement: Given a region Ω discretized into n
spatial points, R homogeneous robots with limited communi-
cation range cr divided into M teams Ti such that R � n,
develop a path planning strategy to adaptively sample and
model the process P such that the communication graphs
GTi

of all teams are intermittently connected infinitely often.
For the sake of simplicity, we assume robots are point

masses with perfect state estimation and reliable communi-
cation. Nevertheless, these assumptions can be relaxed and
will be a direction for future inquiry.

III. METHODOLOGY

To enable robots to better model and track the dy-
namic spatiotemporal process of interest, robots meet asyn-
chronously in a given order to exchange information which
creates an intermittently connected robot communication net-
work. In this work, we take inspiration from [8], [12], [24],
[25] to determine how best to generate a schedule to ensure
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infinite repetitions of meeting events for the distributed robot
teams. We pair this with an RRT* based path planning
strategy to identify the meeting locations for robots that are
scheduled to meet.

The integrated control and coordination framework for
sampling and modeling of a dynamic process under inter-
mittent communication is described in Alg. 1. It requires
the initial paths and a periodic communication schedule that
determines when each team should communicate. The robots
then follow their respective paths and take measurements
along the way. At the final waypoint, all the robots from
the same team meet and exchange their measurements. Now,
the model can be updated, which only needs to be done by
one member of the team since they all have the same data
available. Once the model is updated and shared with the
team members, paths for the next meeting are calculated.
This process then repeats infinitely often.

Algorithm 1 Coordination Framework

1: Input Initial paths pinit
ij for robots and schedule(k)

2: for k = 1 :∞ do
3: Follow paths pk

ij and collect measurements every ∆t
4: Exchange information at meeting location with team

members rij ∈ Ti
5: Update model parameters and estimate field
6: Create paths pk+s

ij for next meeting event for team
Ti (Alg. 2)

7: end for

In order to avoid a memory overflow, only data from
a newer timestep is kept in memory if two robots took
measurements at the same location. This has a drawback
on the modeling side, but ensures a small memory footprint.
Furthermore, even though the path planner schedules meeting
locations with simultaneous arrival times, it is not a hard re-
quirement. The team members will wait until all members are
at the meeting location before continuing with the algorithm.
This ensures that there is no deadlock in case robots arrive
late due to disturbances.

A schematic overview of the coordination framework is
shown in Fig. 1 and the following sections will explain the
different blocks of the algorithm.

Fig. 1: Schematic representation of overall framework.

A. Scheduling Communication Events

To ensure communication events between multiple robot
teams, a schedule needs to be created. The schedule does

not determine the physical time of meetings, but the order
in which the meetings should happen, thus creating asyn-
chronous communication events for the teams. Hereafter, the
discrete time instants when a meeting happens are called
epochs and are denoted by k. The constructed schedules are
periodic in the sense that communication within team Ti
happen every s epochs. Assume 4 robots distributed in 4
teams as depicted in Fig. 2, where each robot is a member
of two teams as illustrated by the different colors on the robot
body. In order to have a conflict free schedule, robots cannot
have a meeting with two different teams during the same
epoch. In the illustrated case, the schedule results in 2 epochs
with a maximum period s = 2 between meetings with the
same team. A more in-depth explanation of the construction
of such schedules can be found in [8]. The resulting schedule
for the illustrated example is

schedyg
schedrg
schedrb
schedyb

 =


1 4
1 3
2 3
2 4


∞

, (2)

where the subscripts for the schedules are the colors of the
corresponding boat and the ∞-symbol shows the infinite
repetition of the schedule. The right matrix shows the team
correspondence and which team has a meeting at a given
epoch. In our illustrative example, at epoch k = 1, teams
T1, T2 have a meeting and at epoch k = 2, teams T3, T4

have a meeting. In a scenario with a different configuration
of robots and teams, it is possible that in order to create a
conflict free schedule, some robots will have no meeting at a
given epoch. This does not mean that they will wait during
that epoch but that they are free to roam around and take
measurements during that time.

Given the schedule, the next task is to plan the paths to
enable the robots to arrive at their scheduled meeting.

Fig. 2: Schematic of the intermittent communication between
4 different teams (T1 to T4). Connected line corresponds to
the first executed paths and the interrupted line to the second.
After just 2 epochs the initial robot teams meet again and
have gathered all the information from the other teams.

B. Sampling-Based RRT* Path Planning

Sampling-based path planning can be done with RRT*
[26]. The algorithm constructs a graph Gk+s

Ti
(V, E) for team

Ti at epoch k+ s in the convex workspace Ω, which we can

4800



use to create a goal set X i
g for every team i with robots rij

with properties:

X i
g = {v ∈ Ω| (i) λ2(L(Gk+s

Ti
(v))) > 0

(ii) ‖ min
rij∈Ti

tij(v)− max
rij∈Ti

tij(v)‖ < ∆t

(iii) unc(v) < δ}, (3)

where (i) defines a connected graph if the second smallest
eigenvalue of the Laplacian is positive [27], (ii) ensures that
the robots arrive at the meeting location in a predefined time
interval ∆t and (iii) ensures a reduction of the uncertainty in
the model so that the robots explore before meeting again.

We propose an adapted version of the RRT* algorithm in
Alg. 2 similar to [24]. It is similar to the original version but
in line 7 instead of just using a random sampling location
vrand, we look for a random sampling location which gives
the highest information gain along the trajectory towards
it, for a given number of tries ntries. The output of the
algorithm is the path for each robot which is given by its
tree that is rooted in the last meeting locations of the teams
in epoch k+ s− 1 and is connected to the trees of the team
members in the new meeting location at epoch k + s.

In the following, the algorithms for steer, extend and
rewire will be explained and their respective differences
highlighted.

Algorithm 2 Path Planning

1: Input robots rij in team Ti
2: Initialize graph V = {v0}, E = ∅,Xg = ∅
3: for s = 1 : nsamples do
4: for c = 1 : ntries do
5: Sample vrand,c from Ω
6: Find nearest node vnearest ∈ V to vrand,c
7: Calculate information gain along path

vnearest → vrand,c
8: Keep vrand ← vrand,c with highest gain
9: end for

10: Steer towards vrand to find vnew (Alg. 3)
11: Update vertices V = V ∪ vnew
12: Build set Vnear = {v ∈ V|‖v − vnew‖ ≤ ε}
13: Extend tree towards vnew (Alg. 4)
14: Rewire tree (Alg. 5)
15: end for
16: Find vend ∈ X i

g with smallest travel time
17: return pk+s

ij = (v0, ..., vend)

The algorithm for the steer function is shown in Alg.
3. It takes the nearest neighbor node to the sampled node
and tries to extend the tree towards the sampled node while
satisfying the robot dynamics. In this case, the robots have
single integrator dynamics with bounded maximum velocities
umax. Furthermore, the robots are limited to a maximum
travel distance ε for the extension of the tree. In lines 5-9 the
expected delay at the nearest node for all robots of the same
team is calculated. The expected delay reduces the allowed
distance to vnew to synchronize arrival times at the meeting

location. The output of the algorithm is a new position vnew
which is then added to the graph.

Algorithm 3 Steer

1: Input robots rij in team Ti, max travel distance ε
2: Compute dij = vrand − vnearest
3: Compute dmin = minrij (ε, ‖dij‖)
4: Compute travel time ∆tdmin

= dmin/umax

5: Compute expected delay ∆tc,ij for each rij
∆tc,ij = ∆tdmin

− (tij(vnearest)−minrij tij(vnearest))
6: if ∆tc,ij > 0 then
7: vnew,ij = vnearest,ij + umax∆tc,ijdij/‖dij‖
8: else
9: vnew,ij = vnearest,ij . rij does not move

10: end if

In Alg. 4 the parent node to the new node is selected,
out of a set of close nodes, based on some cost function. In
this case, the cost function measures the utility of the node
and is a trade-off between travel time and information gain.
The output is the extension of the graph by adding an edge
between the best parent node to the new node. Furthermore,
the new node is examined on the goal set conditions and if
applicable, added to the goal set.

Algorithm 4 Extend

1: Input robots rij in team Ti
2: Set vmin = vnearest and utilitymin = Utility(vnew)
3: for vnear ∈ Vnear do
4: Compute Utility(vnew) with vnear as parent
5: if Utility(vnew) > utilitymin then
6: Set vmin = vnear, utilitymin = Utility(vnew)
7: end if
8: end for
9: Update graph with edges E = E ∪ {(vmin, vnew)}

10: Utility(vnew)← utilitymin

11: if vnew ∈ X i
g then

12: Update X i
g = X i

g ∪ {vnew}
13: end if

During the rewiring process, as shown in Alg. 5, we look
at the case when the new node is the parent to close nodes. If
the utility increases by selecting the new node as a parent, we
update the edges by removing the old parent node and adding
the new node as the parent. This can have implications on
the goal set, which thus needs to be updated again.

The proposed sampling-based algorithm is probabilisti-
cally complete since RRT* is probabilistically complete and
the steer function satisfies the condition that vnew is closer
to vrand than vnearest. Unlike in [24], we drop the equal
time constraint in the rewiring process and allow the robots
to arrive in a small time interval at the meeting location,
which makes the algorithm asymptotically optimal again.

C. Reduced-Order Modeling
Online modeling of dynamic spatiotemporal processes is

no straightforward task and while several methods exist, it
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Algorithm 5 Rewire

1: Input robots rij in team Ti
2: for vnear ∈ Vnear do
3: Compute utilitynew ← Utility(vnear) with vnew as

parent
4: if utilitynew > Utility(vnear) then
5: Update edges

E = E \ {(vparent, vnear)} ∪ {(vnew, vnear)}
6: end if
7: Update goal set X i

g

8: end for

is difficult to choose the appropriate one for a given task.
For this reason, this work focuses on two different methods:
Proper-Orthogonal Decomposition [18] and Gaussian Pro-
cess Regression [13]. In the following sections we briefly
summarize the two methods and describe how each method
can be used to model spatiotemporal processes, how new
measurements can be incorporated into the models, and how
the models can be used to estimate missing field values.

1) Proper-Orthogonal Decomposition
Modeling fluid dynamics consists of capturing the com-

plex temporal and spatial behaviors of the process. Proper-
Orthogonal Decomposition [18], also known as Principal
Component Analysis, Empirical Orthogonal Decomposition,
and/or Karhunen–Loeve Decomposition, extracts the dom-
inant dynamics of the process by transforming the set of
spatiotemporal observations into a set of linearly uncorre-
lated principal modes that enables the construction of a low-
dimensional approximation of the process itself. We briefly
summarize the online POD methodology for completeness
and refer the interested reader to [23] for details.

In general, POD is calculated using all available snapshots
of data. Since we are interested in the online estimation of
the process, we assume data is only available from the mea-
surements obtained up to the current time. Thus, for the time
instances t = 1, ...,m, we denote the set of measurements
obtained as y(t) = [x1(t1), x2(t2), ..., xn(tm)]T , where tm
is the current time step and xn is the n-th location of a
measurement in Ω. Let

K =
1

n

t=tc∑
t=1

y(t)y(t)
T

=
1

n
YYT , (4)

denote the covariance matrix where Y ∈ Rn×m. By solving
the symmetric eigenvalue problem Kφi = λiφi and sorting
the n eigenvalues and orthonormal eigenvectors of K such
that λ1 > λ2 > ... > λn, we obtain a new basis φ.

The basis φ can now be truncated into a low-dimensional
basis Φ by choosing k eigenvectors so that their correspond-
ing eigenvalues satisfy∑i=k

i=1 λi∑i=n
i=1 λi

≥ E, (5)

where E is a user-defined fraction of the total variance of
the system. The truncated basis provides a reduced-order

approximation of the dynamic spatiotemporal process which
can be used to infer the measurements of the dynamic process
in regions of the workspace that have not been visited and/or
not covered by a sensor as follows

ŷ(t) = Φc(t), (6)

where c(t) are time dependent coefficients.
Since the data points correspond to sparse measurements

and do not cover the complete field, we employ the gappy
POD [18], [19], [21] which is a variant of the standard POD
developed to be robust to missing or sparse measurements.
Gappy POD allows us to calculate an estimate of the time
dependent coefficients c(t) from the reduced basis Φ and
the sparse measurements y(t) with

ĉ(t) = A−1B

for A = ΦTΦ and B = ΦTy(t), (7)

where this estimated coefficient can then be used in (6) to
infer the missing measurements in the field.

This process is repeated whenever we want to incorporate
new measurements into our model.

2) Gaussian Process Regression

Another widely used method for modeling of spatial pro-
cesses are Gaussian Processes [13]. GPs are a non-parametric
Bayesian technique and are characterized by a mean and
covariance function (kernel) and a set of hyperparameters. In
order to incorporate the spatial and temporal characteristic of
the dynamic process, an appropriate kernel has to be chosen.

The most used kernel for spatial processes is the squared
exponential (SE) kernel, also known as radial basis functions.
Several spatiotemporal kernels have been investigated in
[17], but higher complexity in the kernels introduce more
computational costs. By multiplying a spatial SE kernel with
a temporal SE kernel,

SE(x,x′|θ) = σ2
f exp

(
− 1

2
(x− x′)TM(x− x′)

)
+ δ(x, x′)σn (8)

K(x,x′, t, t′|θ) = SE(x,x′|θ)× SE(t, t′|θ), (9)

where M = diag(l)−2 and θ = [σ2
f , l, σn], a time dimension

can be added to the normally 2-dimensional SE kernel. The
hyperparameters θ are the model variance σf , lengthscale l
for each dimension, and the noise variance σn.

GPs allow us to estimate the joint distribution of measure-
ments at observed locations (x,y(t)) and infer estimated
measurements at unobserved locations (x∗,y∗(t)) as[

y(t)
y∗(t)

]
∼ N

(
0,

[
K + σ2

nI KT
∗

K∗ K∗∗

])
, (10)

where K = K(x,x), K∗ = K(x∗,x) and K∗∗ =
K(x∗,x∗). Thus we can estimate the Gaussian posterior
mean and covariance with Ky = K + σ2

nI as

ŷ∗(t) = K∗K
−1
y y(t)

Σ̂∗(t) = K∗∗ −K∗K−1
y KT

∗ . (11)

4802



We can train the model by optimizing the kernel’s hy-
perparameters with the available data. This can be done by
maximizing the log-marginal likelihood

log p(y|x) = −1

2
yTK−1

y y − 1

2
log|Ky| −

n

2
log 2π (12)

with respect to the hyperparameters θ.
As in the case of the POD, this process is repeated

whenever new measurements are included into the model.

IV. SIMULATIONS

In this section, we describe our simulation setup, scenarios
and the evaluation metrics used to evaluate the proposed
coordination framework. The implementation of the GP
modeling was done using the Python library GPy [28]. An
accompanying video of a simulation is available online.

A. Setup

In order to analyze the performance of the coordination
framework, a simulation of a 600×600 2-dimensional pixel
grid space was used. The dynamic process overlaid on the
grid space was obtained from video data of an experimental
flow tank at low Reynolds number. The conducted fluid
experiments consisted of glycerol in a 10×10cm tank with
a depth of 1 - 2cm. Submerged in the tank was a 4×4 array
of equally spaced disks, where two sets of 8 disks could
be separately controlled. The resulting flow is spatially non-
uniform and time-varying. The dye was strategically placed
to ensure it stretched along boundaries of dynamically dis-
tinct regions over time. A grayscale video of the experiment
was used to estimate the concentration values of the dye at
each time step. Fig. 3 shows the dye concentration over time
and is akin to plankton assemblages in the ocean.

The selected configuration for the robot teams was 4 robots
in 4 different teams resulting in a schedule with 2 epochs
as already described in the example of III-A. The starting
locations for the robots were in the 4 corners of the simulated
space for the distributed, intermittently connected scenario
and in the center for the all-time connected scenario. Gaus-
sian noise z ∼ N (0, 0.2) was added to the measurements
of the robots and the simulation duration was 100s. The
sensing and communication radius sr and cr depended on
the applied scenario and were sr = 1, cr = 3 for the GP
modeling and sr = 20, cr = 3 for the POD in the case of
intermittent connectivity, while for all-time connectivity the
communication radius was cr = 20.

Fig. 3: Different time instances of the dye solution depicting
the dynamic process to be modeled. Time evolves from left
to right in images. Color indicates dye concentration.

1) Scenarios

Simulations were carried out for 12 different scenarios
with 10 random runs for each scenario. Abbreviations for
the cases are: stationary process SP, dynamic process DP,
all-time connected AC, fully connected FC, intermittently
connected IC, Gaussian Process GP and proper-orthogonal
decomposition POD. The scenarios are the following:

1) SP, AC, GP
2) SP, AC, POD
3) SP, FC, GP
4) SP, FC, POD
5) SP, IC, GP
6) SP, IC, POD

7) DP, AC, GP
8) DP, AC, POD
9) DP, FC, GP

10) DP, FC, POD
11) DP, IC, GP
12) DP, IC, POD

For the all-time connected framework, the robots were
geometrically constraint to stay in a fixed configuration
from each other in order to guarantee an all-time connected
network. The path planning algorithm was then applied to
their respective geometric mean position.

B. Error Metric

Capturing the error of the model is not a straightforward
task since we are not only interested in a pixel to pixel
comparison, but also if the model is able to capture all the
important dynamics of the complex spatiotemporal process.
For this reason, two error metrics have been employed.

1) Root-Mean-Square Error

A classic metric is the Root-Mean-Square Error (RMSE).
It looks at a pixel to pixel comparison and is calculated as

RMSE =

√
E((X̂ −X)2), (13)

where X̂ is the estimated field and X is the ground truth at
the corresponding time instance.

2) Procrustes Analysis

The goal in Procrustes analysis [29], [30] is to find an
optimal scale factor f , translation and rotation matrix Θ,
which then allow to superimpose the model estimate onto the
ground truth and compare the dissimilarity index (DISSIM),
defined as

R = argmin
Θ
‖ΘX̂ −X‖F subject to ΘT Θ = I

DISSIM =
∑

(X − X̂ΘT f)2, (14)

where f is the sum of the singular values of XT X̂ . The
dissimilarity index goes from 0 to 1, where 0 means identical.
Procrustes analysis thus gives a measure of the captured
features of the dynamic process.

V. RESULTS

The simulation results of 4 robots in 4 teams under the
scenarios described in IV-A.1 can be seen in Fig. 4 for
the spatiotemporal cases. From a visual perspective one
can clearly see that the distributed, intermittently connected
approach results in a more accurate modeling of the process
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(a) All-time connected with POD. (b) Intermittently connected with POD.

(c) All-time connected with GP. (d) Intermittently connected with GP.

Fig. 4: Modeling accuracy of the different reduced-order models for the dynamic process with all-time 4a, 4c and
intermittently 4b, 4d connected robots. Depicted from left to right: estimated field based on model, trajectory/estimate
uncertainty (coverage), ground truth with robot trajectory overlaid.

(a) RMSE for all the different scenarios. (b) Dissimilarity index for all the different scenarios.

Fig. 5: Comparative results of the RMSE 5a and the dissimilarity index 5b for all the different scenarios with 10 trials each.
Algorithm is compared between POD and GP modeling as well as intermittent, full and all-time connected scenarios. The
dissimilarity index goes from 0 to 1 where 0 means identical.

compared to the scenario where the robots are constraint
to be all-time connected. It is also clear why we need
two error metrics, since there are only a few features to
be captured by the model, and in case of failure to do
so, the RMSE error might not be able to elucidate this.
Nevertheless, Fig. 5 shows a clear increase in performance
for the intermittent communication framework for both the
RMSE and dissimilarity index in all cases.

TABLE I: Mean error and standard deviation for all scenar-
ios. Orange columns correspond to GP and yellow to POD.

Simulation ScenariosError
Results 1 2 3 4 5 6 7 8 9 10 11 12
µar 1.95 1.98 1.94 1.88 1.44 1.85 2.08 2.15 2.13 2.00 1.89 1.97
σr 0.48 0.14 0.35 0.15 0.28 0.21 0.19 0.12 0.39 0.19 0.34 0.21
µbd 0.55 0.55 0.45 0.39 0.36 0.40 0.67 0.64 0.51 0.53 0.45 0.48
σd 0.22 0.24 0.21 0.20 0.17 0.25 0.17 0.15 0.14 0.17 0.12 0.15

aSubscript r stands for RMSE, bSubscript d stands for DISSIM.

It is interesting to point out that the GP models only get

a single point measurement at each sensing period, while
the POD requires a larger sensing range to achieve similar
performance. This influences the performance in the case
of all-time connectivity, meaning that the POD is using a
lot more points to estimate the process and therefore has a
slightly better performance in the spatiotemporal case as seen
in the dissimilarity index. In the case of a stationary process
however, both modeling approaches have almost identical
modeling performance for the all-time connected framework.
This result, however, does not transfer when intermittent
connectivity is considered. There is a small increase in
performance for the GP compared to the POD modeling
approach in both the stationary and dynamic process. GPs
and PODs both allow to make forecasts for future time steps
of the dynamic process, but in case of the GP it comes
at a higher computational cost, which should be taken into
account for future implementations on real robots.
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Table I summarizes the results. The most interesting
scenarios are 6-12 which look at the dynamic process.

VI. CONCLUSION

In this work, we investigated the problem of adaptively
sampling and modeling a dynamic process with distributed,
intermittently connected robots. The communication con-
straints were overcome with the introduction of meeting
locations and path planning. Adaptive sampling was achieved
by developing a ROM of the process and using the ROM to
determine the next best sampling locations for the robots
in a team. To the best of our knowledge, this is the first
framework for distributed adaptive sampling and reduced-
order modeling using an intermittently connected mobile
robot communication network which could be extended to
large-scale robot networks. Simulations demonstrated the
team’s ability to distributively model the process under in-
termittent communication for different scenarios and clearly
showed increased performance when compared to robot
teams maintaining full or all-time communication network
connectivity.

Future work will investigate different kernels for the
Gaussian Processes, look into the exploitation versus explo-
ration dilemma during path planning as well as introduce
heterogeneity in sensing and motion capabilities in the robot
teams. Real world experiments should be performed to vali-
date the framework and better investigate the computational
complexity of the proposed approach.
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