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Abstract— In this paper, we introduce a rotational primitive
prediction based 6D object pose estimation using a single
image as an input. We solve for the 6D object pose of a
known object relative to the camera using a single image
with occlusion. Many recent state-of-the-art (SOTA) two-step
approaches have exploited image keypoints extraction followed
by PnP regression for pose estimation. Instead of relying
on bounding box or keypoints on the object, we propose to
learn orientation-induced primitive so as to achieve the pose
estimation accuracy regardless of the object size. We leverage
a Variational AutoEncoder (VAE) to learn this underlying
primitive and its associated keypoints. The keypoints inferred
from the reconstructed primitive image are then used to regress
the rotation using PnP. Lastly, we compute the translation in
a separate localization module to complete the entire 6D pose
estimation. When evaluated over public datasets, the proposed
method yields a notable improvement over the LINEMOD, the
Occlusion LINEMOD, and the YCB-Video dataset. We further
provide a synthetic-only trained case presenting comparable
performance to the existing methods which require real images
in the training phase.

I. INTRODUCTION

The 6D object pose estimation intends to recover the ori-
entation and translation of the object relative to the camera.
When solving 6D pose estimation, reaching accurate, fast
and robust solutions has been a key element of augmented
reality [1], robotic tasks [2, 3, 4], and autonomous vehicles
[5]. Despite the widespread use of RGB-D cameras, single
image-based pose estimation is still essential when an RGB-
D camera is not applicable.

Recent advances in deep learning-based object pose esti-
mation has been groundbreaking. Direct end-to-end 6D pose
regression suffered from the non-linearity of the rotation, and
studies tackled this issue through orientation representation
[6] or combining Perspective-n-Point (PnP) and random sam-
ple consensus (RANSAC). The latter approaches reported
current state-of-the-art (SOTA) performance by leveraging
a two-step approach for pose estimation [1, 7, 8]. These
approaches extract keypoints from the RGB image using
deep learning and compute the 6D pose of the object using
2D-3D correspondence matching, such as the PnP algorithm.

We were also partially motivated by the finding in [9]
that an Augmented Auto Encoder (AAE) could implicitly
represent a rotation when training an AAE from a 3D CAD.
The main advantage of this approach is that there is no
need for manual annotation to prepare ground pose labeled
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Fig. 1: We train VAE to reconstruct objects and the associated
primitive followed by the keypoints extraction over the
inferred primitive. Keypoints are extracted from each corner
plus the center, the same as the object center (i.e., 21).

training images. While [9] only solved for the orientation
retrieval given a discretized orientation set, we reconstruct a
primitive from which keypoints are extracted under occlusion
and complete a full orientation regression.

This paper solves for the direct 6D pose regression by
introducing a novel primitive descriptor in Fig. 1. The
proposed solution, primitive associated 6D (PrimA6D) pose
estimation, combines a direct and holistic understanding of
an image with keypoint based PnP for the final orienta-
tion regression. More specifically, we newly introduce the
primitive decoder in addition to the VAE to increase the
discriminability of the orientation inference. Via this step,
like the aforementioned studies, we aim to find reliable
keypoints in an image for pose regression extracting from the
reconstructed primitives. Differing from previous methods,
our method presents the following contributions.

• We propose a novel 6D object pose estimation network
called PrimA6D, which introduces a rotation primitive
reconstruction and its associated keypoints to enhance
the orientation inference.

• The proposed estimation scheme mitigates the manual
effort of preparing label annotated images for training.
The proposed primitive is straightforward to generate
given rotation in 3D CAD; the trained VAE allows us to
learn from synthetic images via domain randomization
robust to occlusion and symmetry.

• We verify the meaningful performance improvement
of 6D object pose estimation compared to the ex-
isting SOTA 6D pose regression methods. The pro-
posed method improved estimation over LINEMOD
as 97.62% (PVNet 86.27%), Occlusion LINEMOD as
59.77% (PVNet 40.77%), and YCB-Video as 94.43%
(PVNet 73.78%) in terms of ADD(-S).

• The proposed method is more generalizable than ex-
isting methods showing less performance variance be-
tween datasets. This superior generalization capability is
essential for robotic manipulation and automation tasks.
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Fig. 2: The reconstruction stage of PrimA6D. In the reconstruction stage, an encoder using ResNext50 [10] and an
reconstruction decoder consisted of fully deconvolutional layers form the VAE. We reconstruct both object and primitive in
a separate decoder. To increase the discriminability, we additionally introduce adversarial loss and train using GAN.

II. RELATED WORKS

PnP based approaches establish 2D-3D correspondences
from keypoints or patches and solve for the pose from these
correspondences. Keypoint-based approaches define specific
features to infer the pose from an image, such as the corner
points of 3D bounding-box. These approaches chiefly involve
two steps: first, the 2D keypoint of an object in the image
is computed, and then an object pose is regressed using the
PnP algorithm. In BB8 [11], the authors predicted the 2D
projection corner points of the object’s 3D bounding box.
Then, they computed the object pose from 2D-3D corre-
spondences using PnP algorithm. Similarly, [12] additionally
added the central point of object to the keypoints of BB8
[11]. Unfortunately, [11, 12] revealed the weakness to the
occlusion that prevents defining the correct bounding box of
an object. To alleviate this issue, PVNet [1] predicted the unit
vectors that point to predefined keypoints for each pixel in an
object. By computing the locations of these keypoints using
unit vector voting, the authors substantially improved their
accuracy. However, these keypoint-based approaches may
suffer when an object lacks texture, whereas the proposed
primitive can be robustly reconstructed even for small and
textureless objects.

The part-based approaches extract parts of an object called
patches for pose regression. This method is frequently used
with depth data. For instance, [13] jointly predicted the object
labels and object coordinates for every pixel, then computed
the object pose from the predicted 2D-3D correspondence
matching. In [14], the authors extracted heatmaps of multiple
keypoints from local patches then computed the object pose
using the PnP algorithm. Depth data may not always be
available and we propose using a single RGB as input.
Recently, [15] exploited Auto Encoder (AE) to generate an
image representing 3D coordinate per each pixel. Together
with the reconstructed image containing 3D information,
the expected error per pixel was also estimated to sort
meaningful 2D-3D correspondence.

Unlike the aforementioned approaches, which consist of
steps, holistic approaches utilize the overall shape of the
object appearing in an image to directly regress the object
pose relative to the camera. In Deep-6DPose [16], the authors
found the regions where the objects were located through the
Region Proposal Network (RPN). Despite solving for both
object detection and 6D pose estimation, their method was
vulnerable to small and symmetrical objects since they relied
on the detected regions. In SSD-6D [17], the authors used
the discrete 6D pose space to represent the discriminable
viewpoint. SSD-6D is a Single Shot Multibox Detector
(SSD)-style pose estimation model that extends the work of
[18]. Their method had a faster inference time than other
methods though it sacrificed accuracy.

Incorporating a mask has been widely adopted. For ex-
ample, [2, 19, 3, 20] utilized an mask of the object to
solve the pose estimation task. The well-known PoseCNN
[19] required an Iterated Closest Point (ICP) refinement
for better accuracy. Stemming from PoseCNN, [20] enabled
a real-time performance with RGB data. The authors of
[19, 20] also reported meaningful results, but their works
were sensitive to the issue of object occlusion. Tackling the
occlusion issue, SilhoNet [2] constructed an occlusion-free
mask even from the occluded region, through CNN. This
type of mask level restoration enhanced the performance over
occlusion, however, yielded low accuracy for symmetrical
objects. Unlike these methods relying on masks, we exploit
the reconstructed object to not only regress the translation
but further tackle the occlusion issue.

All the abovementioned methods require true pose-labeled
images for training. Another stream of studies has focused on
leveraging latent code without the need for labeled training
images via AAE to solve this issue. Without requiring the
pose label from object 6D pose estimation, [9] utilized
the latent code generated from the object recovery process
using AE. The object pose was determined by a similarity
comparison with the predefined latent codebook for each
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Fig. 3: The rotation and translation inference. We use
keypoints learned from the reconstructed primitive for the
orientation estimation using PnP. In the translation inference
stage, the network input is created using the output of the
reconstruction decoder through object relocalization.

pose, but the accuracy was dominated by the size of the
codebook with a discretized orientation class. We have
overcome this accuracy limitation and achieved substantially
improved performance from a synthetic dataset.

III. METHOD

Given an RGB image, we compute the 6D pose of an
object relative to the camera in terms of the its relative
transform TC

O between the camera coordinate frame C and
the object coordinate frame O. The 6D pose is represented
by quaternion and translation vectors. Similar to [15] and
[9], the proposed method can be accompanied with other
detection modules such as M2Det [21]. We use a cropped
image using a bounding box detected from other methods as
input to our network.

A. Training Set Prepration

As indicated earlier, our aim is at enabling 6D pose
regression without requiring the real images. For each pair
of a 3D CAD object and the associated camera pose, we
prepare the training set consists of a bounding box, rendered
primitive, the target keypoints (the 20 corner points and a
center point), and rendered training image. The primitive
images represent the rotation of the object having different
colors per axis as in Fig. 1.

B. Object and Primitive Reconstruction

Using the training data, the first phase of the proposed
method consists of object and primitive reconstruction as
shown in Fig. 2. We train the VAE having an encoder and
two reconstruction decoders. This step is partially similar
to AAE in [9]. In [9], the authors verified that a trained
AAE using a geometric augmentation technique learns the
representation of the object’s orientation and generates the
latent code with data for the object orientation. We adopt the
same technique in the training phase by rendering the training
images with various poses of the object. The training images
are augmented using the domain randomization technique
[22] to bridge the gap between real and rendered images.

Augmented images are fed into the encoder, and clean target
images are obtained through the reconstruction decoder using
four losses as follows. Differing from [9], our training
strategy is to use GAN by introducing a discriminator for
the reconstructed object and primitive.

1) Object Reconstruction Loss: The first loss focuses on
the reconstruction of an object by comparing the pixel-wise
loss. To prevent overfitting in the reconstruction stage, we
use the top-k pixel-wise L2 loss as follow.

LO =
1

K

K∑
i=1

`[i](‖x− x̂‖
2
), (1)

where `[i] is a function that extracts the pixel with the
ith largest error [23]. We use K = 128 in this paper. In
(1), x is the target image pixel and x̂ is the predicted
image pixel respectively. This initial latent code encompasses
the orientation but it is not sufficiently discriminative for
regression. To increase the discriminability, we introduce the
rotational primitive decoder to embolden the orientation of
the code.

2) Primitive Reconstruction Loss: The rendered primitive
image becomes the prediction target of the primitive decoder.
Using the color-coded axes in primitive image, we designed
the color based axis-aligning loss function for the primitive
decoder. When computing the loss for the channels, we
consider a per-pixel intensity difference dc for each channels
c ∈ C = [R,G,B].

dc = xc − x̂c (2)

Sc =
1

K

K∑
i=1

`[i](exp(α |dc|) · ‖dc‖
2
) (3)

Cc =
1

K

K∑
i=1

`[i](‖dc‖
2
) (4)

LP =
∑
c∈C

Sc exp

(
Cc∑
k∈C Ck

)
(5)

Here, the Sc measures misalignment of each axis in terms of
the pixel intensity difference per channel. The Cc measures
the overall misalignment per channel and discerns between
channels by penalizing the channel showing a larger error
when the primitive reconstruction loss LP is constructed.
The α is a weight constant (α = 5 in this paper).

3) Overall VAE Loss: Using these two reconstruction
losses with Kullback-Leibler (KL) divergence loss, we train
the VAE to generate both an object image and a primitive
image. By adopting VAE, the network encodes input image
x to the parameters of a Gaussian distribution q(z|x). In
doing so, we minimize the KL divergence between q(z|x)
and N (0, I). The overall loss function for the reconstruction
stack becomes as below.

LR = LO + LP +DKL (q(z|x)||N (0, I)) (6)

4) Adversarial Loss: We further aim to improve the
quality of the reconstruction using training strategy of GAN.
For instance, the reconstructed primitive sometimes becomes
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Fig. 4: The input image of the reconstruction network is
(κ=1.3) larger than the actual bounding-box allowing com-
plete object reconstruction even for inaccurate bounding-box.

ambiguous as shown in Fig. 5 and may result in incorrect
keypoints learning. Regarding this issue, introducing adver-
sarial loss improved the primitive/object prediction accuracy
and thereby the overall pose inference performance. For the
target primitive/object image X and the reconstructed image
X̂ , we consider the following loss to train using GAN [24].

LA = EX̂ [logD(X̂)] + EX [log(1−D(G(X)))]. (7)

Here we use D( · ) to distinguish if the predicted prim-
itive/object is the target primitive/object from 3D model
(true) or generated by G( · ) (fake). Following the training
strategy of GAN, we solve for G and D by minimizing
LG
A = EX̂ [logD(X̂)] and maximizing LD

A = EX [log(1 −
D(G(X)))].

C. Orientation Regression via PnP

From the reconstructed primitive we estimate the rotation
first by learning the keypoints from it. Using generated
keypoints in the training set preparation and via pixel-wise
L2 loss, we adopt ResNet18 [25] and extract the keypoints
of the reconstructed primitive using the loss as

Lrot =
∑
‖xk − x̂k‖2 . (8)

Since the keypoints consists of corners and the center point
of the object which is the same as the primitive center, we
utilize this estimated center point, C = xc = (uc, vc) for the
translation estimation.

D. Translation Regression

Given the estimated orientation, we then infer the 3D
translation by computing the scene depth Tz of the object
center (i.e., primitive center). The reconstructed image is
relocated to the original image using the bounding box of the
object. This process is called object relocalization (Fig. 3).

As the sample illustration in Fig. 4 shows, the reconstruc-
tion occurs without assuming the bounding box is centered
and thereby is robust to inaccurate object detection. The
reconstruction phase handles the inaccurate bounding box
location by properly reconstructing the object even at the off-
centered position. The inflation scaling factor κ was chosen
to handle the detected bounding box with Intersection over
Union (IoU) 0.75. A small κ fails to handle inaccuracy in
objection detection phase, and a large κ might deteriorate
the performance with increased empty space near borders.
Because this re-localization replaces an object with a re-
constructed object, the translation can be regressed over
occlusion-free objects. From this relocalized full image, we

again use ResNet18 to regress the scene depth Tz to the
object center.

Using Tz , the bounding-box, and the camera intrinsic ma-
trix K, we compute the Tx and Ty components of translation
as follows from the estimated object center (uc, vc). The
focal length f and principal point (up, vp) are obtained from
the calibration matrix while the bounding box is known when
preparing the training data.

uc = fu
Tx
Tz

+ up and uv = fv
Ty
Tz

+ vp. (9)

IV. EXPERIMENT

In this section, we evaluate the proposed method using
three different datasets.

A. Dataset

In total, three datasets were used for the evaluation:
LINEMOD [28], Occlusion LINEMOD [28], and YCB-
Video [19]. The LINEMOD and Occlusion LINEMOD
datasets are widely exploited benchmarks for 6D object
pose estimation and cover various challenges, including
occlusion and texture-less. The LINEMOD dataset comprises
13 objects with 1,312 rendered images on each for the
training and about 1,200 images per object for the test.
The Occlusion-LINEMOD dataset shares the training images
with the LINEMOD dataset. For the test, they provide pose
information for eight occluded objects. A recently released
dataset, the YCB-Video dataset is composed of 21 high-
quality 3D models, offering 92 annotated video sequences
per frame. These video sequences include various lighting
conditions, noise in the capture, and occlusion.

B. Training Detail

We sampled 50,000 object poses and rendered 50,000
training images per object together with their associated
primitives. The rendered object images were further aug-
mented using the method proposed by [22] using domain
randomization. We train our network mainly from synthetic
images and additionally train with 180 real images for three
types of dataset.

All of the networks were trained with the Adam optimizer
on Titan V. The ResNet backbone was initialized with pre-
trained weights provided in PyTorch. All networks were
trained with a batch size of 50 and a 0.0001 learning rate
for 40 epochs.

C. Evaluation Metric

(i) 2D Projection error metric To evaluate the pose
estimation in terms of the 2D projection error we also use the
same metric as in [1] and measure the mean pixel distance
between projection of the 3D model and the image pixel
points. We also count the estimation is correct if the error is
less than 5 pixels.

(ii) 3D Projection error metric Similar to [19], two
metrics were selected for evaluation. We chose the average
distance metric (ADD) [28] as the evaluation metric, which
computes the distance of transformed 3D model points



methods Holistic Approach PnP based Approach
w/o refinement w/ refinement

PoseCNN [19] Deep-6D Pose [16] BB8 [11] Tekin [12] Pix2Pose [15] DPOD [26] PVNet [1] PrimA6D-S PrimA6D-SR BB8 Tekin HybridPose [27]

ape† - 38.8 27.9 21.62 58.1 53.28 43.62 66.5 90.21 40.4 65 77.6
benchvise - 71.2 62 81.8 91 95.34 99.9 97.11 99.75 91.8 80 99.6

cam - 52.5 40.1 36.57 60.9 90.36 86.86 91.5 98 55.7 78 95.9
can - 86.1 48.1 68.8 84.4 94.10 95.47 93.89 98.74 64.1 86 93.6
cat† - 66.2 45.2 41.82 65 60.38 79.34 88.21 99.06 62.6 70 93.5

driller - 82.3 58.6 63.51 76.3 97.72 96.43 98.14 99.57 74.4 73 97.2
duck† - 32.5 32.8 27.23 43.8 66.01 52.58 72.56 90.82 44.3 66 87.0

eggbox* - 79.4 40 69.58 96.8 99.72 99.15 91.93 99.52 57.8 100 99.6
glue* - 63.7 27 80.02 79.4 93.83 95.66 91.14 99.75 41.2 100 98.7

holepuncher† - 56.4 42.4 42.63 74.8 65.83 81.92 68.71 95.31 67.2 49 92.5
iron - 65.1 67 74.97 83.4 99.80 98.88 97.3 99.56 84.7 78 98.1
lamp - 89.4 39.9 71.11 82 88.11 99.33 95.59 99.18 76.5 73 96.9
phone - 65 35.2 47.74 45 74.24 92.41 89.38 99.59 54 79 98.3

average 55.95 65.2 43.55 55.95 72.38 82.98 86.27 87.84 97.62 62.67 76.69 94.5

TABLE I: The accuracy in terms of the ADD(-S) metric for our method and baseline methods on the LINEMOD dataset.
Symmetrical objects are marked with an asterisk (*) and small objects are marked with †. PoseCNN [19] only provided the
average.

method w/o refinement w/ refinement
BB8 Tekin PVNet PrimA6D-S PrimA6D-SR BB8

ape† 95.3 92.1 99.23 97.24 99.02 96.6
benchvise 80 95.06 99.81 95.3 98.92 90.1

cam 80.9 93.24 99.21 97 99.75 86
can 84.1 97.44 99.9 93.64 99.24 91.2
cat† 97 97.41 99.3 95.08 99.83 98.8

driller 74.1 79.41 96.92 97.22 98.9 80.9
duck† 81.2 94.65 98.02 96.65 98.8 92.2

eggbox* 87.9 90.33 99.34 86.59 98.32 91
glue* 89 96.53 98.45 91.22 99.26 92.3

holepuncher† 90.5 92.86 100 81 97.41 95.3
iron 78.9 82.94 99.18 84.89 98.58 84.8
lamp 74.4 76.81 98.27 78.72 98.77 75.8
phone 77.6 86.07 99.42 93.56 99.11 85.3

average 83.92 90.37 99.00 91.39 98.92 89.25

method Rotation MAE [deg] Translation MAE [mm]
Tekin PVNet PrimA6D-S PrimA6D-SR Tekin PVNet PrimA6D-S PrimA6D-SR

ape† 5.69 6.25 6.35 3.63 29.32 47.70 10.58 5.72
benchvise 3.14 1.43 3.32 1.96 18.86 6.97 6.94 3.81

cam 3.91 1.75 3.05 1.83 33.47 9.74 7.31 4.29
can 2.89 1.48 3.14 2.01 16.87 7.93 8.47 5.55
cat† 4.79 1.88 3.91 2.27 22.61 10.56 8.27 3.35

driller 3.42 2.42 2.30 1.53 19.72 16.67 4.46 3.20
duck† 6.39 3.00 4.87 2.72 28.52 15.51 8.83 4.84

holepuncher† 4.77 1.99 7.82 3.29 31.37 9.70 15.99 4.80
iron 6.21 2.07 3.27 1.74 27.87 10.95 9.41 4.57
lamp 4.24 1.50 4.11 1.62 26.78 7.90 9.64 4.35
phone - 1.82 3.69 1.98 - 9.90 9.29 4.46

average 4.55 2.33 4.17 2.23 25.54 13.96 9.02 4.45

TABLE II: The accuracy in terms of the 2D projection error (left) and mean absolute error (MAE) (right) for our method
and baseline methods on the LINEMOD dataset. Symmetrical objects are marked with an asterisk (*) and small objects are
marked with †. Using the provided network and weight by authors, we evaluate mean absolute error. Tekin did not provide
weight for the phone model. On evaluation in terms of MAE, the symmetric object is excluded because evaluation for the
symmetric object requires a shape comparison rather than a specific pose comparison.

methods w/o refinement w/ refinement
Tekin PoseCNN Oberweger[14] Pix2Pose PVNet PrimA6D-S PrimA6D-SR w/o GAN HybridPose

ape† 2.48 9.6 17.6 22 15.81 28.71 37.35 2.75 53.3
can 17.48 45.2 53.9 44.7 63.3 61.88 67.19 5.47 86.5
cat† 0.67 0.93 3.31 22.7 16.68 40.43 44.65 1.68 73.4

duck† 1.14 19.6 19.2 15 25.24 39.28 50.65 10.87 92.8
driller 7.66 41.4 62.4 44.7 65.65 70.42 74.87 9.71 62.8

eggbox* - 22 25.9 25.2 50.17 54.31 66.01 7.02 95.3
glue* 10.08 38.5 39.6 32.4 49.62 71.03 73.02 7.72 92.5

holepuncher† 5.45 22.1 21.3 49.5 12.41 46.19 64.38 12.41 76.7
average 6.42 24.92 30.40 32.00 40.77 51.53 59.77 7.20 79.2

methods Tekin PoseCNN Oberweger PVNet PrimA6D-S PrimA6D-SR

ape† 7.01 34.6 69.9 69.14 56.58 62.64
can 11.2 15.1 82.6 86.09 69.26 76.8
cat† 3.62 10.4 65.1 65.12 54.33 58.8

duck† 5.07 31.8 61.4 61.44 64.74 67.36
driller 1.4 7.4 73.8 73.06 59.55 61.28

eggbox* - 1.9 13.1 8.43 8.53 16.48
glue* 4.7 13.8 54.9 55.37 51.83 57.38

holepuncher† 8.26 23.1 66.4 69.84 50.82 67.76
average 5.89 17.26 60.90 61.06 51.96 58.56

TABLE III: The accuracy in terms of the ADD(-S) metric (left) and 2D projection error (right) for our method and baseline
methods on the Occlusion LINEMOD dataset. All values are imported from [1] except pix2pose and hybridpose. Symmetrical
objects are marked with an asterisk (*) and small objects are marked with †.

between the ground truth pose and predicted pose using
ADD(-S) metric. When the average distance value is less
than 10% of the 3D model’s diameter, the predicted 6D pose
is considered to be correct. This ADD metric, however, is
not suitable to use with symmetrical objects. For symmetrical
objects, the average distance is computed between the closest
points.

(iii) Pose estimation metric For the original LINEMOD
dataset, we directly measure the mean absolute error (MAE)
for rotation and translation together with other metrics.
D. 6D Object Pose Estimation Evaluation

We evaluate the performance of our model on the three
datasets. The proposed method is compared against other
SOTA methods from holistic, keypoint-based and part-based
approaches. We evaluate our method when training only with

synthetic images (PrimA6D-S) and when training using 180
additional real images (PrimA6D-SR). Other existing meth-
ods were trained using additional real images. Qualitative
results for all three datasets are presented in Fig. 7 and
Fig. 8. Please also refer to prima6d.mp4. We excluded
the comparison to the case without the primitive decoder
due to drastically large error when no primitive decoder was
used.

1) LINEMOD Dataset Results: Table. I and Table. II
exhibit the evaluation for all 13 objects in the LINEMOD
dataset. Among the keypoint or the part-based approaches,
PVNet is the most recently released method with SOTA
performance and thus used as the main baseline method for
comparison.

Over the LINEMOD dataset, PrimA6D-SR outperformed



methods PoseCNN Oberweger PVNet PrimA6D-S PrimA6D-SR
002 mater chef can 55.17 49.1 81.6 82.57 99.71

003 cracker box 52.9 83.6 80.5 75.7 99.44
004 sugar box 68.3 82 84.9 97.94 99.74

005 tomato soup can 66.1 79.7 78.2 73.51 78.39
006 mustard bottle 80.8 91.4 88.3 94.42 99.96
007 tuna fish can† 70.6 49.2 62.2 56.77 79.47
008 pudding box 62.2 90.1 85.2 52.06 99.59
009 gelatin box 74.8 93.6 88.7 94.88 99.59

010 potted meat can† 59.5 79 65.1 38.72 80.35
011 banana 72.1 51.9 51.8 74.14 87.01

019 pitcher base 53.1 69.4 91.2 71.94 98.12
021 bleach cleanser 50.2 76.1 74.8 50.75 90.04

024 bowl* 69.8 76.9 89 96.84 98.79
025 mug 58.4 53.7 81.5 88.82 89.93

035 power drill 55.2 82.7 83.4 92.62 97.67
036 wood block* 61.8 55 71.5 95.68 100

037 scissors 35.3 65.9 54.8 63.89 97.85
040 large marker 58.1 56.4 35.8 85.51 94.18
051 large clamp* 50.1 67.5 66.3 97.72 98.89

052 extra large clamp* 46.5 53.9 53.9 88.25 98.12
061 foam brick* 85.9 89 80.6 80.91 96.15

average 61.28 71.24 73.78 78.74 94.43

methods PoseCNN Oberweger PVNet PrimA6D-S PrimA6D-SR
002 mater chef can 74.2 0.09 29.7 24.5 97.24

003 cracker box 0.12 64.7 50.35 21.47 93.24
004 sugar box 7.11 72.2 61.25 74.47 94.11

005 tomato soup can 5.21 39.8 60.69 85.31 89.74
006 mustard bottle 6.44 87.7 82.35 74.06 87.28
007 tuna fish can† 2.96 38.9 45.21 97.21 99.4
008 pudding box 5.14 78 52.8 69.63 99.76
009 gelatin box 15.8 94.8 94.85 52.12 97.78

010 potted meat can† 23.1 41.2 62.92 69.25 95.86
011 banana 0.26 10.3 8.18 37.85 87.01

019 pitcher base 0 5.4 79.3 46.54 69.64
021 bleach cleanser 1.16 23.2 37.51 58.61 67.11

024 bowl* 4.43 26.1 33.99 26.59 56.13
025 mug 0.78 29.2 52.98 89.75 98.3

035 power drill 3.31 69.5 74.74 51.78 78.6
036 wood block* 0 2.1 2.06 90.54 95.4

037 scissors 0 12.1 56.35 60.95 96.01
040 large marker 1.38 1.9 6.8 87.92 93.94
051 large clamp* 0.28 24.2 44.94 59.31 86.88

052 extra large clamp* 0.58 1.3 7.77 21.24 54.08
061 foam brick* 0 75 25 67.07 96.84

average 7.25 37.99 46.18 60.29 87.35

TABLE IV: The accuracy in terms of the ADD(-S) metric (left) and 2D projection error (right) for our method and the
baseline methods on the YCB-VIDEO dataset. Symmetrical objects are marked with an asterisk (*) and small objects are
marked with †.

PVNet in terms of the ADD(-S) score and presented a
comparable result in terms of the 2D projection metric.
The different performance can be understood from the MAE
metric in Table. II. If the object center point in the image
is found properly, the 2D projection metric is affected more
by the rotational estimation accuracy and ADD(-S) is more
critical to the translation inference performance. As can be
seen, PVNet exhibited higher performance than PrimA6D-
S in terms of the rotation MAE metric, which results in
a performance difference on the 2D projection metric. On
the contrary, PrimA6D-S outperformed PVNet in terms of
the translation MAE metric, which results in a performance
difference on the ADD(-S) score.

In addition, the PrimA6D(-S/-SR) presents the strength for
small and texture-less objects that the drawback in the PVNet
such as ape and cat. Especially, the PrimA6D(-S/-SR) has the
forte on the translation estimation.

2) Occlusion LINEMOD Dataset Results: Tables in Ta-
ble. III list the performance on the Occlusion LINEMOD
dataset. Here, we only evaluate the performance of models
that do not have the refinement step. As can be seen in two
tables, the PrimA6D(-S/-SR) outperformed PVNet in terms
of the ADD(-S) score and presented a comparable result in
terms of the 2D projection metric. As the PrimA6D(-S/-SR)
reconstruct the corresponding object and primitive, we can
affirm notable improvement on the occluded case. Moreover,
the PrimA6D(-S/-SR) demonstrates striking accuracy for
objects that are difficult to recognize by other methods due
to small size such as cat and holepuncher.

3) YCB-Video Dataset Result: We further evaluate the
pose estimation performance over the YCB dataset as shown
in Table. IV. The PrimA6D(-S/-SR) achieved enhanced in-
ference capability even when trained solely from synthetic
dataset (PrimA6D-S). The proposed method is capable of
inferring 6D pose of objects that are difficult to recognize
by other methods such as wood block.

Another notable point in YCB dataset is the overall

Input 
image

Without
GAN

With
GAN

Fig. 5: Effect of GAN on occluded and symmetrical object.

down performance from LINEMOD; all approaches includ-
ing PVNET and ours shows lower accuracy in YCB than
LINEMOD. This is because of the challenging and realistic
dataset nature of YCB. Despite the challenging dataset, the
proposed method shows the smallest performance drop from
LINEMOD both in terms of ADD(-S) and 2D projection
error even when solely trained from synthetic data. This
reveals the generalization capability of the proposed method
while others lacking.

E. Ablation Studies

We further evaluate the proposed method by conducting
ablation studies in terms of the effect of real images, effect
of training with GAN and bounding box accuracy.

1) Effect of real image The proposed method was de-
signed to exploit synthetic data from CAD model. However,
considering the potential discrepancy between CAD and
real data, additional weight refinement using real training
image shows very meaningful performance improvement.
We train the network only from synthetic data (PrimA6D-S)
and compare the performance improvement by adding real
images in the training set (PrimA6D-SR). This comparison is
provided for three datasets. Obviously we witness accuracy
improvement in all metrics by adding real images in the
training set.

2) Training with GAN The adversarial loss and training
strategy using GAN provides a detailed refinement of the



object and primitive reconstruction. As can be seen in
Fig. 5, the reconstructed result shows a blurry and obscure
reconstruction when without using GAN. This indicates the
potential ambiguity in the rotation and translation estimation.
Additional training with GAN enables the VAE to build
discriminability. Also, regarding symmetrical objects with
ambiguity for one axis, incorporating adversarial training
can solve the potential axis ambiguity in the reconstructed
primitive and completely form three orthogonal axes. In the
experiment, we confirmed that the ambiguous axis in the
primitive becomes the clear orthogonal axis for the other
two axes according to the qualitative result. Testing over
Occlusion LINEMOD in Table. III reveals this substantial
improvement from the adversarial loss.

3) Bounding box accuracy The input of the network
is a cropped image from an object detection module hence
the PrimA6D estimation performance may be dependent on
the detection accuracy. We have examined the effect of the
detected bounding box accuracy by reducing the IoU to the
original bounding box in terms of ADD(-S) as this is more
sensitive to the translational estimation accuracy. As can
be seen in Table. V, the performance drops as we reduce
the IoU from 1.0 to 0.75. As can be seen from Table. V,
Table. I and Table. II, the PrimA6D-SR still outperforms all
other existing methods despite the performance degradation.
More notably, the PrimA6D-S shows the exceptional result
on the Occlusion LINEMOD dataset even with decreased
IoU, being solely trained from synthetic data.

F. Inference Time
Since our method is applied after object detection, the

total inference time is also affected by the running time of
the object detection model. For example, we used M2Det
[21] that runs at 33.4 frames-per-second (fps). For the 6D
object pose estimation of a single object in an image, the
total process takes 31ms on average using a GTX 1080Ti
GPU. The entire 6D pose estimation supports 16 to 17 fps.

G. Failure Cases
Fig. 6 shows failure cases when one axis is entirely

obscured by the other two axes of the rotation primitive. This
hidden primitive axis prevents the algorithm from extracting
the correct keypoint yielding a larger rotation error. In future
work, we aim to include estimated depth from the primitive
to resolve this issue.

V. CONCLUSION

This paper reported on 6D pose estimation from a single
RGB image by introducing novel primitive learning asso-

method PrimA6D-S PrimA6D-SR PVNET
IoU 1 0.9 0.75 1 0.9 0.75 -

LINEMOD 87.84 85.48 77.22 97.62 97.23 90.72 86.27
OCC-LINEMOD 51.53 50.31 43.65 59.77 59.17 50.24 40.77

TABLE V: Performance variation in terms of the ADD(-S)
metric according to IoU showing the accuracy on bounding-
box. PVNET results are copied from Table. I and Table. II
for easy comparison.

Fig. 6: The examples of failure case.

ciated with each object. This paper presents a substantial
improvement in the pose estimation even in the occluded case
and comparable performance even using only synthetic im-
ages for training. The proposed method was validated using
three public benchmark datasets yielding SOTA performance
for occluded and small objects.
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