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Abstract— One measure of the global fault tolerance of a
redundant robot is the size of its self-motion manifold. If this
size is defined as the range of its joint angles, then the optimal
self-motion manifold size for an n-degree-of-freedom (DoF)
robot is n× 2π, which is not typical for existing robot designs.
This paper presents a novel two-step algorithm to optimize
the kinematic structure of a redundant manipulator to have
an optimal self-motion manifold size. The algorithm exploits
the fact that singularities occur on large self-motion manifolds
by optimizing the robots kinematic parameters around a
singularity. Because a gradient for the self-motion manifold
size does not exist, the kinematic parameter optimization uses a
coordinate-ascent procedure. The algorithm was used to design
4-DoF, 7-DoF, and 8-DoF manipulators to illustrate its efficacy
at generating optimally fault-tolerant robots of any kinematic
structure.

I. INTRODUCTION

Fault tolerance has been very important to the design and
operation of manipulators for mission critical applications,
where maintenance and repair are not feasible and a failure
could result in a catastrophe. Failures are less likely for
robots used in controlled environments where maintenance
is relatively easy. However, reliability is critical for robots
used in search and rescue operations [1]. Previous work has
shown that the robot failure rates in severe environments are
high [2] [3] and robot availability is as low as 50% [4].
To address some of these issues, researchers have studied
the fault-tolerant control of actuators, e.g., in automated
underwater vehicles [5] [6]. Also, Fault-tolerant control for
multirobot systems with undetected failures was discussed
in [7]. Because an entire critical mission can be jeopardized
due to an unrepairable failure [8], redesigning robots to make
them more fault tolerant is an important area of research [9].

Several aspects of robot fault-tolerance have been consi-
dered, such as fault detection, identification, and analysis,
as surveyed in [10]. The most commonly occurring failures
modes are the locked-joint failure [11], which will be consi-
dered in this work, and the free-swinging joint failure [12].
The latter mode is often transformed into the locked-joint
mode by activation of fail-safe brakes [13]. Failure tolerance,
necessarily, requires some level of redundancy. It can be
achieved by duplicating parts that are more likely to fail
(structural redundancy) [14], by human intervention to assess
and overcome faults (functional redundancy), by analyzing
working sensors to recover lost sensor information, e.g.,
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integrating a tachometer signal to recover position (analytical
redundancy) [10], or by designing a robot with more degree
of freedom (DoFs) than the minimum needed to execute a
certain task (kinematic redundancy). In this paper we focus
on kinematic redundancy.

Quantifying measures of fault-tolerance for kinematically
redundant robots has been extensively studied, focusing on
two types, i.e., local and global measures. The local fault-
tolerance measures are commonly based on the singular
value decomposition (SVD) of the Jacobian matrix of a failed
robot. These measures include the minimum singular value
[15], the robot manipulability [16], and the condition number
[17]. These local properties can be optimized by utilizing
the kinematic redundancy. For example, the gradient of a
singular value can be used to reconfigure a robot to satisfy
a desired local fault-tolerance measure [18]. In addition,
the local measures are widely used to design and control
kinematically redundant fault-tolerant robots [19]–[21].

Global fault-tolerance measures typically quantify the
fault-tolerant workspace. This makes these measures more
suitable for pick-and-place tasks. For these types of tasks, a
global measure can be used to identify the optimal fault-
tolerant workspace locations [15], i.e., locations that are
reachable both before and after a failure occurs. This is
assured by limiting the robot to operate within software-
imposed joint limits that are determined from the boundaries
of the robot’s self-motion manifold.

Designing a fault-tolerant workspace that is reachable for
any trajectory both pre- and post-failure is more difficult.
A procedure for computing the boundaries of the fault-
tolerant workspace was presented in [22]. The fault-tolerant
workspace can be maximized by determining the optimal
artificial joint limits for a robot. This has been done by
employing the gradient of the fault-tolerant workspace size
as a function of the joint limits [23]. These global properties
can be used to assess and optimize kinematic parameters of a
robot by modifying its structure to improve its fault tolerance
[24].

In our previous work [25], it was shown how one can
determine the most fault-tolerant location for a given robot
by identifying its largest self-motion manifold, where the
manifold size depends on the ranges of all joint angles. In
this work, we suggest a systematic procedure to generate
robots of optimal kinematic structure by maximizing their
self-motion manifold size. Because the largest self-motion
manifold of a given manipulator is usually not optimal, i.e.,
not all joints span a 2π range on the manifold, we present
an efficient algorithm to optimize the kinematic structure
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of a robot to achieve the theoretically optimal self-motion
manifold size.

The rest of the paper is organized in the following manner.
A definition of a global fault tolerance suitable for a wide
range of robotic applications is described in Section II. In
Section III, we present a new optimization algorithm that can
design an optimal kinematically fault-tolerant robot from any
given baseline robot. In the following section, we illustrate
the results of applying our algorithm on a 4-DoF, a 7-DoF,
and an 8-DoF robot. Finally, we present our conclusions in
Section V.

II. BACKGROUND ON SELF-MOTION
MANIFOLDS1

A. Preliminaries

Generally, the forward kinematics of a robot is a function
of its joint angles

x = f(θ) (1)

where x is an m-dimensional vector representing the end-
effector location and θ is an n-dimensional vector represen-
ting the joint angles. The inverse kinematics of a robot can
be represented as

θ = f−1(x). (2)

For non-redundant manipulators, the inverse-kinematic
solution is a limited number of distinct solutions, but for
redundant robots, i.e., n > m, where n − m is the degree
of redundancy, the inverse-kinematic solution for a certain
desired end-effector location xd can be a number of conti-
nuous sets of solutions in the joint space. Each continuous
set of solutions is a self-motion manifold. The upper bound
on the number of the self-motion manifolds for redundant
spherical, positional, and spatial manipulators is 2, 4, and
16, respectively [26]. At the velocity level, the forward
kinematics of a robot can be rewritten as

ẋ = Jθ̇ (3)

where ẋ is the end-effector velocity, J is the m × n robot
Jacobian matrix, and θ̇ represents the joint velocities.

The singular value decomposition (SVD) of J can be
written as

J =

r∑
i=1

σiûiv̂
>
i (4)

where σi’s are the ordered singular values, i.e., σ1 ≥ σ2 ≥
· · · ≥ σr−1 ≥ σr ≥ · · · ≥ σm ≥ 0, the vectors ûi and v̂i
represent the output and input singular vectors, respectively,
and r denotes the rank of J , where r < m for a singular
robot (σi = 0 for i > r). The self-motion manifold(s) of a
robot can be computed by solving

Jθ̇ = 0 (5)

for all possible θ̇ values. We are not interested in the trivial
solution θ̇ = 0.

1Much of the material in this section is adapted from [25] and is included
here for completeness.

Typically, redundant manipulators have (n − m)-
dimensional self-motion manifolds.2 At singular configura-
tions where self-motion manifolds connect, the number of
manifolds that are connecting is one greater than the rank
of the singularity. In the case that n − m = 1, the one-
dimensional self-motion manifolds associated with a desired
end-effector location xd can be computed by solving

∆θ = γv̂n + J+∆xe (6)

where ∆θ is the change in the joint angles, γ is a real positive
scalar that represents the step size along the manifold, v̂n
is the nth input singular vector that represents the one-
dimensional null vector of the robot’s Jacobian, and J+∆xe

is an error correction term where J+ is the pseudoinverse of
the Jacobian matrix3 and ∆xe is the end-effector error, i.e.,
the difference between f(θ) and the desired location, xd.

The topology of self-motion manifolds of high-DoF re-
dundant robots can be very complicated. That is not only
because visualizing all dimensions of the manifold(s) on one
plot is infeasible, but also because it is common for a self-
motion manifold to contain multiple singularities of different
ranks. In Fig. 1, we show an abstract sketch of an actual one-
dimensional self-motion manifold for a 7-DoF robot. This is
considered one manifold because it is one set of continuous
joint-space solutions for a specific workspace location. One
can note that singularities (indicated in black and red for
rank-1 and rank-2 singularities, respectively) are where the
one-dimensional self-motion manifold branches out in one
or more additional directions. The topology is more com-
plicated for multi-dimensional self-motion manifolds. For
instance, one can observe that for an 8-DoF robot, the self-
motion manifold of a typical end-effector location is two-
dimensional. This means that a rank one singularity is now
a line, not a point. The topology is even more complicated
for higher degree-of-redundancy manipulators.

For redundant manipulators where n − m > 1, a self-
motion manifold associated with a typical end-effector lo-
cation is (n − m)-dimensional, likewise, the null space of
the Jacobian matrix is (n−m)-dimensional. In these cases,
computing a self-motion manifold is challenging. Fortuna-
tely, one can efficiently find an estimate of a bounding box
on the ranges of all joint angles. This estimate can be found
by modifying (6) to

∆θ = γNJ êi + J+∆xe (7)

where NJ is a projection operator onto the (n − m)-
dimensional null space of the Jacobian matrix and êi is a
basis vector along the ith joint angle, where 1 ≤ i ≤ n [15].

2At singular configurations (singularities) associated with workspace boun-
daries, a self-motion manifold may be of a lower dimension.

3Rather than exactly computing J+, we employ the Damped Least Squares
(DLS) technique to efficiently compute the inverse kinematics in a nume-
rically stable manner. DLS is able to deal with singular configurations as
well as the ill-conditioned transition between singular and non-singular
configurations [27].



Fig. 1. This sketch illustrates the topology of a one-dimensional self-
motion manifold comprised of multiple previously disjoint manifolds (for
the Mitsubishi PA-10 7-DoF robot). The connection points between the
previously disjoint manifolds are the singular configurations. One can
observe that rank-1 singularities (in black) occur when two one-dimensional
manifolds touch, while Rank-2 singularities (in red) occur when three one-
dimensional manifolds touch. Note that visualizing the actual self-motion
manifolds is challenging because there is typically no one projection that
can show all self-motion manifolds distinctly.

The null space projection is given by

NJ =

n∑
i=r+1

v̂iv̂
>
i . (8)

One can approximate the joint-angle ranges at a specific
task location by iteratively solving (7) for i = 1 to n with
±êi. These joint ranges can be used to compute the size of
the self-motion manifold. One can terminate the iterations
while solving (7) when either a joint i spans a 2π range or
the projection of êi onto the null space becomes zero. In this
case, this could be a local minimum so that this measure is
a lower bound on the range of joint i.

B. Size of Self-motion Manifolds

The size of a self-motion manifold can be measured
differently for different applications. To distinguish between
self-motion manifolds of different shapes and sizes, [28]
suggested plotting the angular distance along a self-motion
manifold versus the angular distance from the origin of the
manifold. However, this is not practical for manifolds with
complicated topologies as well as for multi-dimensional self-
motion manifolds. By iteratively solving either (6) or (7) for
a specific task location, one can determine the ranges of all
joint angles over the manifolds. These ranges represent a
bounding box, where its volume can be used as a global
fault-tolerance measure [15] for that location. Because it is
not uncommon for some robot joints to have a zero range
over a self-motion manifold, we compute the self-motion
manifold size by summing up the ranges of all joint angles
over that manifold. In general, a redundant robot has multiple
self-motion manifolds associated with a workspace location.
Therefore, one needs to consider the union of all angle
ranges on these manifolds. At an optimally fault tolerant

task location the self-motion manifold size for an n-DoF
robot must be n2π, i.e., each joint spans a 2π range.

III. GENERATING OPTIMALLY FAULT TOLERANT
ROBOT DESIGNS

As described above, large self-motion manifolds occur at
singular configurations because previously disjoint manifolds
are combined.4 We exploit this observation to develop a
procedure for identifying robot kinematic designs that have
optimally fault tolerant self-motion manifolds. Generally, this
is an iterative procedure where we first drive the robot to a
singularity, evaluate it’s self motion manifold, and then adjust
the kinematic parameters, i.e., Denavit and Hartenberg (DH)
parameters, to increase the size of the manifold.

At a singularity, one or more singular values of the robot’s
Jacobian matrix, J , are zero. Therefore, to drive a robot into
a singularity we employ a gradient-descent technique on a
singular value to find the robot’s singular joint configuration.
From (4), one can express any σi as

σi = û>i Jv̂i. (9)

By differentiating (9) with respect to time, one obtains

σ̇i = ˙̂u
>
i Jv̂i + û>i J̇ v̂i + û>i J

˙̂vi (10)

where the first and the third terms vanish due to the fact that
the first order change in a singular vector is orthogonal to
the vector itself. Thus, (10) can be further simplified to

σ̇i = û>i J̇ v̂i. (11)

The partial derivative of σi with respect to any joint angle
θk can be written as

∂σi
∂θk

= û>i
∂J

∂θk
v̂i (12)

where
∂J

∂θk
=

[
∂j1
∂θk

,
∂j2
∂θk

, · · · , ∂jn
∂θk

]
. (13)

The partial derivative of the ith column of the Jacobian
matrix is given by [18], [29]

∂ji
∂θk

=



[
(z>k pi)zi − (z>k zi)pk

zk × zi

]
, k < i

[
(z>i pk)zk − (z>k zi)pk

0

]
, k ≥ i

(14)

where zi is the axis of rotation of the ith robot joint and pi is
the position vector from the joint origin to the end-effector.
Using (12), (13), and (14) one can compute the gradient of
any σi of the Jacobian matrix as

∇σi =

[
∂σi
∂θ1

,
∂σi
∂θ2

, · · · , ∂σi
∂θn

]
. (15)

4Typically, self-motion manifolds with internal singular configurations will
be larger than average. Manifolds that include reach singularities will be
smaller than average



Moving in the negative direction of this gradient allows one
to decrease any desired singular value.

Maximizing a self-motion manifold’s size of a robot can
be done by employing a two-step iterative procedure. The
first step is to drive the robot to a singular configuration
from a random starting configuration θ(0). In this step, one
can use the gradient descent of a singular value σi until it
reaches zero, i.e.,

θ(k+1) = θ(k) − δk∇σi (16)

where θ(k) is the current joint configuration, θ(k+1) is the
next joint configuration, and δk is an adaptive step size.
One can iteratively solve (16) to guarantee that the robot
converges to a desired singularity. Once the robot is at a
singularity, we compute the size of the self-motion manifolds
for the current end-effector location.

The second step is to optimize the robot’s kinematic
structure so that the self-motion manifold size is maximized
to an optimal value. A gradient for the self-motion manifold
size does not exist, however, one can employ a gradient-free
optimization technique. The optimization in this step can be
formulated as

p∗ = arg max
p∈Rl

f(p) (17)

where p is an l-dimensional vector of the robot’s DH
parameters, except for the joint angles, namely the link
lengths (a), the link displacements (d), and the link twists
(α), where p = [a> : d> : α>]> and l = 3n, where n is the
number of DoF. The function f(p) is a nonlinear function
representing the self-motion manifold size. In this step, one
can perform a coordinate-ascent procedure along all the DH
parameters that are subject to optimization.

The coordinate ascent can be done by sequentially chan-
ging (increasing or decreasing) a DH parameter, pi. Once
a pi value is slightly changed, the robot needs to be driven
back to a singularity using (16) and then the change in the
self-motion manifold size is evaluated. If the size increases,
one can keep updating the same pi. If the size decreases or
does not change, one should step back by retrieving the last
good pi value and start changing the next DH parameter,
pi+1. This process can be formulated as

p
(k+1)
i = p

(k)
i + βkp

(k)
i (18)

where p(k+1)
i is the next value of a DH parameter, p(k)i is the

current value of the DH parameter, and β(k) is a user-defined
step size, where βk can be positive or negative. These two
steps should be performed alternately on all DH parameters
until one either obtains an optimal robot, or a sweep of all
elements of p results in no improvement of f(p). One should
be aware that there could be a local maxima where there
is no change to any DH parameter that will improve the
self-motion manifold size. The pseudocode to implement this
procedure is given in Algorithm 1.

There are several comments that should be pointed out
about the behavior of this algorithm. First, it is important to
note that the rank of the singularity being used can affect

Algorithm 1 Generate Kinematically Fault-tolerant Robots
1: start with DH parameters of a baseline n-joint redundant

robot. {p = [a : d : α] }
2: initialize θ(0) {random joint-space configuration}
3: find θ(sing) {drive the robot to a singularity}
4: compute Sinit {initial self-motion manifold size}
5: Slarge = Sinit {save initial self-motion manifold size}
6: for i = 1 to n× 3 do {for DH parameters:[a : d : α]}
7: Sbegin = Slarge {save Slarge beginning of sweep}
8: dhorg = pi {save pi in dhorg}
9: p

(k+1)
i = p

(k)
i + βkp

(k)
i {perturb DH parameter pi}

10: find θ(sing) {drive the robot to a singularity}
11: compute Snew {the new self-motion manifold size}
12: while Snew > Slarge do
13: Slarge = Snew {update Slarge with new value}
14: dhorg = pi {save pi in dhorg}
15: p

(k+1)
i = p

(k)
i + βkp

(k)
i {perturb parameter pi}

16: find θsing {drive the robot to a singularity}
17: compute Snew

18: if (Snew ≈ n× 2π) then {robot is optimal}
19: save the optimal robot {[a : d : α : θ(sing)]}
20: end if
21: end while
22: pi = dhorg {reset to the last good DH parameters}
23: end for
24: if (Snew ≤ Sbegin) then {sweep didn’t improve Sbegin}
25: go to 2 {select different starting joint configurations}
26: else {do another sweep}
27: go to 6
28: end if

the kinematic structure of the resulting optimal robot. This
means that optimizing around a rank-1 singularity could
generate completely different optimal robots from the ones
generated by optimizing around a singularity of higher rank.5

Obviously, different starting joint configurations, θ(0)s, may
result in different optimal robots. Furthermore, using the
same starting configuration, singularity rank, and step size
may have drastically different results for a positive step
size versus a negative step size. Finally, the algorithm may
converge to an optimal robot from the first coordinate-ascent
sweep through the DH parameters, however, in some cases,
it may take several sweeps through the DH parameters to
converge. The results of applying the above procedure for
generating optimal redundant robots are illustrated for 4-DoF,
7-DoF, and 8-DoF robots in the next section.

IV. RESULTS

A. Four-DoF Robots

The algorithm is first used to generate optimally fault-
tolerant 4-DoF spatial positioning robots. We start with a

5Using the gradient descent of a singular value to drive a robot to a high-rank
singularity may result in unwanted behavior when two or more singular
values become nearly equal. In this case, a special procedure should be
employed to guarantee efficient convergence [30].



baseline robot that was designed to be globally optimal
with respect to a local fault-tolerance measure [31]. The DH
parameters of this robot are listed in Table I.

TABLE I
DH PARAMETERS OF THE BASELINE 4-DOF ROBOT

Linki αi [degrees] ai [meters] di [meters] θi [degrees]
1 90 1.41 0 0
2 −90 1.41 1 180
3 90 1.41 −1 180
4 0 1.22 0.50 145

We first evaluated the global fault-tolerance of this robot,
i.e., its largest self-motion manifold size. Fig. 2(a) shows the
maximal self-motion manifold in θ2, θ3, and θ4 projection,
where the singular configuration on the manifold is indicated
in red. In subfigure (b), we show the angle ranges of the
robot’s joints on this self-motion manifold. It is clear that
only θ4 has an optimal range of 2π. The rest of the joints
θ1, θ2, and θ3 are not optimal.

Fig. 2. In this figure, the maximal self-motion manifold of the baseline
4-DoF robot is illustrated. In (a) this manifold is shown projected into the
θ2, θ3, and θ4 subspace. From this projection one can see that this manifold
contains only one rank-1 singularity, shown in red. Note that this robot has
one continuous self-motion manifold where the dotted blue lines show the
continuity of θ4. The ranges of each of the joints is shown in (b) where
only θ4 has a range of 2π. Joints 1, 2, and 3 have ranges of 3.99, 5.17,
and 5.01 radians, respectively, as indicated in red. The total size of this
self-motion manifold is 20.45 radians.

By employing the optimization procedure explained in
Section III, we were able to modify the kinematics of the
baseline robot to generate many robots that have an optimal
self-motion manifold at a particular workspace location. Be-
cause this is a 4-DoF robot, an optimal self-motion manifold
size is 25.13 radians, i.e., 4× 2π. The DH parameters of an
example optimal robot are listed in Table II.

TABLE II
THE DH PARAMETERS OF AN EXAMPLE OPTIMAL 4-DOF ROBOT

Linki αi [degrees] ai [meters] di [meters] θi [degrees]
1 130.52 1.41 0 0
2 −90 1.77 1 25.87
3 90 1.84 −1 159.78
4 0 1.52 0.55 −111.90

Comparing the optimal robot in Table II with the baseline
robot in Table I, one can observe that the algorithm has
changed the first twist angle, α1 from 90◦ to 130.52◦. The
other notable change was in the link lengths a2, a3, and a4
as well as the last link displacement, d4. Note that there are
multiple possible values for θ, i.e., any joint configuration
on the self-motion manifold associated with this workspace
location. The value shown in the table corresponds to the
singularity on this manifold that was identified by the al-
gorithm. The robot at this workspace location has only one
self-motion manifold, as shown in Fig. 3.

Fig. 3. In this figure, the optimal 4-DoF robot and its optimal self-motion
manifold are illustrated. Subfigures (a) and (b) show projections in θ1, θ2
and θ3, θ4, respectively, where the manifold is continuous and all joints span
a 2π range. Thus, it is easy to see that the total size of the optimal self-
motion manifold is 25.13 radians. In (c), the optimal self-motion manifold
is presented in the same θ2, θ3, and θ4 projection as Fig. 2(a). In (d), the
robot is shown in a configuration on the self-motion manifold where a local
dexterity measure, i.e., the condition number, is best (σ1/σ3 = 2.35). The
rank-1 singularity on the manifold is marked with a red circle in (a), (b),
and (c).

It is easy to see from subfigures (a) and (b) that the range
of all joints is 2π. A rank-1 singularity that occurs on this
self-motion manifold is indicated with a red circle. Subfigure
(c) shows the same configuration-space projection as in Fig.
2(a) to illustrate how different the self-motion manifolds
are for these two robots. Note that on this optimal self-
motion manifold, one can elect to operate the manipulator
in a configuration that optimizes an additional preferred
dexterity measure, e.g., the condition number (σmax/σmin).
In subfigure (d), we show the robot in a configuration with
the best condition number on this self-motion manifold,
where σmax/σmin = 2.35.

B. Seven-DoF Robots

To redundantly operate in a six-dimensional workspace
consisting of both position and orientation, one needs a
manipulator of at least 7 DoFs. A common 7-DoF redundant
robot is the Mitsubishi PA-10, which has a kinematic design
that is similar to the human arm. Unfortunately, because the
arm has a three-joint spherical shoulder and a three-joint



spherical wrist that are connected by a single rotational elbow
joint, the PA-10 is fault intolerant with respect to the elbow,
i.e., joint 4. Therefore, joint 4 has a zero range on the self-
motion manifold(s) of any workspace location. We show that
this kinematically fault-intolerant structure can be used as a
baseline to generate optimal 7-DoF robots.

The DH parameters of the PA-10 robot are given in
Table III, with the last link displacement, d7 set equal to
d3. The robot at the joint configurations that are given in

TABLE III
THE DH PARAMETERS OF THE PA-10 ROBOT IN MAXIMAL

CONFIGURATIONS

Linki αi [degrees] ai [meters] di [meters] θi [degrees]
1 −90 0 0 0
2 90 0 0 0
3 −90 0 0.45 ±90
4 90 0 0 154.16
5 −90 0 0.5 ±90
6 90 0 0 0
7 0 0 0.45 0

Fig. 4. The maximal self-motion manifold of the PA-10 robot is shown
in this figure. In (a) the ranges of each of the joints is shown where
θ1, θ2, θ3, θ5, and θ7 are 2π, the range of θ6 is 4.48 radians (±2.24),
and the range of of θ4 is zero. In (b) the one dimensional self-motion
manifold is shown projected into the θ3, θ5, and θ6 subspace. From this
projection one can see that this manifold contains four rank-1 and four
rank-2 singularities, shown in blue and red respectively. Note that the two
blue singularities at the bottom of the figure, i.e., where θ6 = −2.24
radians, are shown twice at both θ5 = ±π. The rank-2 singularities occur
when θ = [0, 0, ±π

2
, θ4,

±π
2
, 0, 0], where in this case θ4 = 2.69 radians,

(154.16◦).

Table 4 has a maximal self-motion manifold with size of
35.90 radians. The angles θ3 and θ5 can be ±90 for the same
end-effector location.6 At this workspace location, the PA-
10 has two large self-motion manifolds that are identical in
terms of their joint ranges. Joint 4 has a range of zero on both
self-motion manifolds with a constant value of ±154.16◦ for
up-elbow and down-elbow configurations, respectively. A bar
plot of the joint ranges is presented in Fig. 4(a).7 A projection

6For this workspace location, there are up-elbow and down-elbow configu-
rations where the robot cannot move from one configuration to the other
without changing the end-effector location.

7Fig. 4 appears in our previous work [25] where we identified the largest
self-motion manifold of the PA-10 robot.

of one of the manifolds in θ3, θ5, and θ6 space is presented
in Fig. 4(b). It is clear from the figure that θ4 and θ6 have
non-optimal ranges.

We employed our algorithm on this fault-intolerant ba-
seline 7-DoF manipulator to generate robots with optimal
kinematic structures that have self-motion manifolds of op-
timal size, i.e., 7 × 2π = 43.98 radians. In Table IV, we
present the DH parameters of an example optimal 7-DoF
robot. By comparing Table III and Table IV, one can

TABLE IV
THE DH PARAMETERS OF AN EXAMPLE OPTIMAL 7-DOF ROBOT

Linki αi [degrees] ai [meters] di [meters] θi [degrees]
1 −99.24 0.43 0 0
2 90 0 0 −72.25
3 −90 0 0.54 36.81
4 117 0.26 0.32 81.10
5 −90 0.54 0.50 −21.11
6 118.14 0.18 0.16 71.50
7 7.22 0.16 0.50 1.01

Fig. 5. The optimal self-motion manifold of the fault-tolerant 7-DoF robot
is shown in this figure. A projection in θ2, θ3 is shown in (a), θ3, θ4 in (b),
and θ6, θ7 in (c). The only singularity (which is of rank 1) on this manifold
is indicated with a red circle. In (d) the optimal 7-DoF robot is presented
in a configuration where its condition number is minimal, i.e., 5.35.

observe that the algorithm has significantly changed the DH
parameters to generate an optimal robot. The algorithm has
modified all link lengths except a2 and a3, displacements,
d3, d4, d6, and d7, and twists α1, α4, α6, and α7. In
addition, the algorithm automatically generates singular joint
configurations. In Fig. 5, we present the optimal self-motion
manifold of this robot.

The fault-tolerant 7-DoF robot presented in Table IV has
only one continuous self-motion manifold at the optimal end-
effector location. From Fig 5, one can note that all robot
joints have a range of 2π. This manifold only contains one
singularity, marked with a red circle, that is of rank 1, while
all other intersections that appear in the figure are due to the
projections.



C. Eight-DoF Robots

To show the merit of using our algorithm to optimize
the kinematic structure of high-DoF robots, we illustrate its
efficacy on an 8-DoF manipulator. We arbitrarily used an 8-
DoF robot that has a 3-joint shoulder, a 2-joint elbow, and a
3-joint wrist. The DH parameters of this baseline robot are
given in Table V.

TABLE V
THE DH PARAMETERS OF THE BASELINE 8-DOF ROBOT

Linki αi [degrees] ai [meters] di [meters] θi [degrees]
1 −90 0 0 85.34
2 90 0 0 0
3 −90 0 0.54 −90
4 90 0 0 −134.50
5 −90 0 0 134.78
6 90 0 0.50 −44.78
7 −90 0 0 0
8 0 0 0.45 −12.86

This eight DoF robot at this joint configuration has the
maximal self-motion manifold size of 40.80 radians. The
robot and its largest self-motion manifold are both shown in
Fig. 6.

Fig. 6. In (a) the 8-DoF robot is illustrated in a configuration where θ =
[0, 0, 0, π

2
, 0, 0, 0, 0] to show its structure. The joint ranges on the largest

self-motion manifold are shown as a bar plot in (b) where θ1, θ3, θ5, θ6,
and θ8 have a 2π range. The range of θ2 is 5.20 radians (±2.60), the range
of θ7 is 4.20 radians (±2.10), while θ4 has a zero range with a fixed value
at θ4 = −2.35 radians.

One should note that in this case, the self-motion manifolds
are typically two dimensional, but are of a higher dimension
at singularities. In this case, computing a self-motion mani-
fold is challenging, but one can employ (7) to determine an
estimate of the ranges of all joints. The optimal self-motion
manifold size is 8 × 2π = 50.27 radians. In Table VI, we
list an example 8-DoF optimal robot that was generated by
employing Algorithm 1. This robot is shown in Fig. 7 in the
zero configuration and in a relatively dexterous configuration
where the condition number is 7.18. One can immediately
observe that the algorithm has introduced a single change
in link twist parameters by changing α6 from 90 to 105.30
degrees. Also, two link lengths, a1 and a5 were introduced
as well as other minor changes in the link displacement
parameters.

TABLE VI
THE DH PARAMETERS OF THE OPTIMAL 8-DOF ROBOT

Linki αi [degrees] ai [meters] di [meters] θi [degrees]
1 −90 0.45 0 0
2 90 0 0 −83.60
3 −90 0 0.45 180
4 90 0 0 90
5 −90 0.43 0 −168
6 105.30 0 0.52 −90
7 −90 0 0.17 0
8 0 0 0.45 −29.05

Fig. 7. The kinematic design of an optimally fault-tolerant 8-DoF robot
is shown in this figure. The robot is presented in the zero configuration to
illustrate how various joints are connected (left). The robot is shown in a
dexterous configuration where the condition number of the Jacobian matrix
is 7.18 (right).

D. Discussion

Now that we have robots of different DoFs that are
optimal in terms of their global fault-tolerance measure, i.e.,
their self-motion manifold size, we evaluate the quality of
these self-motion manifolds with respect to a local dexterity
measure. This is done by evaluating the condition number
(σmax/σmin) of the Jacobian matrix for configurations on
the self-motion manifold and estimating how much of the
manifold can meet a certain threshold. For example, for the
4-DoF robot in Fig. 3, over 90% of the self-motion manifolds
have condition numbers less than 10, and for the 7-DoF robot
in Fig. 5 it is over 20%. This illustrates that robot designers
have significant flexibility in satisfying multiple criteria, i.e.,
having a robot that is both optimally fault tolerant and meets
pre-failure dexterity design specifications.

V. CONCLUSIONS AND FUTURE WORK

The goal of the work described here is to identify re-
dundant robot kinematic designs that possess optimally fault
tolerant locations of operation within their workspace. If
the definition of fault tolerance is reachability of a task
location after any arbitrary locked-joint failure occurs, then
this corresponds to identifying robots that possess self-
motion manifolds that span 2π in every joint angle for
that task location. We exploit the fact that such large self-
motion manifolds are more likely when they contain singular
configurations, because singularities occur when previously
disjoint manifolds are connected. Our novel algorithm for



identifying optimal kinematic designs alternates between dri-
ving the robot to a singular configuration and modifying the
kinematic parameters by using a coordinate-ascent algorithm
to increase the self-motion manifold size.

The premise in this work is that a robot designer already
has a baseline robot kinematics in mind, and one would
like to improve the fault tolerance of that design, without
changing it radically. Remarkably, the algorithm was able to
find multiple optimal designs from 4-DoF, 7-DoF, and 8-DoF
baseline robots. In our future work, we will be investigating
ways to evaluate and characterize all of these optimally
fault-tolerant robots and determine whether they can also be
optimized for additional desirable objectives. In addition, it is
important to point out that the proposed algorithm results in
an optimal fault tolerant configuration, which is appropriate
for critical workspace locations involved in pick-and-place
tasks. For other types of tasks, one may want to guarantee a
specified high-level of fault tolerance over a given workspace
volume.
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