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Abstract— We propose a new approach for executing the
main Cartesian tasks assigned to a redundant robot while
guaranteeing whole-body collision avoidance. The robot degrees
of freedom are fully utilized by introducing relaxed constraints
in the definition of operational and collision avoidance tasks.
Desired priorities for each task are assigned using the so-
called Task Priority Matrix (TPM) method [1], which is
independent from the redundancy resolution law and handles
efficiently switching of priorities. To ensure smooth motion
during such task reordering, a control scheme with a suitable
task allocation algorithm is developed at the acceleration level.
The proposed approach is validated with MATLAB simulations
and an experimental evaluation using the 7-dof KUKA LWR
manipulator.

I. INTRODUCTION

The robot capability of handling simultaneously multiple
tasks, while guaranteeing continuous avoidance of collisions
in a human-shared workspace, is an essential feature in
service applications of robotics [2], as well as one of the
enabling technologies of Industry 4.0 [3], [4]. Collision
avoidance should be obtained without giving up unnecessar-
ily mobility and dexterity, as would happen when oversizing
safety areas around the robot or by freezing some of the
available degrees of freedom of the manipulator. To this end,
three main subproblems have to be addressed.

The first problem is the reliable, online detection of
obstacles in the robot workspace, which allows computing
relative distances between the whole body of a robot in
motion and dynamic objects present in the surveillance area.
This typically requires the use of one or more exteroceptive
sensors, e.g., cameras, depth sensors, or laser scanners. In [5],
distances between the robot end-effector and nearby obsta-
cles are computed using an on-board laser sensor. However,
such equipment would be inefficient (or become too expen-
sive) when collision avoidance with the whole robot body
is to be considered. Resorting to special markers or inertial
measurement units could be useful for the localization of
a moving operator [6], [7], but other possibly dangerous
obstacles in the workspace would then be neglected. On the
other hand, an efficient robot-object distance computation
has been introduced in [8]. The proposed approach works
directly in the depth space of one or more RGB-D sensors,
achieving detection and distance evaluation for any type of
obstacles (including humans) present in the workspace, with
strict real-time performance.
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The second problem is the definition of an effective
collision avoidance strategy, based on the computed distance
information. Collision avoidance tasks are usually defined in
terms of a number of selected robot control points in the
3D Cartesian space that are subject to the repulsive action
of proximal obstacles according to any preferred artificial
potential field method [9]. Thus, a generic repulsive vector
associated to such a collision avoidance scheme will have
dimension m = 3, and would then be transformed into the
joint space and processed according to the chosen control
scheme [5], [10]. In this framework, to reduce the number of
dofs required to accomplish the local collision avoidance, it
was proposed in [11] to project the Cartesian repulsive vector
along the unit vector d0 that connects the closest points on
the obstacle and on the robot, and to define accordingly an
associated task Jacobian having just a single row (m = 1). In
this way, while the control point moves away from the closest
obstacle in any direction forming an acute angle with d0,
more mobility is left to the robot for executing other tasks.

Exploiting the kinematic redundancy of the robot is the
third and last problem to be considered here. In general,
we would like to avoid any collision, while preserving
as much as possible the correct execution of the main
desired task(s) assigned to the robot. This can be done with
the usual null-space projection, where the joint commands
(usually velocities) related to collision avoidance tasks are
cumulated algebraically and projected in the null space of
the main task(s) [5]. Alternatively, collision avoidance com-
mands can be converted into time-varying hard inequality
bounds/constraints in the joint space, which should then be
satisfied by any robot motion needed to handle multiple tasks
with assigned priorities [10]. In these methods, a suitable
scale factor is needed, either for switching priority between
main tasks and/or collision avoidance tasks, or in order to
modify the former according to new joint bounds arising
from the latter. Collision avoidance can also be integrated in
a unified optimization problem, as an inequality constraint
defined in the joint or task space, and solved using the Hier-
archical Complete Orthogonal Decomposition (HCOD) [12].
In the previous approaches, the process of each priority
level starts only after obtaining the result of all higher
priority tasks. Alternatively, a faster and simpler approach
has been proposed by Fabrizio Flacco in [1], separating
redundancy control from the need of frequent but efficient
task priority resolution and its modifications. In this case, any
change (swap/insertion/deletion) in the task priority structure
requires only to modify a so-called Task Priority Matrix
(TPM) which contains a compact but complete information
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on the different task dependencies.
In this paper, we propose a new approach to handle the

execution of multiple tasks while ensuring robot collision
avoidance. To start with, the TPM method [1] is developed
at the acceleration level, so as to i) eliminate undesired
discontinuities in the joint velocity due to changes in the task
priorities, and ii) allow for consideration of robot dynamics.
Robot dexterity is better preserved by using an inequality
constraint in place of an equality one for the relaxed pointing
task proposed in [6], which requires the minimum number of
dofs. Also, similar to [11], relaxed collision avoidance tasks
are defined using multiple surveillance areas with different
danger levels. The benefits of these choices are integrated in
an efficient algorithm for task priority assignment.

The rest of the paper is organized as follows. Section II
recalls the development of the TPM method and extends it to
the acceleration level. Collision avoidance under relaxed con-
straints is discussed in Sec. III. Different comparative simu-
lations and an experimental evaluation with a KUKA LWR
IV robot are reported in Sec. IV. The obtained results are
supported by an accompanying video and by a corresponding
MATLAB simulation code for their reproducibility1.

II. TASK PRIORITY CONTROL

Let a set of l desired Cartesian tasks, to be achieved in a
specific desired priority, be defined by the evolution of the
task variables

pi = pi(t), 0 < i ≤ l, (1)

where pi ∈ Rmi . The i-th task has higher priority than the j-
th task if i < j. The simplest command that tries to execute
all the l Cartesian tasks without considering their priority
order, is obtained using the first-order differential inverse
kinematics as

q̇ = J#ṗ, (2)

where q̇ ∈ Rn are the joint velocity commands and

J = [JT1 . . . JTi . . . JTl ]T , (3)

is the augmented matrix with the Jacobians J i ∈ Rmi×n

related to each desired task, where
∑l
i=1mi = m (in

general, but not necessarily, with m ≤ n) and

ṗ = [ṗT1 . . . ṗTi . . . ṗTl ]T , (4)

is the so-called Stack of Tasks (SoT). Using (2), the accuracy
in the execution of each task will result according to the
dependency between all the tasks. If the tasks are not
in conflict, the robot will achieve all of them, otherwise
the robot will move in response to the sum of each task
contribution. Indeed, solution (2) provides a good shape for
the inverse kinematics solution, in which the single task
contributions and the null space for each task can be deduced
easily. On the other hand, singularities may appear when
there are linear dependencies between the tasks [13].

1The code is published on:
https://github.com/maram-khatib/task-priority-relaxed-constraints

The most common way to take into account the strict task
priorities while executing the SoT (4), is to use the recursive
solution (for i = 1, . . . , l) with null space projections as [14]

q̇i = q̇i−1 + (J iP i−1)#(ṗi − J iq̇i−1), (5)

with q̇0 = 0. The null space projector is given by

P i = P i−1 − (J iP i−1)#J iP i−1, (6)

with P 0 = I . Using (5), the highest priority tasks are
ideally no longer affected by the lower priority ones. On the
other hand, when some of the tasks are linearly dependent,
the contribution of a lower priority task cannot be inferred.
This missing information is important to perform a smooth
transition during any desired addition, deletion, or reordering
operation on the SoT [15].

In order to combine the advantages of (2) and (5), a
new simple approach that has a similar shape of (2) and
returns exactly the solution obtained by (5), keeping the
whole knowledge of the tasks, has been presented by [1].
The redundancy resolution is independent from enforcing the
desired task priority. This is obtained using the so-called Task
Priority Matrix (TPM) as follows

q̇ = J#F ṗ, (7)

where F ∈ Rm×m is a square matrix to be computed in a
specific way to impose the desired task priority. The key tool
of TPM calculation is to use the Gauss-Jordan elimination
method [16], which is commonly used to compute the
reduced row echelon form, considering a pivot square matrix
with dimension (mi × mi) for each corresponding desired
task instead of pivot elements.

Let the QR decomposition for the transpose of the aug-
mented Jacobian (3) be given by

JT = Q

[
R
O

]
, (8)

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rm×m

is an upper triangular matrix. The diagonal block matrices
Rii ∈ Rmi×mi correspond to the desired tasks and will be
used as pivot matrices during TPM calculations. Note that,
the upper triangular pivot matrix Rii is nonsingular if the
task i is nonsingular and linearly independent from all tasks
with higher priority.

The algorithm to compute the TPM is as follows.
Step 1: Initialize TPM as

F̄ = R. (9)

Step 2: Let mhi
=
∑i−1
k=1mk and mh1

= 0. Multiply
the block row F̄ (mhi

+ 1 : mhi
+ mi, 1 : m), i.e. the

blue blocks in Fig. 1, with the pseudoinverse of its pivot
matrix R#

ii . As a result, the i-th diagonal block will be
identity if Rii is not singular.
Step 3: For i > 1, multiply the block F̄ (1 : mhi

,mhi
+

1 : mhi
+mi), i.e. the red blocks in Fig. 1, by the row

block F̄ (mhi
+ 1 : mhi

+ mi, 1 : m), i.e. the blue
blocks in Fig. 1, and subtract it from the block row
F̄ (1 : mhi , 1 : m), i.e. the green blocks in Fig. 1.



Fig. 1. The structure of the temporary matrix F̄ . The highlighted
components refer to the involved block matrices during the operations of
computing the TPM: [top] for i = 2 and [bottom] for i = l.

Step 4: Apply steps 2 and 3 in place for all block rows
related to all tasks, i.e., for 0 < i ≤ l.
Step 5: Get the transpose of the modified matrix where

F = F̄
T
. (10)

Note that, if n ≥ m, the QR decomposition (8) can be also
used to compute the pseudoinverse J# in (7) as

J# = Q

[
R−T

O

]
. (11)

In [1], the solution (7) using TPM is proved to be exactly
equal to the standard null space projection (5). By using (7),
however, the redundancy resolution is totally separated from
controlling the SoT in a desired priority order. This gives
more flexibility for applying online any desired change in the
task priorities. In this case, the only part to be recomputed
in (7) is the F matrix according to the new order of
tasks. Also, to boost the computational efficiency, parallel
computing can be used for the QR decomposition in (8).
These features cannot be obtained using other methods, such
as with (5) or HCOD [12], where all computations should
be repeated sequentially since the control of low-priority
tasks has to wait for the outcome of all higher priority tasks.
Furthermore, since the solutions (5) and (7) are defined at the
velocity level, they suffer from joint velocity discontinuity in
correspondence of any change in either the desired SoT or
in the dependencies among the tasks. Although a scaling
factor can be used in (5) to achieve soft transition [15], the
advantage of taking into account the robot dynamics is still
missing.

In the following, we extend the solution (7) in order to
get the following improvements.

• Eliminate discontinuities in the joint velocity by defin-
ing the control law (7) at the acceleration level as

q̈ = J#F (p̈− J̇ q̇), (12)

Fig. 2. Reference frames and definition of parameters for the desired
relaxed pointing task.

where F is exactly the same as in (7), since its computa-
tion depends only on the augmented Jacobian matrix. In
this case, when the joint acceleration (12) is integrated
once, the obtained joint velocities are automatically
ensured to be continuous [17]. Note that solution (12)
returns exactly the one obtained by recursion as

q̈i = q̈i−1 + (J iP i−1)#(p̈i − J̇ iq̇i − J iq̈i−1). (13)

• Allow the consideration of robot dynamics or of any
other additional task at the joint level, by including a
null-space term as

q̈ = J#F (p̈− J̇ q̇) + (I − J#J)q̈0. (14)

For example, in order to get stable and smooth joint
trajectories, the joint acceleration q̈0 can be computed as

q̈0 = −Dq̇, (15)

where D ∈ Rn×n is a positive definite matrix, e.g., damping
the momentum using the robot mass matrix as D(q). By
projecting q̈0 in the null space of the augmented Jacobian (3),
the additional joint-space task will always be at the lowest
control priority, without any influence on the higher priority
Cartesian tasks.

III. COLLISION AVOIDANCE UNDER RELAXED
CONSTRAINTS

A. Relaxed Pointing Task

Usually, the robot end-effector (EE) Cartesian tasks in-
clude following a desired time-varying position pee (mi = 3)
and/or orientation (mi = 3). In this case, the robot needs
at least n = 6 dofs. The number of required joints re-
duces/prevents the robot capability to fulfill the desired tasks
while optimizing the motion w.r.t. other desirable criteria,
e.g., avoiding any robot body collision in the work space.
In this case, decreasing the actual dimension of the desired
task is preferred.

In [6], we proposed to use a relaxed pointing task (mi = 1)
instead of a classical and complete orientation definition. The
desired pointing task is defined as a cone surface, and an EE
unit axis, e.g., ze(q), should point toward any Cartesian point
belonging to this surface. The cone has its apex located at
the EE position, and is defined by a unit axis zd(t) with a
desired orientation and by an apex angle α = αd > 0 (see
Fig. 2). In this case, the desired Cartesian task can be defined
as

prp = zTd ze(q) = cosα, (16)



where α = αd. Then, the associated Jacobian is

Jrp =
∂prp
∂q

=
∂ze
∂q

zd. (17)

From [18],
dze
dt

=
∂ze
∂q

q̇ = ST (ze)ω = ST (ze)JOq̇, (18)

where the matrix S ∈ R3×3 is skew-symmetric and the
Jacobian JO ∈ R3×n maps the joint velocity q̇ to the EE
angular velocity ω ∈ R3. From (18) and (17),

Jrp = zTd S
T (ze)JO. (19)

In this work, instead of using the equality constraint (16), we
propose further relaxation by defining the desired pointing
task using the inequality

0 ≤ α ≤ αd. (20)

Then, the desired task (16) can be written as

cosαd ≤ prp ≤ 1, (21)

where the unit axis ze(q) is allowed to point toward any
Cartesian point inside or on the surface of the cone. In
this case, the pointing task control will be activated, i.e.,
be included in the SoT, for a period of time which is less or
equal to the case of equality condition (16). This leaves one
more dof to the robot, to be exploited for other tasks.

B. Relaxed Collision Avoidance Task
Collision avoidance is the most important Cartesian task

that the robot should handle, regardless of other desired tasks.
However, if there are enough dofs, it is always preferred
to achieve the desired tasks while escaping any collision
in the work space. This issue can be separated into two
subproblems. The avoidance task definition in the Cartesian
space, and the control of this task simultaneously with other
robot tasks.

The artificial potential field approach is a common way
to deal with the collision avoidance task [9]. The key tool
is how the repulsive vector r(pck

) between each robot
control point pck

and all obstacles will be defined, see for
example [5] and [10]. Let the minimum Cartesian distances
between each point pck

and all obstacles in the surveillance
area be given by

Dmin(pck
) =

h
min
j=1

D(pck
,oj), k = 1, . . . , kt, (22)

where D(pck
,oj) is the distance between the control point

pck
and an obstacle oj . The total number of robot control

points and of obstacles is kt and h, respectively. Then, the
magnitude r of the repulsive vector can be treated as [8]

r(pck
) =

rmax

1 + e(Dmin(pck
)(2/ρ)−1)γ

, (23)

being rmax the maximum admissible magnitude and γ > 0
a shape factor. Using (23), when γ → inf , the magnitude
value equals{

r(pck
) = rmax, for Dmin(pck

) = 0,

r(pck
) ≈ 0, for Dmin(pck

) = ρ,
(24)

while r(pck
) is not defined beyond ρ.

The desired direction of the repulsive vector can be
computed from the mean of the unit distance vectors between
the control point and all objects in the surveillance area
where

rmean(pck
) =

1

h

h∑
j=1

pck
− oj

‖pck
− oj‖

, (25)

r̂mean(pck
) =

rmean(pck
)

‖rmean(pck
)‖
. (26)

Using (23) and (26), the repulsive vector corresponding to
each control point is defined as

r(pck
) = r(pck

)r̂mean(pck
). (27)

The response intensity of the control point considers the
nearest object only. While the direction takes into account
all objects in the surveillance area. This hybrid reaction
prevents any possible undesirable behavior (e.g., continuous
direction switching among two close objects) resulting from
the topology of obstacles in the surveillance area [8].

In this work, we consider each repulsive vector (27) as a
desired Cartesian acceleration where

p̈ck = r(pck
),

Jck =
∂pck

∂q
.

(28)

Indeed, the collision avoidance task (28) is overdetermined
and requires at least n = 3 dofs to be handled. Therefore,
similar to [11], we relax each avoidance task constraint to a
dimension mk = 1, for each control point along the robot
body. This is done by projecting the desired task (28) along
its corresponding direction as

p̈nk
= r̂mean(pck

)T p̈ck = r(pck
),

Jnk
= r̂mean(pck

)TJck ,
(29)

where p̈nk
∈ R and Jnk

∈ R1×n. Using (29), the avoid-
ance task drives the control point toward any point of a
(sufficiently away) plane orthogonal to its repulsive direction.
When the robot control point of interest is located at the end-
effector, there is no way to preserve the desired EE task p̈ee
while avoiding collision. Then, to obtain a smooth avoidance
motion, the EE collision avoidance task p̈cee should be added
directly to the main EE positional task as

p̈ = p̈ee + p̈cee . (30)

C. The Complete Approach

In order to control the robot EE to achieve prioritized de-
sired Cartesian tasks while avoiding any collision efficiently,
we summarize our complete approach as follows.

• Define the desired orientation using the soft pointing
task (21).

• Provide the control point at the EE with a danger
threshold distance εee. When Dmin(pcee

) ≤ εee, the
repulsive vector p̈cee is computed according to (28) and
added to the main EE desired task p̈ee as in (30).



Algorithm 1 Task priority assignment using TPM method

p̈ = p̈ee, J = Jee, J̇ = J̇ee
if Dmin(pcee

) ≤ εee then
p̈ = p̈ee + p̈cee

end if
if Dminimal ≤ ε1 then

if Dminimal < Dmin(pcee
) then

p̈ = [p̈Tnk
p̈T ]T

J = [JTnk
JT ]T

J̇ = [J̇
T

nk
J̇
T

]T

else
p̈ = [p̈T p̈Tnk

]T

J = [JT JTnk
]T

J̇ = [J̇
T

J̇
T

nk
]T

end if
end if
if cosαd − cosα > 0 then
p̈ = [p̈T p̈Trp]

T

J = [JT JTrp]
T

J̇ = [J̇
T

J̇
T

rp]
T

end if
if ε1 < Dminimal ≤ ε2 then
p̈ = [p̈T p̈Tnk

]T

J = [JT JTnk
]T

J̇ = [J̇
T

J̇
T

nk
]T

end if

• Provide the other control points along the robot body
with two danger threshold distances, ε2 > ε1 > 0, in
the surveillance area. Only one control point will then
be taken into account in the SoT using the relaxed def-
inition (29). The considered control point corresponds
to the minimal distance

Dminimal = min
k=1,...,kt

Dmin(pck
) ≤ ε2, (31)

between all obstacles and each control point. Note that
pcee is not considered in (31).

• Use Algorithm 1 to set the proper priority for each task.
• Use the TPM control law (14) at the acceleration level

with the null space damping (15), through a closed-loop
inverse kinematics algorithm to stabilize the Cartesian
error dynamics [19].

In Algorithm 1, the first priority is always to avoid the col-
lision with the closest object to the whole robot. Moreover,
when ε1 < Dminimal ≤ ε2, a robot body collision avoidance
task will be added as the lowest Cartesian task priority.
In this case, if there are enough dofs, the control scheme
will prevent the robot nearing to the higher danger region.
Note that this algorithm can be easily extended/modified in
order to apply other control strategies (e.g., considering more
control points on the robot body for collision avoidance).

Using the proposed approach, the robot needs less dofs
to fulfill the desired tasks than with the previous approaches

1

3

2

Joint 2

EE

Joint 6

Joint 4

Fig. 3. Simulation environment with a snapshot during robot motion. Only
the DH frame origins placed at robot joints and EE, assigned according
to [20], are drawn (black spheres). Black lines represent the corresponding
robot links. Red points represent the control points along the robot body.
During motion, the control point corresponding to (31) is changed to blue
color and linked to the nearest obstacle with a green line. The green ellipse
is the desired path, while the red curve shows the actual robot EE position.
The cyan cone represents the relaxed pointing task for αd = 35◦.

in [5] and [10]. Differently from [10], the EE collision avoid-
ance can be set at the first or at any other desired priority.
Also, when using (14), the joint acceleration reflects the
desired robot body collision avoidance task more accurately
than when using the approximate solution in [5] or [10].
Moreover, the special features of the F matrix used at the
acceleration level make it simpler and smoother to enforce
any desired change in the SoT, without using any additional
scaling parameter.

IV. RESULTS

A. Simulations

We present here different simulation scenarios and com-
parisons. First, we compare the use of TPM at the velocity
level (7) with the proposed scheme at the acceleration
level (14). Second, the robot behavior using the classical
3-dimensional avoidance task (28) is compared with the 1-
dimensional relaxation (29). Third, we show the different
performance obtained when specifying the pointing task by
an equality (16) or with the proposed inequality (21).

The evaluations are done in MATLAB using the 7-dof
KUKA LWR IV robot. The desired tasks are to follow an
elliptic path in the Cartesian space for three turns, while
pointing to a direction parallel to the positive x-axis of
the world frame. During the motion, the robot should avoid
any collision with three static obstacles located in the robot
work space. For this, kt = 8 control points along the robot
body were considered, see Fig. 3. To have a challenging
task, the first obstacle is placed across the path. The desired
priority for each of the robot tasks is assigned according
to Algorithm 1, where the danger thresholds distances (in
meters) are ε1 = 0.05, ε2 = 0.15, and εee = 0.1. In



(a)

(b)

Fig. 4. Joint velocities for the first comparison. (a) TPM at the velocity
level. (b) TPM at the acceleration level.

all simulations, the value of rmax in (23) has been set to
0.15 [m/s2] for the robot body control points, and to 5 [m/s2]
for the EE control point. The robot behavior during the
various simulations is shown in the accompanying video.

1) Velocity level vs. acceleration level: In this compari-
son, the robot performs a positional task and an inequality
pointing task with αd = 5◦. For the collision avoidance of
the control points, the 1-dimensional definition is used. First,
the tasks are controlled at the velocity level using TPM (7)
through a similar approach of Sec. III-C. Then, the same
Cartesian tasks are controlled using the proposed scheme at
the acceleration level (14). When using (7), Fig. 4(a) shows
discontinuities in the joint velocity in correspondence of any
change in either the desired SoT or in the dependencies
among the tasks. In contrast, when using (14), the joint
velocity in Fig. 4(b) are smooth and without any high or
sudden peaks. In Fig. 5, it is clear how the use of (29) is
sufficient to keep the robot body far from any obstacle. Ac-
cording to Algorithm 1, this is done while the corresponding
avoidance task has the lowest Cartesian task priority, since
Dminimal > ε1 during the whole simulation.

2) 3-dimensional collision avoidance task: The robot
should achieve the aforementioned EE Cartesian tasks at the
acceleration level using the 3-dimensional definition (28) for
the robot body collision avoidance. As shown in Fig. 6(b),
the robot comes closer to the obstacles more frequently
and with less Dminimal values than when using the relaxed
definition (29). This is because the 3-dimensional avoidance
task pushes the robot strongly to move away from the current
closest obstacle. As a result, the robot comes near to the
other obstacles repeating again a similar reaction. Moreover,
in this case, there will be not enough dofs available for both
the pointing task and the joint-space damping, causing the
oscillations in the joint velocities —see Fig. 6(a).
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Fig. 5. Simulation at the acceleration level: (a) Dmin(pcee
) where

εee = 0.1 [m]. (b) Active robot control point [above] and corresponding
Dminimal [bottom], with ε1 = 0.05 [m] and ε2 = 0.15 [m].
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Fig. 6. Simulation at the acceleration level using the 3-dimensional
avoidance task definition (28).
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Fig. 7. EE pointing task error: (a) Using inequality constraint. (b) Using
equality constraint. Red traces indicate when the pointing task is active (i.e.,
included in the SoT).

3) Equality vs. inequality pointing task constraint: For a
desired pointing angle task of αd = 35◦, two simulations are
done using TPM at the acceleration level with 1-dimensional
task for robot body collision avoidance and two different
constraints for the pointing task. In Fig. 7, using the equality
constraint, the pointing task is always included in the SoT
and the error should converge to zero if possible. Using the
inequality constraint, the task is not included in the SoT
while the pointing error is equal or less than zero, i.e., when
the EE points on the cone surface or inside it. In this case,
the robot has one extra dof to be exploited for achieving
other tasks.

B. Experiments

Our proposed approach is implemented using C++ through
the ROS 2 middleware and evaluated in an experimental
setup using KUKA LWR IV robot. The robot is commanded
using the position control mode through the Fast Research
Interface (FRI) library [21], with a control cycle of 5 [ms].
The distances between the robot and any obstacle in the
surveillance area are evaluated directly in the depth space
using one Kinect camera as in [8], see Fig. 8. The desired
task is to regulate the robot EE to a fixed prescribed Cartesian
point while pointing to a cone with αd = 5◦. In this
case, only one surveillance area is considered for the robot
collision avoidance, with ε1 = εee = 0.4 [m].

During the experiment, the hand of an operator and/or an
object will be moved frequently close to the robot. As shown
in Fig. 10, the proposed approach is efficient in keeping
the robot far enough from any obstacle while exploiting the
available redundancy to minimize the error of the desired
Cartesian tasks —see the accompanying video for a complete
understanding. Approximately, for the first 8 seconds, the
EE regulates the desired position and pointing tasks by
minimizing the Cartesian errors. Then, an obstacle moves
close to the EE which reacts accordingly. Later on, the

Fig. 8. Snapshot of a depth image superposed with the computed distances
between control points (green circles) on the robot and a close object in the
surveillance area. The blue line refers to Dminimal. The cyan line shows
the computed distance between the EE and the nearest point of the obstacle.

(a)

(b)

Fig. 9. Joint velocity (a) and acceleration (b) during the experiment with
our approach on the KUKA LWR IV robot.

obstacle moves near the robot body and the robot responds
depending to the closest control point to the obstacle. Since
the desired pointing has the lowest Cartesian task priority, the
related error is high when collision avoidance is activated. In
Fig. 9, the corresponding joint velocity and acceleration are
reported. Discontinuities will appear in the joint acceleration
at every change in the SoT. However, joint velocity is smooth
along the whole trajectory, with high peak values when the
obstacle is too close to the robot.

V. CONCLUSIONS

In this paper, the problem of controlling the execu-
tion of multiple tasks with different priorities, including
the robot collision avoidance task, has been considered.
Robot redundancy is exploited efficiently using relaxed (low-
dimensional) constraints for both pointing and collision
avoidance tasks. We defined the pointing task as an inequality



constraint, where the robot EE can point toward any point be-
longing to a predefined cone region. The collision avoidance
task was relaxed by pushing away the robot control point
which is closest to the nearby obstacles toward any point
in a plane orthogonal to the predefined repulsion direction.
Furthermore, we adopted the Task Priority Matrix (TPM)
method [1] to deal separately with redundancy resolution
control and handling of task priorities. The TPM method was
extended and implemented at the acceleration level, elimi-
nating in this way discontinuities in the joint velocity due
to task switchings and including the consideration of robot
dynamics for joint motion damping. A simple algorithm
for efficient task priority management was also presented,
where the collision avoidance task is defined as task space
inequality constraint on the highest priority level.

The TPM approach is faster and simpler than previous task
priority approaches. However, joint inequality constraints
have not been considered at present (as instead, e.g., in the
HCOD method). This issue will be investigated in the future.
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(a) Cartesian EE position error. (b) Inequality pointing error. Red traces
indicate when the pointing task is active. (c) Dmin(pcee

), with εee =
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Dminimal [below], with ε1 = 0.4 [m].
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