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Abstract— We present an approach for multi-robot consistent
distributed localization and semantic mapping in an unknown
environment, considering scenarios with classification ambi-
guity, where objects’ visual appearance generally varies with
viewpoint. Our approach addresses such a setting by main-
taining a distributed posterior hybrid belief over continuous
localization and discrete classification variables. In particular,
we utilize a viewpoint-dependent classifier model to leverage
the coupling between semantics and geometry. Moreover, our
approach yields a consistent estimation of both continuous and
discrete variables, with the latter being addressed for the first
time, to the best of our knowledge. We evaluate the performance
of our approach in a multi-robot semantic SLAM simulation
and in a real-world experiment, demonstrating an increase
in both classification and localization accuracy compared to
maintaining a hybrid belief using local information only.

I. INTRODUCTION

Deployment of multi-robot systems allow for fast infor-
mation gathering, and can be used in a wide variety of
applications, for example: search and rescue, autonomous
driving, and agriculture. A significant part of ongoing re-
search is multi-robot Simultaneous Localization and Map-
ping (SLAM), where a group of robots localize themselves
and cooperatively map the environment. Multi-robot SLAM
is utilized in a variety of navigation tasks such as cooperative
search and rescue, underwater navigation, or warehouse
management. SLAM itself is a widely researched problem
(see e.g. [1]) in the robotics community. In particular, se-
mantic SLAM reasons about objects within the environment
with richer information, such as object’s class, compared to
geometric SLAM. Yet, often when observed from certain
viewpoints, inferring the correct class of an object can be
challenging, i.e. an object may visually appear similar to
representative objects from different classes. This induces
a viewpoint dependency for classifier outputs and requires
information from different viewpoints for maintaining a
belief over classification variables.

In this paper we present the first distributed multi-robot
approach for semantic localization and mapping in the above
setting. Our approach maintains a hybrid belief over con-
tinuous variables (object and camera poses) and discrete
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variables (object classes), while considering the coupling
between classification and localization, and enforcing con-
sistent, double-counting-free estimation.

In contrast, existing approaches for multi-robot semantic
SLAM utilize most-likely class measurements to solve data
association. Moreover, these approaches do not maintain a
belief over classification variables, nor model the coupling
between semantic and geometric information.

As each robot uses information from other robots, it
must not use measurements more than once, otherwise it
will lead to erroneous and overconfident estimates, i.e. it
will double count information. To address this key problem,
multiple approaches were proposed, all considering contin-
uous variables: from complex book-keeping (e.g. [2]) to
information removal techniques (e.g. [3]). In this work we
address consistent inference of a hybrid belief that consists
of continuous and discrete variables. To the best of our
knowledge, the latter has not been addressed thus far.

To summarize, our main contributions are as follows. (i)
we contribute a multi-robot approach that maintains a hybrid
belief over robot and object poses, and object classes in a
distributed setting, while addressing the coupling between
semantic and geometric information via viewpoint-dependent
classifier model; (ii) we address estimation consistency
aspects considering both continuous and discrete random
variables; (iii) we demonstrate the strength of this approach
in simulation and real-world experiment, comparing to single
robot and distributed multi-robot with double counting. This
paper is accompanied with supplementary material [4] which
provides further details and results.

II. RELATED WORK

Various works have utilized sequential classification with
a classifier model for a single robot. Omidshafiei et al. [5]
presented a sequential classification approach that used a
Dirichlet distributed classifier model. The classifier model
was not modeled as viewpoint-dependent. Kopitkov and
Indelman [6] presented an approach to train a viewpoint
dependent classifier model. Feldman and Indelman [7] pro-
posed a sequential object classification that utilizes a view-
point dependent classifier with known relative poses a-
priori. Tchuiev et al. [8] maintained a hybrid belief with
a viewpoint dependent classifier to disambiguate between
data association realizations. These works, [8], address only
sequential classification and do not consider the coupled
problem with SLAM. To our knowledge, our work is the
first to address the coupled problem in a distributed setting.

There are different approaches for distributed multi-robot
SLAM; Walls et al. [9] proposed a distributed geometric
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SLAM approach that communicates factors between robots.
Other approaches for geometric SLAM include Extended
Kalman Filter (such as [10]) or Particle Filter based methods
(such as [11]). Choudhary et al. [12] presented an approach
for distributed semantic SLAM which communicates relative
poses between robots and uses object class information for
data association. The geometric approaches do not reason
about object classes, while the semantic approaches consider
only most likely classification, i.e. do not maintain a belief
over class variables. Our semantic approach maintains a
belief over object classes and considers the coupling between
the continuous and discrete variables.

Consistent estimation is a key issue in a distributed setup,
with multiple approaches proposed to address it. Bahr et al.
[2] proposed a distributed algorithm for under-water vehi-
cles, with an approach for using all measurements without
information loss. Indelman et al. [13] proposed a graph based
method that calculated cross-covariance terms that represent
the correlation between measurements from different robots,
utilizing it for consistent estimation. Cunningham et al. [14]
presented the DDF-SAM distributed SLAM algorithm that
avoided double counting by creating two maps for each
robot: local and global. The global map is updated with
condensed local maps. A later work by Cunningham et al. [3]
introduced DDF-SAM2, where each robot maintains only the
global map. To avoid double counting, the old information
during communication is filtered out via down-dating by
each robot. These approaches consider continuous random
variables. In contrast, we reason about discrete variables as
well.

III. NOTATIONS AND PROBLEM FORMULATION

Consider a group of robots operating in an unknown
environment represented by object landmarks. All of the
robots aim to localize themselves, and map the environment
geometrically and semantically within a distributed multi-
robot framework. In this work we consider a closed-set
setting, where each of the objects is of one of M possible
classes. The number of objects in the environment prior to
the scenario is unknown.

We denote states inferred by robot r with a superscript
�r. Set R is the set of all robots communicating with robot
r (including itself), either directly, or relayed through other
robots. Note that R can increase its size with time. Let xk
denote robot pose at time k, xon and cn denote the n’th object
pose and class respectively. Let X o .

= {xon}n and C .
= {cn}n

denote poses and classes of objects, and Xk
.
= {x0:k,X ok }

denotes all poses up to time k. Subscript new, k representing
the objects newly observed at k.

Let Zrk be the set of measurements robot r receives at
time k by its own sensors. Zrk is composed of geometric
and semantic measurements Zgeo,rk , and Zsem,rk respectively.
We assume independence between geometric and semantic
measurements, as well as between different time steps.

We assume Gaussian and known identical motion Mk
.
=

P(xk|xk−1, ak−1) and geometric P(zgeo,rk |xrk, xo,r) models

Parameters
x Robot pose
xo
n, cn n’th object pose and class
Xo

k Poses of objects observed up to time k
Xo

new,k Poses of objects newly observed at time k
Xk Robot and object poses up to time k
Ck Object seen up to time k class realization
Cnew,k Classes of objects newly observed at time k
Zk Measurements at time k including geometric and semantic
Mk Motion model from xk−1 to xk

Lk Measurement likelihood of Zk

Hk History of measurements and action up to time k
bk Conditional continuous belief at time k
wk Discrete weight at time k
ξk Continuous object marginal belief at time k
φk Discrete marginal belief at time k
Nk(·) Number of objects observed by a robot or a group up to time k
Superscripts
r States of robot r
R States of robots communicating with r, directly and indirectly,

including itself

TABLE I: Main notations used in the paper.

for all robots. At each time step, there is a subset of object
poses involved in the geometric and classifier model that
is determined by data association (DA). Unlike our previous
work [8], herein, DA is assumed to be externally determined.

Additionally, we use a viewpoint-dependent classifier
model that ”predicts” classification scores (a vector of class
probabilities). This model couples classifier scores with
viewpoint dependency between object and camera; this cou-
pling can be used to improve pose inference performance
[8]. The viewpoint dependency is modeled as a Gaussian
with parameters that depend on the relative viewpoint from
the camera to the object xo,r 	 xrk and object’s class c:

P(zsem,rk |xrk, xo, c)=N (hc(x
r
k, x

o,r),Σc(x
r
k, x

o,r)), (1)

where hc(·) and Σc(·) can be learned offline via a Gaussian
Process (GP) [7] or a deep neural network [6]. Note that for
M candidate classes, M viewpoint-dependent models have
to be learned.

Let Lrk
.
= P(Zrk |X rk , Crk) be the local measurement likeli-

hood of r that consists of geometric and classifier models:

Lrk
.
=

∏
xo,r,cr

P(Zgeo,rk |xrk, xo,r)P(Zsem,rk |xrk, xo,r, cr), (2)

where xo,r ∈ X o,rβk
and cr ∈ Crβk

; the term βk represents
the local DA of robot r at time k, i.e. the correspondences
between observations and object IDs. Denote X o,rβk

the set of
all poses of objects that observed by r at time k, and similarly
denote Crβk

for object classes. For the reader’s convenience,
Table I presents the important notations used in the paper,
some will be defined in the next section.

Problem formulation: For each robot r we aim to
maintain the following hybrid belief:

P(XRk , CR|HRk ), (3)

where HRk
.
= {Zr′1:k, a

r′

0:k−1}r′∈R is the history of measure-
ments of robot r itself and transmitted information to r, as
well as actions from all robots in R. The belief in Eq. (3)
is a hybrid belief over both continuous (camera and object
poses), and discrete (object classes) random variables. We
aim to update this hybrid belief per each robot in a recursive



manner, using both local measurements and information sent
from other robot in the neighborhood, as well as sending
information by itself. We aim to keep estimation consistency
by avoiding double counting, i.e. using every measurement
only once.

IV. APPROACH

We present a framework for distributed classification,
localization, and mapping. As with many multi-robot dis-
tributed frameworks, over-confident estimations, due to dou-
ble counting, is a key issue; We propose a framework that
simplifies the book-keeping that allows relaying of informa-
tion (e.g. robot 1 sends information to robot 2, then 2 sends
to 3 information that also includes the received from robot
1). This framework requires the maintenance of a local belief
P(X rk , Cr|Hrk) per each robot that can be sent and relayed
to other robots. From multiple local beliefs a distributed
belief can be constructed. The local beliefs are stored by
each robot, and updated accordingly when new information
arrives, and the receiving robot filters out the old information,
thus avoiding double counting.

In the next sections we derive a recursive formulation for
maintenance of the local belief, the distributed hybrid belief,
and the information stack each robot holds and transmits.

A. Local Hybrid Belief Maintenance

Our formulation for maintaining local hybrid beliefs builds
upon our previous work [8], with the main differences being
that here we assume the DA is solved, and the number of
objects is unknown a-priori. In this section we present an
overview of this approach.

We maintain the hybrid belief of robot r only from local
information. This belief can be split into continuous and
discrete parts as in:

P(X rk , Crk |Hrk) = P(X rk |Crk ,Hrk)︸ ︷︷ ︸
brk

P(Crk |Hrk)︸ ︷︷ ︸
wr

k

. (4)

To maintain this hybrid belief, we must maintain a set of
continuous beliefs conditioned on the class realization of all
objects observed in the scene by robot r thus far.

The continuous part can be updated as follows:

brk ∝ brk−1 · Lrk · Mr
k · P(X o,rnew,k), (5)

where P(X o,rnew,k) =
P(Xo,r

k )

P(Xo,r
k−1)

is the prior over object poses
newly observed at time k. As opposed to [8], this formulation
also supports an increasing number of objects known at each
time step, with both X o,rk and Crk increasing in dimension.
Note that in general brk is different for each class realization,
as models (1) are different for each class.

The discrete part is the weight associated to its correspond-
ing continuous belief. As our measurement models depend
on continuous variables, we use Bayes rule on P(Crk |Hrk)
and marginalize the measurement likelihood as follows:

wrk ∝ wrk−1P(Crnew,k)

∫
X r

k

Lrk · brk−1 · Mr
kdX rk , (6)

where P(Crnew,k) =
P(Cr

k)
P(Cr

k−1) is the prior over classes of new
objects locally observed by r at time k. We compute the
integral in Eq. (6) by sampling the continuous variables that
participate in P(Zrk |X rk , Crk), i.e. the last robot pose xrk and
the poses of observed objects X o,rβk

at time k. These variables
are sampled from the propagated belief brk−1 ·Mr

k. Variables
that do not participate in Lrk can be marginalized analytically.

B. Distributed Hybrid Belief Maintenance

In this section we extend the formulation presented in
Sec. IV-A to include updates from other robots, consider-
ing a distributed multi-robot setting. As will be seen, our
formulation uses each measurement only once, thus keeping
estimation consistency and avoiding double counting. Sim-
ilarly to (4), we factorize the distributed hybrid belief (3)

P(XRk , CRk |HRk ) = P(XRk |CRk ,HRk )︸ ︷︷ ︸
bRk

P(CRk |HRk )︸ ︷︷ ︸
wR

k

. (7)

As in the single robot case, maintaining this belief requires
managing multiple hypotheses of class realizations. Com-
pared to the single robot case, the number of objects observed
will be equal or greater for distributed belief, therefore the
number of possible realizations increases as well. Impor-
tantly, information transmitted by other robots impacts both
bRk and wRk . Furthermore, the classifier viewpoint-dependent
model induces coupling between localization uncertainty and
classification of different robots.

We present a recursive formulation for maintaining each of
the parts in (7). The distributed measurement history HRk can
be split to a prior part, and a new part, defined as ∆HRk , that
consists of measurements and actions from time k, s.t: HRk =
HRk−1∪∆HRk . Similarly, letHrk

.
= Hrk−1∪{Zrk , ark−1} for the

single robot case. Note information in ∆HRk transmitted by
other robots can potentially be from earlier time instances
(as each robot during communication transmits to robot r
its own stack of local beliefs of other robots, see Section
IV-C). Crucially, each measurement must be used once to
avoid double counting. We also denote history without local
measurements and action at time k as
HR−k

.
=HRk \{Zrk , ark−1} , ∆HR−k

.
=∆HRk \{Zrk , ark−1}. (8)

Using the above notations, one can observe HR−k = HRk−1∪
∆HR−k . Next, we detail our approach for maintaining both
the conditional continuous part bRk and the discrete part wRk
recursively for a realization of object classes CRk .

1) Maintaining bRk : Using Bayes rule, we rewrite bRk as:

bRk = η · Lrk · bR−k (9)

where η .
= P(Zrk |Crk ,HRk \Zrk)

−1 is a normalization constant
the does not participate in inference of the continuous belief.
The local measurement likelihood, Lrk, is defined in Eq. (2).

The term bR−k
.
= P(XRk |CRk ,HRk \Zrk) is the distributed

propagated belief that is conditioned on information trans-
mitted by other robots at time k, and on the latest action
of robot r but not on its local measurement. During update,
bR−k is saved to be used in maintenance of wRk , as seen in the



next subsection. Using chain rule, we can extract the motion
model of the latest action as well:

bR−k =Mr
k · P(XRk \xrk|CRk ,H

R−
k ). (10)

We can express P(XRk \xrk|CRk ,H
R−
k ) in terms of the dis-

tributed continuous prior bRk−1
.
= P(XRk−1|CRk−1,HRk−1), and

the new information received from other robots (see [4,
Sec. 2]):
P(XRk \xrk|CRk ,HR−k ) = bRk−1·

P(X o,Rk |Co,Rk ,∆HR−k )

P(X o,Rk−1)
(11)

Finally, we substitute Eq. (11) to Eq. (10) and in turn to
Eq. (9), and get the following recursive formulation:

bRk ∝ bRk−1·Lrk·Mr
k·P(X o,Rnew,k)

P(X o,Rk |Co,Rk ,∆HR−k )

P(X o,Rk )
, (12)

where the measurement likelihood Lrk accounts for the new
local measurement, Mr

k accounts for the latest action of
robot r, and P(X o,Rk |Co,Rk ,∆HR−k ) (shown in blue) accounts
for new information sent to r by other robots in R at
time k. This pdf is only over object poses (X o,Rk ), while
the other robots’ poses are marginalized out. Thus, robots
communicate the environment states, which are implicitly
affected by the robots’ pose estimation. Computation of the
blue part is further discussed in Sec. IV-C. Compared to the
local belief update (5), the blue part is the main difference.
The expression P(X o,Rnew,k) represents pose prior of objects
newly known by r at time k.

The distributed belief has at worst MNk(R) continuous
beliefs with corresponding weights, where the number of
objects Nk(R) known by r can increase with time. Naturally,
a multi-robot system will observe more objects than a single
robot, therefore the computational burden for distributed
belief will be larger than for the local belief. Therefore, the
significance of pruning beliefs with small weight grows. We
set a threshold for the ratio between a weight and the largest
weight in the distributed hybrid belief.

2) Maintaining wRk : To maintain wRk , we use a similar
derivation to the weight update via local information only,
presented in Sec. IV-A. We use Bayes rule to extract the last
local measurement likelihood:

wRk = η · wR−k · P(Zrk |CRk ,HRk \Zrk), (13)

where wR−k
.
= P(CRk |HRk \Zrk) is the posterior distributed

weight without accounting for the latest local measurements,
and η .

= P(Zrk |HRk \Zrk)
−1 is a normalization constant that is

identical in all realizations of CRk , thus does not participate in
weight inference. As we use a viewpoint dependent classifier
model that utilizes the coupling between relative viewpoint
and object class, we need to marginalize P(Zrk |CRk ,HRk \Zrk)
over the involved poses in this likelihood: the last robot pose
xrk, and poses of objects observed at time k. We denote the
latter by X o,rβk

, and to shorten notations denote X rinv,k
.
=

{xrk,X
r,k
βk
}, and by ¬X rinv,k. Thus, P(Zrk |CRk ,HRk \Zrk) is

marginalized as

P(Zrk |CRk ,HRk \Zrk) =

∫
X r

inv,k

Lrk·P(X rinv,k|Crk ,HRk \Zrk)dX rinv,k,

(14)

where P(X rinv,k|Crk ,HRk \Zrk) is computed by marginalizing
bR−k over the uninvolved variables ¬X rinv,k, with XRk =
X rinv,k ∪ ¬X rinv,k, as

P(X rinv,k|Crk ,HRk \Zrk) =

∫
¬X r

inv,k

bR−k d¬X rinv,k. (15)

The propagated distributed belief bR−k is given to us from
the continuous belief with Eq. (10), and includes the external
information, shown in blue.

In practice, we sample the involved variables X rinv,k in
the current measurement likelihood and compute its value.
As bRk and Lrk are Gaussian, η does not play a role in
the sampling process. Despite the classifier outputs being
modeled as Gaussian, we integrate over poses; In the general
case, expectation and covariance of the classifier model are
a function of the relative viewpoint, thus we need to sample
X rinv,k as presented in Sec. IV-A at Eq. (6).

The other term we will address from Eq. (13) is wR−k . We
express wR−k in terms of wRk−1:

wR−k ∝ wRk−1 · P(CRk−1)
−1 · P(CRk |∆H

R
k \Zrk). (16)

Finally, we substitute Eq. (14) and (16) to Eq. (13) to reach
our final recursive form for the discrete belief update:

wRk ∝ wRk−1 · P(CRnew,k)
P(CR

k |∆H
R
k \Z

r
k)

P(CR
k )

∫
X r

inv,k
Lrk·

·P(X rinv,k|Crk ,HRk \Zrk)dX rinv,k,
(17)

with P(X rinv,k|Crk ,HRk \Zrk) computed via Eq. (15). This is a
recursive formulation that includes the discrete prior wRk−1,
external updates for the class probability from other robots
(shown in red), and the external updates for the continuous
belief contained within the integral.

Remark: One might be tempted to infer the class of each
object separately, but it is not accurate due to the coupling
between relative viewpoint and object class, as each object
class is possibly implicitly dependent on all poses: robot and
objects (see [4, Sec. 3]).

C. Communication Between Robots

In Sec. IV-B we presented a framework to maintain a hy-
brid belief of r given information obtained from other robots
in R. That information was represented by the continuous
blue expression in Eq. (12) and implicitly in Eq. (17), and the
discrete red expression in Eq. (17). In this section, we present
our approach for computing these parts, thus describing the
management of this information and what each robot sends
when communicating. We aim to achieve two goals:

1) Simple double counting prevention when maintaining
the distributed belief without complex bookkeeping.

2) Distributed belief inference also via data not directly
transmitted (e.g. robot r1 sends data to r2, r2 to r3,
and r3 is using data from r1).

As will be shown next, the blue and red terms in Eqs. (12)
and (17) can be expressed via local information transmitted
by different robots in R to robot r. To that end, each robot
r maintains and broadcasts a stack of local hybrid beliefs



of other robots it is aware of. In contrast to (4), these local
beliefs are marginal beliefs over object poses and classes,
i.e. robot poses are marginalized out. Each slot for robot r′ in
the stack of robot r contains Nk(r′) continuous and discrete
marginal beliefs (defined below as ξr,r

′

k and φr,r
′

k ), one pair
per class realization, following a factorization similar to (4).
Additionally, each slot includes a time-stamp that indicates
on what data the local hybrid belief is conditioned upon.
All in all, every stack contains

∑|R|
i=1Nk(ri) continuous and

discrete beliefs. Eq. (18) presents the stack of robot r as
a set of slots, where each slot contains a hybrid belief of
a particular robot ri ∈ R over object poses and classes,
normalized by their priors.

Srk
.
=

{(
P(X o,riki

|Criki ,H
ri
ki

)P(Criki |H
ri
ki

)

P(X o,riki
)P(Criki )

, ki

)}
ri∈R

, (18)

where ki is the time-stamp when robot r received infor-
mation about ri. In general, time ki is not synchronized
with k. The marginal continuous and discrete beliefs that
robot r has about robot ri ∈ R are denoted ξr,rik

.
=

P(X o,riki
|Criki ,H

ri
ki

)/P(X o,riki
) for the continuous part, and

φr,rik
.
= P(Criki |H

ri
ki

)/P(Criki ) for the discrete part.
With these definitions of ξr,rik and φr,rik , it is possible to

show that the blue part in Eq. (12) can be expressed as (see
full derivation in supplementary material [4, Sec. 4])

P(X o,Rk |CRk ,∆H
R−
k )

P(X o,Rk )
=
∏
ri∈R

ξr,rik

ξr,rik−1

(19)

Similarly, the red term in Eq. (17) can be expressed as (see
full derivation in supplementary material [4, Sec. 5]):

P(CRk |∆H
R
k \Zrz )

P(CRk )
=
∏
ri∈R

φr,rik

φr,rik−1

. (20)

Eqs. (19) and (20) present the external update as a product
of local beliefs, with only the updates from k − 1 for robot
r are present. This formulation avoids double counting by
removing old information, ξr,rik−1 and φr,rik−1, in each com-
munication and uses measurements only once. Specifically
for ξr,rik−1, we use the approach presented in [3]. Doing so
by maintaining stacks of individual information does not
require complex book-keeping, only time-stamps for each
slot; Thus we fulfill the first goal. Robots can also relay
information transmitted to them, thus the distributed belief
can be updated by information from robots that did not
transmit to the inferring robot, thus fulfilling the second goal.

Robot ri sends the entire stack during information broad-
cast. When robot r receives information, it integrates the
broadcast in as follows: recall that ri’s stack is divided to
slots, with a time stamp per each slot. Robot r compares
time stamps with the received information per slot, and
replaces the information within the slot if the received time
stamps is newer. If r receives information from more than
one other robot at the same time, it will select the newest
information per slot. This procedure is dependent on the

relations between time-stamps, thus it is not necessary to
synchronize time between the robots.

In the following section we discuss double counting as-
pects of discrete random variables, corresponding to Eq. (20).

D. Double Counting of Discrete Random Variables

Double counting leads to over-confident estimations, and if
an erroneous measurement is counted multiple times, it may
lead to a large error in the state’s estimation in turn. While the
implications of double counting on continuous random vari-
ables (e.g. camera poses and objects) have been investigated,
it is not so for discrete random variables. Both cases have a
common thread: measurements counted multiple times will
’push’ the posterior estimation to a certain direction while
leading to lower uncertainty than when double counting is
appropriately avoided (i.e. each measurement is used at most
once). In the continuous Gaussian case, it manifests in a
covariance matrix with smaller eigenvalues. Comparatively,
in the discrete case the highest probability category will have
its probability increase while the probability of not being in
this category decreases.

To illustrate the above, consider an example with a cat-
egorical random variable c; we receive two sets of data
Za = {z1, z2}, and Zb = {z2, z3}, with a common mea-
surement z2. Considering a measurement likelihood P(z|c),
the posterior over c is (see e.g. Bailey et al. [15]):

P(c|Za, Zb)∝P(c)P(Za, Zb|c)=P(c)
P(z1|c)P(z2|c)2P(z3|c)

P(z2|c)
.

(21)
If the common data (measurement z2) is not removed via
the denominator in Eq. (21), it will be double counted.
Compared to Eq. (20), the above nominator and denominator
correspond, respectively, to the terms φr,rik and φr,rik−1.

Denote P(z2|c = i)
.
= ai, and to shorten the notations

P(c = i)P(z1|c = i)P(z3|c = i)
.
= Li. The normalized pos-

terior can be written as:

P(c = i|Za, Zb) =
aiLi∑m
j=1 ajLj

=
a2
iLi∑m

j=1 ajLj · ai
(22)

where m is the number of candidate categories. Double
counting, i.e. without the denominator in Eq. (21), gives after
normalization a2iLi∑m

j=1 a
2
jLj

.
The largest ai is denoted amax, with imax being the cate-

gory corresponding to amax, and subsequently the product of
all other terms for imax is denoted Lmax. Double counting
of P(z2|ci) will increase the probability of imax:

P(c = imax|Za, Zb) =
a2
maxLmax∑m

j=1 ajLj · amax
≤ a2

maxLmax∑m
j=1 a

2
jLj

.

(23)
Similarly, it can be shown that with higher power (i.e.
counting the data more) can increase the posterior probability
even further; In addition, the reverse can be shown for the
lowest probability in a. This increase in influence can be
disastrous if the category of the highest probability likelihood
is not correct, possibly leading to pruning of the correct class
hypothesis when maintaining the hybrid belief (3).
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Fig. 1: Conceptual demonstration of the effects of double counting on discrete random
variables. Consider 4 possible categories with an uninformative prior over them. (a) is
the measurement likelihood for the categories. Considering the uninformative prior, it
is the posterior distribution as well. (b) and (c) counts the same likelihood twice and
thrice respectively.

A visualization can be seen in Fig. 1, where there are
4 categories with uninformed prior and a measurement
likelihood; in Figs. 1a, 1b and 1c the likelihood is counted
once, twice and thrice respectively. Evidently, the strongest
category’s probability (cat. 3) is increased when counted
more times while all other have their probability diminish.

V. EXPERIMENTS

We evaluated our approach in a multi-robot SLAM sim-
ulation and with real-world data where we consider an en-
vironment comprising several scattered objects observed by
multiple mobile cameras from different viewpoints. Fig. 2a
and Fig. 5a present the ground truth for simulation and ex-
periment respectively. Our implementation uses the GTSAM
library [16] with a python wrapper. The hardware used is an
Intel i7-7700 processor running at 2.8GHz and 16GB RAM,
with GeForce GTX 1050Ti with 4GB RAM.

A. Simulation Setting, Compared Approaches and Metrics

Consider 3 robots, denoted r1, r2, and r3, moving in a 2D
environment represented by N = 15 scattered objects. We
consider a closed-set setting and assume, for simplicity, M =
2 classes, where each object can be one of the two. In this
scenario the maximum number of possible class realizations
is MN = 32768.

Our approach is evaluated for both classification, and
pose inference accuracy, as we maintain a hybrid belief.
We consider an ambiguous scenario where the classifier
model cannot distinguish between the two classes from a
certain viewpoint, thus requiring additional viewpoints to
correctly disambiguate between the two classes. The robots
communicate between themselves, increasing performance
for discrete and continuous variables, i.e. classification and
SLAM. Additionally, the distributed setting extends the sens-
ing horizon, allowing robots to reason about objects that are
not directly observed, while keeping estimation consistency.

Each robot only communicates with robots within a 10
meter communication range, relaying the local information
stored in its stack. In particular, initially r2 and r3 share
information with each other, then r1 and r2, relaying infor-
mation from r3 through r2. For a complete table of commu-
nication in the considered scenario, see [4, Sec. 7]. Further,
we assume the robots share a common reference frame (this
assumption can be relaxed as in [17]). We simulate relative
pose odometry and geometric measurements, and we crafted
a classifier model that simulates perceptual aliasing.

In the evaluation we compare between three approaches:
local estimations, our approach, and our approach with
double counting, i.e. ξr,rik−1 = 1 and φr,rik−1 = 1 in Eq. (19)
and (20) respectively. In all benchmarks we average the
results for each robot. The parameters are presented in the
supplementary material [4, Sec. 6].

As explained in Sec. IV-D, when double counting occurs,
the posterior class probability will converge to extreme
results quicker, and may result on either completely right or
wrong classifications. Therefore, reasoning about a single run
is insufficient, and a statistical study is required. To quantify
classification accuracy, we sample 100 times different geo-
metric and semantic measurements, and perform a statistical
study over the results. For that, we use mean square detection
error (MSDE) averaged over all objects, robots, and runs
(also used by Teacy et al. [18] and Feldman & Indelman
[7]). We define MSDE per robot and object as follows:

MSDE
.
=

1

m

m∑
i=1

(Pgt(c = i)− P(c = i|HRk ))2, (24)

where Pgt(c = i) represents the classification ground truth
and can be either 1 for the correct class or 0 for all other
classes. Therefore MSDE = 1 for completely incorrect
classification, thus allowing us to perform statistical study of
the effects of double counting of discrete random variables.
To quantify localization accuracy, we use estimation error
x̃wavg which is the weighted average of Euclidean distance
between the estimated and ground truth poses.

B. Simulation Results

Fig. 2 presents results for continuous variables, i.e. robot
and object poses. Figs. 2b and 2c show a clear advantage to
our approach, where the localization error is the smallest for
robots and objects respectively after the first 10 time steps.
In Figs. 2d and 2e the estimation covariance is presented,
where the double counted approach has the smallest values
as expected. Fig. 2e shows ’spikes’ in the average objects’
position covariance; these correspond to new object detec-
tions where the localization uncertainty is still high.

Fig. 3 visualizes classification and estimations at time
k = 60 for local only and for distributed beliefs of robot
r2. At that time, robot r2 communicated earlier with r3, and
for the first time communicates with r1. When comparing
Fig. 3b (local) to Fig. 3d (distributed), the number of possible
class realizations is reduced. In addition, the estimate of r2’s
pose, as well as the objects, is more certain and accurate.
When comparing Figs. 3c and 3e, the latter presents a larger
map, i.e. more objects observed, and the class estimations
(classification) are closer to the ground truth.

Fig. 3a presents the average MSDE over 100 runs, where
as a whole our approach shows lower MSDE values, i.e.
statistically stronger classification results. In supplementary
material [4, Sec. 8] we present additional classification and
SLAM results.
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Fig. 2: Simulation figures; (a) present the ground truth of the scenario. Red points represent the initial position of the robots, with different colored lines represent different
robots. The green points represent the object poses. (b) and (c) represent the average x̃wavg for robot and object position respectively as a function of time. (d) and (e) present
the corresponding square-root of the position covariance for the robot and object average respectively.
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Fig. 3: (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are figures for time k = 60 of r1. (b) and (d) represent multiple SLAM
hypotheses for local and distributed setting respectively; Black dots with gray ellipse represent object pose estimation, red & blue signs with red ellipse represent robot pose
estimation. Green and red points represent ground truth for object and robot positions respectively. (c) and (e) represent class probabilities for c = 1 for objects observed thus
far for local and distributed respectively. The X notations represent ground truth (1 for class c = 1, 0 for class c = 2).

C. Experiment Setting

In our scenario 3 robots are moving within an environment
with multiple objects within it. We scattered 6 chairs within
the environment and photographed them using a camera on
a stand, keeping a constant height. In Fig. 4a we show an
image from the scenario with the corresponding bounding
box. The chairs were detected with YOLO3 DarkNet de-
tector [19], which provided bounding boxes, and then each
bounding box was classified using a ResNet50 convolutional
neural network [20]. We considered 3 candidate classes out
of 1000: ’barber chair’, ’punching bag’, and ’traffic light’,
as c = 1, 2, 3 respectively with c = 1 being the ground
truth class. We trained three viewpoint-dependent classifier
models using three sets of relative pose and class probability
vector pairs, with the spatial parameters being the yaw
and pitch angles from camera to object; The models are
presented in the supplementary material [4, Sec. 9]. For the
ground truth class we photographed an objects from multiple
viewpoints, and then classified it using ResNet 50. For the
other two classifier models, we sampled class probability
vectors with larger probability for the corresponding class
of the model, and used the same relative poses as the first
model. Fig. 4b, 4c presents expectation of c = 1 for two of
the classifier models as a function of the spatial parameters.

In the experiment (deployment phase), we utilized both
geometric and semantic measurements, using the corre-
sponding (learned) measurement likelihood models. Relative
pose geometric measurements for odometry and between
camera and objects were generated by corrupting ground
truth with Gaussian noise, while the semantic measurements
are provided by YOLO3 and ResNet from real images. For
parameter details, see supplementary material [4, Sec. 9].
The same metrics as the simulation are used here.

(a) (b) (c)

Fig. 4: (a) is an image used in the experiment, with corresponding the bounding box.
(b) and (c) are class probability expectation for class c = 1 for classifier models of
c = 1 and c = 2 respectively.

D. Experimental Results

Fig. 5 presents SLAM results for the same benchmarks as
in Fig. 2. Figs. 5b and 5c present an average x̃wavg over all
robots for robot and object positions, respectively. In general,
the advantage of our approach is evident with lower errors. In
addition, Figs. 5d and 5e present a similar pattern to Figs. 2d
and 2e, respectively, where the covariance of our approach is
smaller than the single robot case, but larger than the over-
confident double counting case.

For classification results, Fig. 6a shows the average MSDE
per robot as a function of time step, where eventually our
approach out-performs both the single robot and the double
counting cases, with higher probability for the correct class
realization. In Fig. 6, SLAM and classification results for
Robot 2 at time step k = 35 are presented, showing similar
resulting trends to Fig. 3. Comparing Fig. 6b and Fig. 6d, the
later shows more accurate SLAM compared to the former,
with less class realizations. In addition, compared to Fig. 6e,
Fig. 6c shows more accurate classification with an additional
object classified.

For additional results at different time steps, refer to
the supplementary material [4, Sec. 10-11] and multimedia
submission.
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Fig. 5: Experiment figures; (a) present the ground truth of the scenario. Red points represent the initial position of the robots, with different colored lines represent different
robots. The green points represent the object poses. (b) and (c) represent the average x̃wavg for robot and object positions respectively as a function of time for the experiment.
(d) and (e) present the corresponding square-root of the position covariance for the robot and object average respectively.
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Fig. 6: (a) presents average MSDE for the robots over 100 runs with different measurements. The rest are figures for time k = 35 of r2. (b) and (d) represent multiple SLAM
hypotheses for local and distributed setting respectively; Black dots with gray ellipse represent object pose estimation, red & blue signs with red ellipse represent robot pose
estimation. Green and red points represent ground truth for object and robot poses respectively. (c) and (e) represent class probabilities for c = 1 and c = 2 for objects observed
thus far for local and distributed respectively, with blue and orange for classes 1 and 2 respectively. In this case, the ground truth class of all objects is c = 1.

VI. CONCLUSIONS

We presented an approach for multi-robot semantic SLAM
in an unknown environment. In this approach a distributed
hybrid belief is maintained per robot using local information
transmitted to other robots as a ’stack’, designed to keep
estimation consistency without complex book-keeping, both
for continuous and discrete states. We utilized a viewpoint
dependent classifier model to account for the coupling of
relative pose between robot and object, and object’s class. In
simulation and real-world experiment we showed that our ap-
proach improves classification and localization performance
while avoiding double counting. Future work will incorporate
data association disambiguation.
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