
Cross-view Semantic Segmentation for Sensing Surroundings

Bowen Pan1,∗, Jiankai Sun2,∗, Ho Yin Tiga Leung2, Alex Andonian1, and Bolei Zhou2

Abstract— Sensing surroundings plays a crucial role in hu-
man spatial perception, as it extracts the spatial configuration
of objects as well as the free space from the observations. To
facilitate the robot perception with such a surrounding sensing
capability, we introduce a novel visual task called Cross-view
Semantic Segmentation as well as a framework named View
Parsing Network (VPN) to address it. In the cross-view semantic
segmentation task, the agent is trained to parse the first-view
observations into a top-down-view semantic map indicating the
spatial location of all the objects at pixel-level. The main issue of
this task is that we lack the real-world annotations of top-down-
view data. To mitigate this, we train the VPN in 3D graphics
environment and utilize the domain adaptation technique to
transfer it to handle real-world data. We evaluate our VPN on
both synthetic and real-world agents. The experimental results
show that our model can effectively make use of the information
from different views and multi-modalities to understanding
spatial information. Our further experiment on a LoCoBot
robot shows that our model enables the surrounding sensing
capability from 2D image input. Code and demo videos can be
found at https://view-parsing-network.github.io.

I. INTRODUCTION
Recent progress in semantic understanding enables ma-

chine perception to segment a scene precisely into meaning-
ful regions and objects [1], [2]. These semantic segmentation
techniques have benefited many automation applications, like
autonomous driving [3]. Though the semantic segmentation
network can recognize semantic content in a static image, it
is still far from enough to facilitate robots to sense in an un-
known environment and navigate freely there. One important
reason is that the parsed first-view semantic mask is still at
pure image-level without providing any spatial information
about the surroundings. To perceive spatial configuration
from pure image input, an intuitive approach is to explicitly
train networks to infer the top-down-view semantic map
which directly contains the spatial configuration information
of the surrounding environment. Based on the top-down-view
semantic map we can then infer the position coordinates and
functional properties of surrounding regions and objects.

To enable machines to capture the spatial structure of the
surroundings from 2D images, we explore a new image-
based scene understanding task, Cross-View Semantic Seg-
mentation. Different from the standard semantic segmenta-
tion predicting the labels of each pixel in the input image,

* indicates equal contribution.
This work was supported by CUHK FoE Direct Grant and Facebook

PyRobot Research Award.
1 B. Pan and A. Andonian are with the Computer Science and Artificial

Intelligence Laboratory, Massachusetts Institute of Technology, USA.
2 J. Sun, H. Y. T. Leung and B. Zhou are with the Department of

Information Engineering, The Chinese University of Hong Kong, Hong
Kong, China. Corresponding email: bzhou@ie.cuhk.edu.hk

First-view Observations

Environment

Cross-view

Segmentation

Top-down-view Semantic Map

Chair

Floor

Mobile robot

Sofa

Chair

Pillar

Chair

Glass

Chair & Human

Wall

Human

Wall

Cabinet

Mobile robot

Fig. 1: Top-down-view semantics is predicted from the first-view
real-world observations in the cross-view semantic segmentation.
Input observations from multiple angles are fused. Notice that the
result in this figure is generated without training on real-world data.

the cross-view semantic segmentation aims at predicting the
top-down-view semantic map from a set of first-view obser-
vations (see Fig. 1). The resulting top-down-view semantic
map, as a 2.5D spatial representation of the surrounding,
indicates the spatial layout of the discrete objects such as
chair and human, as well as the stuff classes floor and wall.
Note that although there is a huge literature of 3D methods
to reconstruct environments [4], our method has its unique
advantages. For example, robot perception systems based on
3D sensors involve expensive cost not only in sensor setup
but also in computational power. Instead, the top-down-view
map from the cross-view semantic segmentation can facilitate
the robot to understand its surroundings in a lightweight
and efficient way. In many situations such as free space
exploration for mobile robots where the height information
is not that essential, the 2D top-down-view semantic map
would be sufficient to provide spatial information with much
less computation cost.

One challenge in cross-view semantic segmentation is the
difficulty of collecting the top-down-view semantic annota-
tions. Recently, simulation environments such as House3D
[5] and CARLA [6] have been proposed for training naviga-
tion agents. In these environments, cameras can be placed at
any location in the simulated scene while the observations
in multiple modalities can be extracted. Thus, we leverage
the simulation environments to acquire cross-view annotated
data. To reduce the domain gap between the synthetic scenes
and the real-world scenes, we transfer the models trained in
the simulation environment to the real-world scenes through
domain adaptation.

In this work, we propose a novel framework with View
Parsing Network (VPN) for cross-view semantic segmenta-

IEEE Robotics and Automation Letters (RAL) paper presented at the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

Copyright ©2020 IEEE

tion using simulation environments and then transfer them to
real-world environments. In VPN, a view transformer module
is designed to aggregate the information from multiple
first-view observations with different angles and different
modalities. It outputs the top-down-view semantic map with
a spatial layout of objects. We evaluate the proposed models
on the indoor scene of the House3D environment [5] and
the outdoor driving scene of the CARLA environment [6].
Furthermore, to show the cross-view semantic task helps
visual navigation, we have demonstrations of real robot.

Our main contributions are as follows: (1) We introduce a
novel task named cross-view semantic segmentation to facili-
tate robots to flexibly sense the surrounding environment. (2)
We propose a framework with View Parsing Network which
effectively learns and aggregates features across first-view
observations with multiple angles and modalities. (3) We
further apply the domain adaptation technique to transferring
our model so that it can work in real-world data while
without any extra annotations.

II. RELATED WORK

A. Semantic Segmentation and Semantic Mapping

Deep learning networks for semantic segmentation [7]
are designed to segment the image pixel-wise within one-
view. Image datasets with pixel-wise annotations such as
CityScapes [3] are used for the training of semantic seg-
mentation networks. There is also a huge literature about
semantic mapping in robotics domain [1], [2], [8], [9], which
provides the semantic abstraction of the environment and a
way to communicate with robots.

B. Layout estimation and view synthesis

Estimating layout has been an active topic of research
(i.e. room layout estimation [10], free space estimation
[11], and road layout estimation [12], [13]). Most of the
previous methods use annotations of the layout or geometric
constraints for the estimation, while our proposed framework
estimates the top-down-view map directly from the image,
without the intermediate step of estimating the 3D structure
of the scene. On the other hand, view synthesis has been
explored in many works [14], [15]. They focus on generating
realistic cross-view images while cross-view segmentation
aims at parsing semantics across different views.

C. Learning in Simulation Environments

Given that current graphics simulation engines can render
realistic scenes, recognition algorithms can be trained on data
pulled from simulation engines (i.e., for visual navigation
models [16]). Several techniques have been proposed to
address the domain adaptation issue when models trained
with simulated images are transferred to real scenes [17].
Rather than working on the task of visual navigation directly,
our work aims at parsing the top-down-view semantic map
from the first-view observations. The resulting top-down-
view map will further facilitate visual navigation.

III. CROSS-VIEW SEMANTIC SEGMENTATION
A. Problem Formulation

The objective of cross-view semantic segmentation is
as follows: given the first-view observations as input, the
algorithm must generate the top-down-view semantic map.
The top-down-view semantic map is a map captured by a
camera at a certain height from the top-down view with the
annotations of the semantic label of each pixel. The input
first-view observations are a set of images with different
modalities. They are captured at N different angles by the
robot’s camera (with 360/N degrees apart).

B. Framework of the View Parsing Network
Fig. 2 illustrates two stages of our framework. In the first

stage, we propose View Parsing Network (VPN) to learn and
aggregate features from multiple first-view observations in
the simulation environment. In VPN, first-view observations
are first fed into the encoder to extract first-view feature
maps. For each modality, VPN has a corresponding encoder
to process it. All of these first-view feature maps from
different angles and different modalities are transformed and
then aggregated into one top-down-view feature map in the
View Transformer Module. Then the aggregated feature map
is decoded into a top-down-view semantic map. Details of
how to transform and aggregate these first-view feature maps
can be found in Sec. III-D. In the second stage of our
framework, we transfer the knowledge which VPN learns
from the simulation environment to the real-world data. We
slightly modified the domain adaptation algorithm proposed
by [17] to fit our cross-view semantic segmentation task
and our VPN architecture. More details of this part will be
revealed in Section III-C.

Pipeline. As shown in Fig. 2, from one spatial position in
a 3D environment, we first sample N×M first-view obser-
vations from N angles and M modalities (here N = 6,M = 2
in Fig. 2) in even angles so that all-around information
is captured. The first-view observations are encoded by M
encoders for M corresponding modalities respectively. These
CNN-based encoders extract N ×M spatial feature maps
for their first-view input. Then all of these feature maps
are fed into the View Transformer Module (VTM). VTM
transforms these view feature maps from first-view space into
the top-down-view feature space and fuses them to get one
final feature map which already contains sufficient spatial
information. Finally, we decode it to predict the top-down-
view semantic map using a convolutional decoder.

View Transformer Module. Although the encoder-decoder
structure gets huge success in the classical semantic seg-
mentation area [7], our experiment (cf. Table III) shows that
it performs poorly in the cross-view semantic segmentation
task. We conjecture that it is because in standard semantic
segmentation architecture the receptive field of the output
spatial feature map is roughly aligned with the input spatial
feature map. However, in cross-view semantic segmentation,
each pixel on the top-down-view map should consider all
input first-view feature maps, not just a local receptive field
region.

VRM

VRM

VRM

RGB

encoder

First-view
Sensor

Depth
encoder

…
…

VRM

…
…

Fusion

View Transformer Module
First-view Observations

full top-down-view

feature map

DecoderRGB inputs

Depth inputs

Synthetic

masks

semantic
segmentation

Semantic
VPN

Segmentation
& mapping

Real RGB

car

road

sidewalk

road mark

top-down-view semantic map

(simulation)

unknown

road

car

sidewalk
unknown

top-down-view
semantic map (real)

Discriminator

(real or simulation?)

Real masks with

synthetic style

Simulation environment

Real world

Source

domain

Target domain

Generator car

car

car
car

car

Fig. 2: Framework of the View Parsing Network for cross-view semantic segmentation. The simulation part shows the architecture and
training scheme of our VPN, while the real-world part demonstrates the domain adaptation process for transferring VPN to the real world.

After thinking about the flaws of the current semantic
segmentation structure, we design the View Transformer
Module (VTM) to learn the dependencies across all the
spatial locations between the first-view feature map and
the top-down-view feature map. VTM will not change the
shape of input feature map, so it can be plugged into any
existing encoder-decoder type of network architecture for
classical semantic segmentation. It consists of two parts:
View Relation Module (VRM) and View Fusion Module
(VFM). The diagram at the central of Figure 2 illustrates the
whole process: The first-view feature map is first flattened
while the channel dimension remains unchanged. Then we
use a view relation module R to learn the relations between
the any two pixel positions in flattened first-view feature map
and flattened top-down-view feature map. That is:

ft [i] = Ri(f [1], ..., f [j], ..., f [HW]), (1)

where i, j ∈ [0,HW) are the indices of top-down-view feature
map t ∈ RHW×C and first-view feature map f ∈ RHW×C

respectively along the flattened dimension, and Ri models
the relations between the ith pixel on top-down-view feature
map and every pixel on first-view feature map. Here we
simply use multilayer perceptron (MLP) in our view relation
module R. After that, the top-down-view feature map is
reshaped back to H ×W ×C. Notice that each first-view
input has its own VRM to get the top-down-view feature map

t i ∈RH×W×C based on its own observations. To aggregate the
information from all observation inputs, we fuse these top-
down-view feature map t i by using VFM. More details of
VFM and VRM will be introduced in Sec. III-D.

C. Sim-to-real Adaptation

To generalize our VPN to real-world data without the real-
world ground truth, we implement the sim-to-real domain
adaptation scheme shown in Fig. 2 to narrow the gap. This
scheme contains the following pixel-level adaptation and
output space adaptation.

Pixel-level adaptation. To mitigate the domain shift, we
adopt the pixel-level adaptation on the real-world inputs to
make them look more like the style of the simulation data.
Semantic mask is an ideal mid-level representation without
texture gap while including sufficient information and it is
easy to transfer. This process can be formulated as follows:

{IS}= MReal→Synthetic(PRGB→Mask({IR})), (2)

where IR, IS are the real RGB image and synthetic-style
semantic mask respectively, PRGB→Mask is the existing se-
mantic segmentation model which parses the real-world RGB
into semantic mask, and MReal→Synthetic is the semantic
category mapping process where we construct the concept
mappings between the real world and the simulation envi-
ronment.

TABLE I: Results on House3D cross-view dataset with different modalities and view numbers.

3D Geometric Baseline X-Fork(RGB) in [15] RGB VPN Semantic VPN Depth VPN

Networks PA mIoU PA mIoU PA mIoU PA mIoU PA mIoU

1-view model 31.3% 2.4% 38.0% 1.5% 55.8% 6.5% 59.6% 13.2% 56.9% 7.6%

2-view model 46.8% 7.2% 40.0% 1.9% 70.1% 14.8% 75.7% 25.9% 70.2% 15.6%

4-view model 63.2% 22.8% 39.5% 2.0% 80.3% 27.2% 888555...000% 40.6% 77.3% 22.0%

8-view model 67.6% 27.1% 43.9% 1.8% 888111...222% 222888...555% 84.7% 444111...000% 888222...111% 222999...999%

TABLE II: Results of cross-modality learning for VPN. Here we
compare the results with the inputs from 4 views.

Method Pixel Accuracy mIoU

RGB VPN 80.3% 27.2%

Depth VPN 77.3% 22.0%

Semantic VPN 85.0% 40.6%
R+D (late fusion) 81.2% 27.3%

R-D VPN 82.8% 31.2%

D+S (late fusion) 83.5% 33.9%
D-S VPN 888666...333% 43.2%

S+R (late fusion) 84.3% 35.7%
S-R VPN 85.1% 42.3%

D+S+R (late fusion) 84.3% 29.4%
D-S-R VPN 86.2% 444333...666%

Output space adaptation. Beyond the pixel-level transfer
on input data, we also devise an adversarial training scheme
in structured output space based on the method proposed in
[17]. Here the generator G is a view parsing network gen-
erating the top-down-view prediction P, which is initialized
by the weights of a VPN trained on the semantic data in the
simulation environment as we illustrated before. During the
training phase, we first forward a group of input images from
the source domain {Is} to G and optimize it with a normal
segmentation loss Lseg. Then we use G to extract the feature
map Fi (after the softmax layer) of the images from the target
domain {It} and use discriminator to distinguish whether Ft
is from the source domain. The loss function to optimize G
can be written as follows:

L ({Is},{It}) = Lseg({Is})+λadvLadv({It}), (3)

where Lseg is the cross-entropy loss for semantic segmenta-
tion, Ladv is designed to train the G and fool the discrim-
inator D . The loss function for the discriminator Ld is a
cross-entropy loss for binary source & target classification.

D. Network configuration

View encoder and decoder. To balance efficiency and
performance, we use ResNet-18 as the encoder. We remove
the last Residual Block and the Average Pool layer so that
the resolution of the encoding feature map remains large,
which better preserves the details of the view. We employ
the pyramid pooling module used in [7] as the decoder.

TABLE III: Ablation study of View Transformer Module.

Modality VPN w/o VTM VPN
1-view Pix. Acc. mIoU Pix. Acc. mIoU

RGB 53.9% 6.3% 555555...888% 666...555%

Depth 55.7% 6.5% 555666...999% 777...666%

Semantic 57.4% 10.0% 555999...666% 111333...222%
8-view Pix. Acc. mIoU Pix. Acc. mIoU

RGB 60.5% 8.7% 888111...222% 222888...555%

Depth 43.8% 2.5% 888222...111% 222999...999%

Semantic 47.6% 6.5% 888444...777% 444111...000%

View Transformer Module. For each view relation module,
we simply use the two-layer MLP. We choose this because
two-layer MLP doesn’t bring too much extra computation so
that we can keep our model following the lightweight-and-
efficient rationale. Input and output dimensions of the VRM
are both HIWI , where HI and WI are respectively the height
and width of the intermediate feature map. As for the view
fusion module, we just add all the features up to keep the
shape consistent.

Sim-to-real. For the generator G , we use the architecture
of the 4-view VPN. For the discriminator D , we adopt the
same architecture in [17]. It has 5 convolution layers, each
of which is followed by a leaky ReLU with the parameter
0.2 (except the last layer). We use HRNet [18] pretrained
on CityScapes dataset [3] to extract the semantic mask from
real-world images.

IV. EXPERIMENTS

We first go through the overview of the cross-view seg-
mentation datasets in Section IV-A. Then we show the
performance of VPN on synthetic data of the House3D and
CARLA environment in Section IV-B. Finally in Section IV-
C, we demonstrate the real-world performance of our VPN
which is trained in the simulation environment.

A. Benchmarks

Here we introduce two synthetic cross-view datasets,
House3D cross-view dataset and Carla cross-view dataset,
and one real-world cross-view dataset, nuScenes dataset.

House3D cross-view dataset. Each data pair contains 8
first-view input images captured from 8 different orientations
with 45 degrees apart. Additionally, each data pair comes
with the top-down-view semantic mask captured in the

ceiling-level height. To be complete, we store the input image
with multiple modalities including the RGB images, depth
maps, and semantic masks. The training set contains 143k
data pairs from 342 scenes while the validation set contains
20k data pairs from 68 scenes.

NuScenes dataset. Each data sample contains in
NuScenes[19] first-view RGB images from 6 directions
(Front, Front-right, Back-right, Back, Back-left, Front-left) in
different modalities. We select 919 data samples without the
top-down-view mask for unsupervised training and 515 data
samples with the binary top-down-view mask for evaluation.

CARLA cross-view dataset. To build the synthetic source
domain dataset, we extract 28,000 data pairs with top-down-
view annotations and different input modalities from 14
driving episodes in CARLA. Each data pair contains 6 first-
view input image sets captured from the same 6 directions.

B. Evaluation

We present VPN performances on the synthetic data of
House3D cross-view and CARLA cross-view datasets.

Metrics. We report the results of cross-view semantic
segmentation using two commonly used metrics in semantic
segmentation: PIXEL ACCURACY (PA) which characterizes
the proportion of correctly classified pixels, and MEAN IOU
(MIOU) which indicates the intersection-and-union between
the predicted and ground truth pixels.

Baselines. Two methods are included as the comparison
baselines: (1) 3D geometric method. With the observed depth
and RGB images, we can reconstruct the 3D points cloud
with the voxel-level semantic label. (2) Cross-view synthesis.
We also compare with the architecture used in cross-view
image synthesis literature [15], which adopts a conditional
GAN called X-Fork to generate aerial images from street-
view images.

1) Results of VPNs: We present the results of our VPN
for cross-view semantic segmentation in House3D, including
the ones of single-modality and multi-modalities VPN re-
spectively. To better evaluate our VPN, we impose an upper
bound that we perform segmentation using top-view RGB
images directly as inputs, where we get the performance
of 91.4% pixel acc. and 41.2% mIoU. We also show the
comparison with the geometric baseline and the ablation
study of View Transformer Module.

Single-modality VPN. We show the House3D results of
single-modality VPN with different modalities and different
numbers of views in Table I. We can see that as VPN receives
more views, the segmentation results improve rapidly. We
also plot some qualitative results by our VPNs in Fig. 4. On
Carla dataset, we achieve the performance of 84.7% pixel
acc. and 33.2% mIoU with a 6-view RGB-input model.

Multi-modalities VPN. We demonstrate the results of
multi-modalities VPN in Table II to show that our VPN can
effectively synthesize information from multiple modalities.
We set the late-fusion baseline to compare with our multi-
modalities VPN, which simply averages the softmax outputs
of each single-modality VPN to obtain the final results.
We find that the Depth-Semantic VPN achieves the best

performance and makes a great improvement. This may be
because semantic mask and depth map are two complemen-
tary information. However, the Semantic-RGB combination
does not bring too much improvement. The reason can be
that, for this cross-view semantic segmentation task, semantic
input contains most of the useful information in the RGB.

Importance of View Transformer Module. We further eval-
uate our model in Table III to show the importance of the
view transformer module. The baseline network is a classic
encoder-decoder architecture used in the standard semantic
segmentation, in which the encoder and the decoder are
the same as our VPN. It simply sums up the feature maps
from different views and then feeds it to the decoder. Our
VPN easily outperforms the baseline and, in some multi-view
cases, the baseline model does even worse than single-view
one due to the bad fusion strategy.

Comparing with baseline. Table I shows that our VPN can
easily outperform the 3D geometric method. 3D Geometric
method is very easy to fail when there are obstacles. In
Fig. 4, we can see that the 3D geometric method is unable to
reconstruct the objects which can not be directly observed,
even after filling the holes, such as the desk behind the chairs
shown in the figure. As for X-Fork, we can see that the
original generator performs badly in our cross-view semantic
segmentation task. This is because X-Fork doesn’t have a
necessary module to transform the first-view feature map
into the top-down-view space. The ablation study in Table III
shows a similar issue that there is a significant performance
drop when VPN doesn’t contain the VTM.

C. Results of sim-to-real adaptation

After we train and test our VPNs in the simulation
environment, we transfer our model to the real-world data.
We first train a 6-view semantic VPN model on the predicted
semantic masks in CARLA simulator and then transfer
it to nuScenes dataset by using an unsupervised domain
adaptation process as depicted in Section III-C. We provide
the qualitative results in Fig. 3, from which we can see
that our VPN can roughly segment various road shapes
like crossroads and also sketch the relative locations of
surrounding objects such as cars and buildings. As shown in
Table IV, we evaluate the quantitative results of real-world
performance by using binary drivable-area ground truth.

TABLE IV: Results in real world.

Method Pix. Acc. Mean Acc. mIoU

Before Adaptation 72.6% 61.4% 28.0%

After Adaptation 777888...888% 666555...222% 333111...999%

V. EXPLORATION WITH TOP-DOWN-VIEW MAP

When exploring an unknown space our humans head to the
regions which they have not visited. This intuition reflects
that exploration requires the agent to identify free space as
well as remember which areas it has not visited yet. To
achieve this goal, we make the agent able to identify the

Real observations
Before adaptation After adaptation

Predicted

binary mask

Ground-truth

binary mask

Fig. 3: Qualitative results of sim-to-real adaptation. The results of source prediction before and after domain adaptation, drivable area
prediciton after adaptation and the groud-truth drivable area map.

First-view

observations

Projected

points Ground truth

View Parsing

Network

3D Geometric

method

Fig. 4: Qualitative results of 3D geometric method and our VPN.
Considering that the geometric method requires semantic mask and
depth map, we use the 4-view Depth-Semantic VPN to predict the
top-down-view semantic map to fairly compare these two methods.

free space by training it to predict the top-down-view free-
space map.

Top-down-view free-space map. We train the VPN to
predict top-down-view free-space map. Different from the
semantic map, free-space map has only two categories, ob-
stacle and free space, which are denoted by 0 1 respectively.

State map. Due to the ideal assumption made above, by
memorizing the previous actions it has executed, the agent
can easily build the state map which contains the information
of the already-visited positions. We label the unvisited pixels
as 0 and the already-visited pixels as 1 on the state map.

Exploration algorithm. We detail the navigation policy
decision algorithm in Algorithm 1. At each time step t, we
make the action at and update the agent with the next top-
down-view free-space map Tt+1 and state map St+1. In both
the top-down-view free-space map and the state map, we
assume that the agent is always at the center of the map.

A. Result and comparison

To demonstrate that VPN can help navigation, we compare
it with the following baselines for exploration. Random
walk: Random walk agent randomly chooses one action
from Forward, Back, Right-forward and Left-forward, at
each time step. Top-down-view navigation with ground truth
(GT): By planning on the ground truth top-down-view free-
space map with Algorithm 1, we can obtain the upper-
bound performance of our method. The difference is that
in our case the top-down-view free-space map is predicted
by VPN, rather than the ground truth. Imitation learning (IL)
without top-down-view: A reactive CNN network learns to
imitate the expert exploration trajectories given the first-view
observations. The trajectories are generated by the baseline

Algorithm 1 Exploration decision policy at time t
Input: A top-down-view free-space map Tt and a state map

St at time step t, where Tt ,St ∈ {0,1}L×L.
Output: Policy action at , where at ∈ {Forward, Back, Left-

forward, Right-forward, Done}.
1: Ut ← Tt

⋂
¬St ; at ← Done; ds←+∞

2: Dt ← computeDistMap(Ut)
3: for a in {Forward, Back, Left-forward, Right-forward}

do
4: d =execute(a)
5: if ds > d then
6: ds← d; at ← a
7: end if
8: end for
9: return at

computeDistMap(): Compute the shortest distance of each
map pixel to the unvisited free-space region.
execute(): Return the shortest distance of the pixel to which
the agent transit if execute the action a.

above with a top-down-view ground truth map. Network
inputs are 4 first-view depth images. We also input the state
map to indicate the already-visited area. We extract 729
trajectories for the training set and 121 trajectories for the
validation set to train the navigation agent. Each trajectory
contains 150 states which are all labeled with expert policy.

TABLE V: Comparison on exploration.

Method Coverage Area

Random walk 260.3 ± 82.7

IL w/o top-down-view 443.8 ± 340.6

Top-down-view navigation 673.8 ± 349.8

Top-down-view navigation with GT 1070.8±326.2

We run the algorithm directly on our predicted top-down-
view map. For testing all the methods, we start the episode
by initializing the state maps from zero, indicating that all
free space is yet to be visited. Coverage Area is defined to
measure exploration performance. We randomly choose 100
starting points on a scene map. For each starting point, we

Start point End point

(b) IL w/o top-view

Coverage area: 632

(a) Random walk

Coverage area: 326

(c) Top-view navigation

Coverage area: 991

(d) Top-view navigation

with GT

Coverage area: 1163

Fig. 5: Examples of the surrounding exploration. Start point and
end point are marked as red point and green point respectively

LoCoBot Test environment

target
centroid

Top-down-view semantic map

(a) (b) (c)

target

start point

“Go to the bench”

Fig. 6: Our experiments are conducted on a LoCoBot mobile robot
in the PyRobot platform. (a) We show a picture of the LoCoBot
robot. (b) We show our test environment and the target specified by
a semantic token (e.g. bench). (c) We show the process that parses
the instruction and calculate the target coordinates.

let the agent explore the space for 300 steps and compute the
coverage area. Then final results are obtained by averaging
the coverage area of these 100 episodes. Table V plots the
exploration result for different methods and Fig. 5 shows
some sample trajectories. We can see that equipped with the
predicted top-down-view map from our VPN, the agent can
efficiently explore the environment.

VI. REAL ROBOT EXPERIMENT

To verify the performance of our model in the real-
world robotic environment, we conduct a semantic navigation
experiment by using a LoCoBot mobile robot [20] (cf.
Fig. 6a). In this task, the robot is required to identify and
reach the target specified by a semantic token. For instance,
given the instruction “go to the bench”, the robot has to move
to the target which is shown in Fig. 6b. Similar settings are
also used in [16]. At the initial location, the robot takes 8
RGB images (45 degrees apart) using its head camera. Then
it uses the existing semantic segmentation technique to obtain
the semantic mask of each RGB image. After that, it predicts
the top-down-view semantic map with our VPN. Finally, it
parses the instruction and calculates the centroid coordinates
of all “bench” pixels (cf. Fig. 6c). Our real robot experiment
shows that though the model is trained in a simulator it
exhibits reasonable robustness when we randomly set the
initial location and change the layout of surrounding objects.
Example episodes are provided in the demo video.

VII. CONCLUSION

In this work, we propose the cross-view semantic segmen-
tation task to sense the environment and a neural architecture
design View Parsing Network (VPN) to address that. Based

on the experimental results, we demonstrate that VPN can
be applied to mobile robots to facilitate the surrounding
awareness through a lightweight and efficient top-down-
view semantic map. In many situations where the height
information of objects is not essential, VPN could be a good
alternative compared to the traditional 3D-based methods
which are costly on both data memory and computation.

REFERENCES

[1] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile
robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 66,
pp. 86–103, 2015.

[2] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz,
P. Corke, G. Wyeth, B. Upcroft, and M. Milford, “Place categorization
and semantic mapping on a mobile robot,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp.
5729–5736.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proc. CVPR, 2016.

[4] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes.” in Proc. CVPR, vol. 2, 2017, p. 10.

[5] Y. Wu, Y. Wu, G. Gkioxari, and Y. Tian, “Building generalizable
agents with a realistic and rich 3d environment,” arXiv preprint
arXiv:1801.02209, 2018.

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[7] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. CVPR, 2017.

[8] Y. Katsumata, A. Taniguchi, Y. Hagiwara, and T. Taniguchi, “Semantic
mapping based on spatial concepts for grounding words related to
places in daily environments,” Frontiers in Robotics and AI, vol. 6,
p. 31, 2019.

[9] K. Zheng, A. Pronobis, and R. P. Rao, “Learning graph-structured
sum-product networks for probabilistic semantic maps,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[10] C. Zou, A. Colburn, Q. Shan, and D. Hoiem, “Layoutnet: Reconstruct-
ing the 3d room layout from a single rgb image,” in Proc. CVPR, 2018.

[11] V. Hedau, D. Hoiem, and D. Forsyth, “Recovering free space of indoor
scenes from a single image,” in Proc. CVPR, 2012.

[12] S. Schulter, M. Zhai, N. Jacobs, and M. Chandraker, “Learning to
look around objects for top-view representations of outdoor scenes,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 787–802.

[13] Z. Wang, B. Liu, S. Schulter, and M. Chandraker, “A parametric top-
view representation of complex road scenes,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 10 325–10 333.

[14] M. Zhai, Z. Bessinger, S. Workman, and N. Jacobs, “Predicting
ground-level scene layout from aerial imagery,” in Proc. CVPR, vol. 3,
2017.

[15] K. Regmi and A. Borji, “Cross-view image synthesis using conditional
gans,” in Proc. CVPR, 2018, pp. 3501–3510.

[16] W. B. Shen, D. Xu, Y. Zhu, L. J. Guibas, L. Fei-Fei, and S. Savarese,
“Situational fusion of visual representation for visual navigation,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 2881–2890.

[17] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, “Learning to adapt structured output space for se-
mantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7472–7481.

[18] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang,
W. Liu, and J. Wang, “High-resolution representations for labeling
pixels and regions,” arXiv preprint arXiv:1904.04514, 2019.

[19] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027,
2019.

[20] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and
A. Gupta, “Pyrobot: An open-source robotics framework for research
and benchmarking,” arXiv preprint arXiv:1906.08236, 2019.

