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Abstract— Physically disentangling entangled objects from
each other is a problem encountered in waste segregation or in
any task that requires disassembly of structures. Often there
are no object models, and, especially with cluttered irregularly
shaped objects, the robot can not create a model of the scene due
to occlusion. One of our key insights is that based on previous
sensory input we are only interested in moving an object out of
the disentanglement around obstacles. That is, we only need to
know where the robot can successfully move in order to plan the
disentangling. Due to the uncertainty we integrate information
about blocked movements into a probability map. The map
defines the probability of the robot successfully moving to
a specific configuration. Using as cost the failure probability
of a sequence of movements we can then plan and execute
disentangling iteratively. Since our approach circumvents only
previously encountered obstacles, new movements will yield
information about unknown obstacles that block movement
until the robot has learned to circumvent all obstacles and
disentangling succeeds. In the experiments, we use a special
probabilistic version of the Rapidly exploring Random Tree
(RRT) algorithm for planning and demonstrate successful
disentanglement of objects both in 2-D and 3-D simulation,
and, on a KUKA LBR 7-DOF robot. Moreover, our approach
outperforms baseline methods.

I. INTRODUCTION

Robots have had a great impact on the manufacturing
industry due to their ability to autonomously handle large and
heavy objects with high speed and precision. For example,
the car manufacturing industry is a typical example for
the benefits of robotic automation which is nowadays a
key component in the production pipeline of almost every
major car manufacturer. Robots have similarly large potential
for performing less structured tasks such as sorting and
segregating heaps of waste. However, applying robots to
such domains is more challenging, because it is no longer
sufficient to execute preprogrammed motions due to the
uniqueness of the encountered situations. In order to segre-
gate waste, robots need to be able to disentangle objects with
unknown shapes. The objects may be entangled in complex
ways that are not fully perceivable due to limited sensory
information. Furthermore, the effects of disruptive actions,
such as pulling a given part of the heap, can not be accurately
predicted due to complex dynamical interactions and non-
rigid objects.
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Fig. 1. Physical disentangling of an object. (Top) A robot has grasped
an object and needs to disentangle the object from other objects. In this
case plastic and iron waste. The robot does not get sensory input except
its own joint configuration. At each time step the robot plans a path in
joint space, tries to execute the path, and collides with an obstacle. The
collision is added to a list of collisions. We form a probability map from
the task space collisions that tells where the robot will likely collide with
obstacles and use the map for choosing paths with low failure probability.
(Bottom) Since visualizing the high-dimensional probability map for the
real robot is challenging, we show for illustration purposes a sequence
of path movements in 2-D task space simulation (we still plan in 7-DOF
joint space). A planar multi-link robot uses our probabilistic disentangling
approach to choose movements. Blue line denotes planned path, red dots
previous collisions, and dark-light colors the probability map where dark
color indicates high failure probability. Dark circles depict the real obstacles
which are not visible to the robot.

Albeit challenging, applying robots for waste segregation
can be highly rewarding. For example, decommissioning
nuclear waste which is inherently dangerous for humans is an
ideal task for robots. The Sellafield (UK) nuclear site is the
largest nuclear site in Europe, containing 140 tonnes of civil
plutonium [1] and 90,000 tonnes of radioactive graphite [2]
and the cost of decommissioning was estimated at 47.9
billions GBP in 2015 [3]. Decommissioning includes sorting
and segregating 69,600 m3 of mixed intermediate waste,
such that waste with high level of radiation can be safely
stored in expensive, well-shielded containers, while avoiding
unnecessary filling such containers with waste with low level
of radiation.

Targeted at this application, we propose a method for
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autonomous disentangling of waste that is capable to deal
with complex, entangled objects based on limited sensory
information and that does not require models of the objects
or of the dynamical interactions. We assume that the end-
effector of the robot has grasped a part of the heap and our
goal is to move the end-effector together with the grasped
object away from the heap. When such movement succeeds,
we consider the object to be disentangled from the heap.

As fully planning such movements a priori is not feasible
due to limited sensor data, we adopt an adaptive planning
approach that re-plans new movement trajectories such that
it avoids motions that are similar to motions that failed in
the past due to object entanglement. We therefore learn a
probability map over joint configurations that can be used
to assess the probability of failing along a given trajectory
and use these probabilities as a cost for a variant of the
Rapidly exploring Random Tree (RRT [4]) trajectory planner.
Our main contribution is an approach that can remove an
unknown object from a set of unknown objects when the
object configuration prevents a simple movement separating
the object from the other objects. We call the process of
removing an “entangled” object from other objects “disen-
tangling”.

Our approach does not need any sensory input which
is crucial under heavy occlusion, for example, in waste
segregation. Moreover, in the nuclear waste scenario, ac-
curate tactile or vision sensors can be hard to use due to
potentially high nuclear radiation. Instead of requiring in-
formative sensors, object models, or actually seeing through
objects, our approach needs only information about the joint
positions of the robot to detect when movement is blocked.
In practice, a movement can be blocked either due to the
robot being configured to limit the amount of force, as in
our experiments, e.g. using impedance control, or a robot
physically not being able to exert sufficient force to move
through an obstacle.

Our assumptions on the objects is minimal. Due to using a
probabilistic formulation of the disentangling task we do not
have to assume rigid objects, required by hard constraints,
but we instead assign success probabilities to movements and
can cope with a (moderately) changing environment: due to
never having deterministic probabilities the system has the
chance to self-correct its model of the world based on new
observations. To summarize:

• We propose a new approach for disentangling objects
based on a novel incremental probabilistic path planning
formulation.

• Our approach improves the robots knowledge of the
environment incrementally until succeeding.

• Due to the probabilistic formulation the approach works
in an environment with both rigid and non-rigid un-
known objects.

• The approach does not need any sensors but relies solely
on joint position information.

II. RELATED WORK

In the task of disentangling an unknown object the robot
needs to find a motion or path that transports the entangled
object out of the entanglement. Path planning in a known
environment is a widely studied problem [4]–[7] especially
in robot motion planning [8] and path planning of mobile
robots [9], [10]. Path planning algorithms are often based
on the Rapidly explorating Random Tree (RRT) [4] or the
Probabilistic Roadmap (PRM) [5]. RRTs iteratively build a
tree of joint configurations where the root node corresponds
to the start configuration and edges indicate that a direct
movement between two configurations is feasible. At each
iteration a new joint configuration is sampled and its closest
joint configuration within the tree is determined. If a direct
connection to the nearest configuration is feasible, the new
configuration is added as its child. Once a node inside the
tree is sufficiently close to the goal, a path from the start
configuration to the goal can be recovered in reverse order
by iteratively adding the parent node as via point. PRMs
build a graph by sampling random nodes and adding to the
graph and then finally finding the shortest path using a graph
search method such as Dijkstra’s. Due to the requirements of
planning in continuous space in reasonable computation time
we adapt an RRT based planning approach but the planner
could be exchanged for another.

While the problem of robot manipulator motion planning
has been studied, motion planning in unknown environments
with unknown obstacles is only little explored, especially for
larger than two- or three-dimensional spaces. [11] provides
an approach for path planning with a point robot moving
in 2D space containing unknown objects. However, the
approach in [11] is inherently limited to a 2-D space where
the robot can travel around an obstacle and is able to utilize
sensory feedback to keep the robot close to the obstacle.

The D*-path planning algorithm [12] which takes inspira-
tion from the A* planning method [13] can adapt to changes
in the environment and finds an optimal solution in the limit.
However, D*-path planning is limited in practice to discrete
state spaces. [14] presents a PRM based approach for path
planning and replanning in dynamic environments where the
agent repairs its trajectory when new information is received.

Path planning in unknown and dynamic environments
has been studied in the context of mobile robot path plan-
ning [15], [16]. [17] provides a fuzzy logic based ap-
proach for mobile robot path planning and demonstrates
the approach in path planning for mobile robots in a 2-D
environment. [18] demonstrates a genetic algorithm based
approach to path planning for mobile robots in a dynamic
unknown environment. [19] utilizes artificial potential fields
(APFs) [20] where obstacles repel and goals attract the
robot. [21] uses the Bacterial Evolutionary Algorithm (BEA)
together with APFs for mobile robot navigation.

In human-robot interaction, the robot often needs to be
able to avoid collisions with a hard to predict human. Ideally
the robot would not need to make prior assumptions about the
human’s location but could learn this online. However, due



to the safety requirements human-robot interaction requires
in practice (stochastic) models or predictions of human
behavior [22]. In physical object disentangling the robot does
not usually need to take safety similarly into account and thus
prior models are not crucial.

Object disassembly. Disentangling an object away from
objects with which it is entangled corresponds to disassembly
of an object from a structure. [23] perform path planning
for disassembly of complex objects. However, to the best
of our knowledge disassembly of unknown objects in an
unknown environment has not been performed before. In this
paper, our experimental setup focuses on disentangling waste
objects but in future work our approach could be applied to
disassembly of complex unknown structures.

Waste segregation. Waste segregation is one of the
applications motivating our work on object disentangling.
State-of-the-art waste segregation relies on classifying and
picking up waste that is not entangled [24]–[27]. Being
able to disentangle different types of waste would allow
more efficient reuse of materials. Moreover, being able to
disentangle hazardous materials such as nuclear waste [3]
can be crucial for safe decommissioning.

III. APPROACH

In this paper, we do not take grasping into account but
assume that an object has been already grasped. Grasping
is a widely studied problem and there is a multitude of
approaches for grasping [28]–[30]. Our goal is to disentangle
the object. The main research question we investigate is:
How to disentangle an unknown object which is firmly
planted in the gripper from other unknown objects? To
answer this research question we start by considering the
properties of the problem and then discuss an approach that
takes advantage of these properties.

Problem characteristics. We focus on general disentan-
gling problems where we have both non-rigid and rigid
unknown objects. Our approach can be applied to, for
example, waste segregation with various objects. The goal
is to move the robot’s joints into a goal configuration. The
robot always knows its current joint configuration and can
thus compare its current configuration to the desired one.
This way the robot is able to detect when a movement is
blocked but we do not assume any other sensory input. This
kind of decision making problem can be formalized as a
partially observable Markov decision process (POMDP) [31],
[32] since we have a sequential decision making problem
under object and environment uncertainty and only get partial
observations about the environment state. In particular, the
robot does not observe in which directions it is able to move.

Assumptions. We assume a moderately stationary envi-
ronment: objects do not move. Since we do not use hard
constraints the robot may always plan a path to the goal and
may succeed even in a non-stationary environment. However,
we do not take non-stationarity explicitly into account.

Proposed approach. Instead of doing a full POMDP
solution which is computationally intractable [33], at each
decision step the robot greedily tries to find a path to the goal

position based on the previously obtained information. Since
we get new information with each movement our model of
the environment gradually improves and we have a better
chance of succeeding. Moreover, since we obtain information
about blocked movements, the robot will learn to circumvent
blockades and thus optimal information gathering, provided
by a full POMDP solution, is not required in practice. The
robot remembers every movement and stores information
about blocked movements. The robot creates a probability
map from the failed (blocked) movements that assigns to any
given position an assumed probability of being in collision.
In principle, the probability map can be computed directly
based on the joint configurations. However, for our robot
experiments we assume that collisions are always caused by
the object entanglement and not by the links of the robot.
We thus compute the probability map in end-effector space
based on the forward kinematics. We assume the probability
of collision to be high, if the end-effector pose is similar to
the pose of a previously blocked movement. However, we
do not only consider the distance between the given pose
and the colliding poses, but also take into account the move-
ment direction during the previous collisions. Intuitively, the
probability of colliding should increase if the end-effector
position lies along the direction of the colliding movement.
We next discuss the proposed approach in more detail.

A. Details

Algorithm 1 shows our proposed approach to object dis-
entangling in pseudo-code format (further down we provide
symbol definitions). The task is to find a path from the
current configuration cCURRENT to a goal configuration cGOAL
where the object is fully disentangled. At each time step the
robot plans a path based on the probability map M and
executes the path. In case the movement arrives at the goal
disentangling ends. If the movement fails, the robot moves
back to the last via point where movement succeeded. In
the experiments with a compliant (limited force) robot arm
we assume failure if the robot ends at joint configuration
cCURRENT, above a certain distance dDIST from the desired
joint configuration cDESIRED. That is, if the sum of elements
in |cDESIRED − cCURRENT| is greater than dDIST.

The robot adds the failure (blocked movement) to the
list of movements which defines M and starts replanning
from the actual position of the robot. Note that we call M
a probability map since the previous movements are used
to compute pseudo-probabilities which can be visualized
as a map. For simplicity the path planning consists of a
bidirectional version of RRT [4] based on RRT-connect [34]
and includes rewiring from RRT* [7], [35] but can be easily
exchanged or extended with other path planners that allow
arbitrary cost functions. The cost function comes from our
probabilistic formulation which we discuss further down in
more detail.

Algorithm 1 shows the main disentangling loop, Algorithm
2 creates an RRT tree and Algorithms 3, 4, and 5 perform
the standard RRT functions of selecting a random and closest
configuration, and estimating the cost for a path.



1 ProbDis()
2 M = ∅
3 while Entangled, below time limit, |M| < NITER do
4 // Create RRT tree from start configuration
5 GSTART = ProbRRT (M, cSTART, cGOAL)
6 // Create RRT tree from goal configuration
7 GEND = ProbRRT (M, cGOAL, cSTART)
8 // Connect the RRT trees
9 G = Connect(M, GSTART, GEND)

10 // Using G find minimum cost start-to-goal path
11 path = argminpathCost(M, path)
12 // Move robot arm along path until failure
13 failure = RobotMotion (path)
14 M =M ∪ failure
15 end

Algorithm 1: Probabilistic Disentangling (ProbDis). At
each time step use probabilistic RRT to find path with
low failure probability and execute the path. Add resulting
collision to the list of collisions which defines the failure
probability map M which is used for RRT planning.

1 G = ProbRRT(M, cSTART, cGOAL)
2 G = ∅
3 for k = 1 to K do
4 cR =RandomConfiguration (M, G, cGOAL)
5 cN =ClosestConfiguration (M, G, cR)
6 // c as a linear interpolation between cR and cN
7 c =NewConfiguration (cR, cN)
8 G = G ∪ c
9 RewireNeighbours (G, c)

10 end
11 return G

Algorithm 2: Probability map based RRT. Use map of
movement probabilities M to find new nodes.

1 RandomConfiguration(M, G, cGOAL)
2 w ∼ Uniform(0, 1)
3 if w < PGOAL then
4 return cGOAL
5 end
6 Sample a set of configurations CRAND uniformly
7 // Chooce cRAND which is furthest away, in task
8 // space, from previous RRT nodes G
9 cRAND = argmaxc∈CRAND

Distance(G, c)
10 return cRAND

Algorithm 3: Generate random configuration that is far
away from previous configurations as measured by task
space distance.

1 ClosestConfiguration(M, G, c)
2 cNEW = argminc∗NEW∈G Cost (M, c∗NEW, c)
3 return cNEW
Algorithm 4: Find closest configuration to c from G given
probability map M.

The “Connect” procedure in Algorithm 1 connects each
leaf node in GEND to the node in GSTART with minimum path
failure probability. Path failure probabilities are estimated
using the probability map M as detailed in Algorithm 5.
Therefore, “Connect” results in worst case computational
complexity of O(|GEND||GSTART|NDISCRETIZEFCOMP) where
NDISCRETIZE is the maximum number of failure probability
computations in Algorithm 5 and FCOMP is the complexity
of a failure computation.

1 Cost(M, cNEW, c)
2 D = ||c− cNEW||
3 // Discretize path using a discretization
4 // distance of ∆
5 for cTEST ∈ [ĉ|c+ ∆ · k, k = 1 . . . D/∆] do
6 // Compute failure probability for cTEST
7 // using Eq. 1
8 pkFAIL = ProbFail(M, cTEST)
9 end

10 pFAIL = P (e = FAIL|p1...KFAIL )
11 return pFAIL

Algorithm 5: Cost for moving from c to cNEW given
probability map M.

Definition of x, c, M, a path, and movement failures.
We will now discuss how movement failures are represented,
how we compute pseudo failure probabilities and how we
estimate path costs for path planning. Note that in the robot
experiments the robot moves in joint configuration space but
we handle failures in task space. That is, when computing
failure probabilities we transform joint configurations to task
space using forward kinematics. x refers always to task space
coordinates. For 2-D coordinates x ∈ R2, for 3-D x ∈ R3,
and for 3-D with orientation x ∈ R6. c ∈ C refers to joint
configurations where C is the joint configuration space. A
single move m = (xSTART, xEND) consists of the start point
xSTART and end point xEND. A path (m1, . . . ,mNPATH) is a
sequence of NPATH moves. We define vFAIL as the vector
representing the direction the robot was moving towards
when it was blocked. Moreover, we define a failure f =
(xFAIL, vFAIL) using the point xFAIL where the robot was
blocked together with the vector vFAIL. f is stored in task
space coordinates. Every executed robot path results in a
set of successful movements and a single failure in case the
robot did not reach the goal. We defineM as a set of NFAIL
failures: M = (f1, . . . , fNFAIL).

Failure probabilities, cost function. We heuristically
estimate the probability P (e = FAIL|c, F ) of a failure event
e = FAIL (e denotes event, FAIL failure) of a specific
configuration c given previous failures F . We do not assume
knowledge of how failure probabilities could be interpolated
from several failures. Instead, we estimate the probability
of failure for a given set F as the maximum probability of
failure over all individual failures in F :
P (e = FAIL|c, F ) = maxf∈F P (e = FAIL|c, f). For
simplicity, we assume that the probability of failure given
a previous failure f mainly depends on the end-effector



position but can be halved in the best case for fully dissimilar
end-effector orientations, that is,

P (e = FAIL|c, f) =

PCOORD(e = FAIL|c, f)(1− 0.5DORIENT(c, f)), (1)

where PCOORD estimates the probability of failure using only
the given end-effector position, but not its orientation, and
DORIENT(c, f) measures the distance between the given end-
effector orientation and the end-effector orientation during
the failure f , normalized to the range [0, 1].

We compare the end-effector orientations based on the
geodesic distance between two quaternions defined in [36],

DORIENT(c, f) =
2

π
arccos(|xTORIENT · xORIENT,FAIL|), (2)

where we introduced the term 2
π for normalization.

We model PCOORD(e = FAIL|c, f) based on the squared
distance between the given end-effector position and the
end-effector position during failure, DFAIL = ||xCOORD −
xCOORD,FAIL||2. Furthermore, we want to take into account
that the probability of failure is usually much larger in
the direction of movement vFAIL. Hence, we compute the
angle α between the failed movement direction vFAIL and
the direction from current Euclidean coordinate to the failed
Euclidean coordinate xCOORD − xCOORD,FAIL. This angle is
at its maximum, if the current coordinate xCOORD was in
front of the failed Euclidean coordinate xCOORD,FAIL and its
minimum if it was behind.

Based on preliminary experiments, we found the following
model to produce sensible results,

PCOORD(e = FAIL|c, f) = |α|3/π3 ·1/(1+DFAILCFAIL), (3)

where CFAIL is a constant. Note that PCOORD(e = FAIL|c, f)
is always between zero and one. Fig. 2 shows that our model
qualitatively makes sense. For estimating the probability of

Fig. 2. 2-D example of how part of the failure probability map looks
after a collision. Here, the robot collided at the red dot with the unseen
circle obstacle when moving in the direction of the blue arrow. The failure
probability behind the collision is high, indicated by dark color, and in front
of the collision low as indicated by a light color.

failure for a path, assuming independence of failures along
the path, we would like to compute the geometric product
integral over the failure probability density of the path. To

approximate this, we discretize the path into K segments
and transform the joint configuration at each point along the
discretized path into task space using forward kinematics.
We then estimate path failure probability pkFAIL for each
point k using Eq. 1 defined above and distance between
consecutive points along the path (corresponds to rectangle
rule in numerical product integration). We then estimate path
failure P (e = FAIL|p1...KFAIL ):

P (e = FAIL|p1...KFAIL ) =

K∏
k=1

pkFAIL = exp

K∑
k=1

log pkFAIL, (4)

where transforming the product into a sum of log terms can
be important as part of a practical implementation to prevent
underflow of floating point numbers.

IV. EXPERIMENTS

We performed experiments both in simulated randomly
constructed 2-D and 3-D environments and with a 7-DOF
KUKA LBR iiwa R820 robot arm. With the robot arm
we disentangle an object from real plastic and iron waste
and move the object out of a simple cardboard maze. We
also disentangle a fluffy toy-bunny which is jammed in a
cardboard box. In each run, we allow the robot to execute at
most 20 paths and measure the success rate. Success means
arrival at the goal configuration cGOAL. In the experiments,
we have K = 100, ∆ = 0.04, NITER = 20, |CRAND| = 100,
PGOAL = 0.1, dDIST = 0.04, and no time limit.

A. Simulation

In the experiments, the proposed algorithm always plans
in 7 dimensional joint configuration space and checks for
collisions in task space. In the simulations, we run exper-
iments (1) in two dimensional task space where the end-
effector is just a point mass at the end of a planar 7-DOF
multi-link robot arm, (2) with a 3-D point mass at the end
of a KUKA LBR 7-DOF robot arm, and (3) where the 3-D
task space also includes the orientation of the end-effector.
Case (1) is beneficial for visualizing the proposed approach.
The real robot experiments use case (3). When checking for
collisions or collision probability, in cases (1) and (2), the
orientation of the end-effector is not taken into account, that
is, DORIENT(c, f) in Eq. 2 becomes zero. Fig. 3 shows a
visualization of the 2-D simulation environment and Fig. 4
of the 3-D simulation environment.

The simulation experiments are designed to answer the
following questions: (1) Does the robot learn to circumvent
unknown obstacles and go to the goal position? (2) Is the
robot able to plan paths through narrow spaces? We use
environments with a varying number and size of obstacles.
A large number of obstacles creates narrow spaces.

Our approach does not employ hard constraints. Since we
do not know the exact shape or location of obstacles hard
constraints could prevent the robot from going close to an
obstacle, and, the robot would potentially not be able to solve
some entanglements. We choose as comparison methods
“Hard” and “Epsilon”. “Hard” is an RRT version which is



GOAL

START START

GOAL

START

GOAL

START

GOAL

Fig. 3. Visualization of a sequence of disentangling movements of a planar multi-link robot in 2-D simulation. At each time step the robot plans a path
in joint space, shown by blue color in task space, to the goal configuration and tries to execute the path. Red dots show where the robot has previously
collided with obstacles in task space. The robot does not observe the “real obstacles” shown as black circles but it can sense its current joint configuration.
The robot’s probability mapM for collisions is shown with dark-light colors. Dark color represents high collision probability and white color low collision
probability. In this image sequence, the robot hits obstacles four times before finally arriving at the goal in the last image. As can be seen, the robot always
tries to circumvent areas with high collision probability.

Fig. 4. Visualization of 3-D disentangling simulation. Blue line depicts
planned end-effector trajectory. Triangles show orientation of end-effector
and obstacles. The robot does not observe the obstacles, only its joint
configuration. Obstacles are either discs, depicted by circles, or balls,
depicted by two orthogonal circles. Obstacle size varies. Obstacles can
be circumvented by using an end-effector orientation dissimilar from the
obstacle orientation. Making orientation in this way important is motivated
by flexible objects which may allow you to pull the object and slide along the
object with a suitable orientation. Note also that we evaluate the approaches
with and without obstacle orientation.

identical to our proposed approach except that we use a prob-
ability threshold to make failure probabilities deterministic.
This yields an algorithm called “Hard” similar to common
hard constraint RRT approaches. “Hard” allows for a fair
comparison to our proposed approach “Probabilistic” since
the hard constraints have similar shape to the probability
distributions used by “Probabilistic”. “Epsilon” is based on
the epsilon-greedy strategy [37] widely used in reinforcement
learning where the robot moves directly towards the goal
with epsilon probability and otherwise in a random direction.
We run different versions of these approaches with different
hyper-parameter choices denoted by “Epsilon X”, where X
denotes the epsilon value and “Hard Y” where Y denotes

the probability threshold value. Fig. 5 shows the simulation
results and Fig. 6 shows sensitivity analysis: “Probabilistic”
outperforms the comparison methods in all environments and
is not as sensitive to hyper-parameter choice.

B. Robot experiments
In the robot experiments, the proposed algorithm plans in

7 dimensional joint configuration space. We used a 7-DOF
KUKA LBR robot arm equipped with a SAKE gripper. The
attached vision sensor shown in Fig. 1 and Fig. 7 was not
used in the experiments. The robot experiments are designed
to answer the following questions: (1) Can the proposed
approach be used with a real robot? (2) Does the approach
work in situations where the grasped object is flexible or the
environment is flexible? (3) How does the proposed approach
compare to the baselines in real robotic experiments?

TABLE I
HOW MANY TIMES IN TEN EVALUATION RUNS EACH METHOD

SUCCEEDED TO MOVE THE END-EFFECTOR TO THE GOAL POSITION IN

EACH ROBOTIC EVALUATION SCENARIO SHOWN IN FIGURES 1 AND 7.

Scenario Epsilon Hard Probabilistic

Waste 6 3 7
Maze 4 0 6
Bunny 0 1 5
Total 10 4 18

Fig. 7 shows the three different real robot evaluation sce-
narios. We chose scenarios containing both flexible grasped
and in-scene objects which are common in applications such
as waste segregation. Table I shows performance in these
scenarios. “Probabilistic” was best in all scenarios, especially
in the “Bunny” experiment which we considered the hardest
task a priori due to the constrained movements as shown in
Fig. 7. “Epsilon” outperformed “Hard” in two out of three
scenes which could be due to the hyper-parameter sensitivity
shown in the simulations in Fig. 6. In successful runs, the
average number of executed robot paths was 12.1 for “Prob-
abilistic”, 9.3 for “Hard”, and 13.4 for “Epsilon”. Planning



(a) 2-D (b) 3-D (c) 3-D with orientation
Fig. 5. Evaluation in simulation. The results show for different maximum numbers of planned paths average success rate with a bootstrapped 95%
confidence interval. We ran experiments for a varying number of obstacles. For each obstacle number we performed 100 random evaluations and report
the total numbers. (a) Planar 2-D robot moving from initial joint configuration to goal configuration with 1, 10, 30, and 50 disc obstacles. (b) 3-D robot
without taking orientation of the end-effector into account with 1, 10, 30, and 50 ball or disc obstacles. (c) 3-D robot taking orientation of the end-effector
into account with 30, 50, 70, and 90 ball or disc obstacles. The proposed “Probabilistic” approach outperforms comparison methods.

(a) 30 obstacles (b) 50 obstacles (c) 70 obstacles
Fig. 6. Sensitivity analysis. For maximally 20 planned paths in Fig. 5(c) we break down here the results according to the number of obstacles. While
“Probabilistic” performs constantly well “Epsilon” and “Hard” are sensitive to the choice of hyper-parameter value. With 30 obstacles “Hard 0.02” performs
better than “Hard 0.01” while with 70 obstacles “Hard 0.01” performs better than “Hard 0.02”. This makes intuitively sense since with more obstacles you
have less space and do not want to block movements as much. With 30 obstacles “Epsilon 0.2” performs better than “Epsilon 0.4” while with 70 obstacles
“Epsilon 0.4” performs better than “Epsilon 0.2”. An important thing to note is that in real robotic tasks the complexity or number and shape of obstacles
is usually not known beforehand and thus hyper-parameter tuning is not feasible.

(a) Maze (b) Bunny in a box (c) Bunny in a box (d) Bunny in a box

Fig. 7. We have three robotic evaluation scenarios. (Waste) The waste evaluation scenario is shown in Fig. 1(top) where a grasped gray plastic object is
entangled in plastic and iron waste and needs to be moved away from the waste. When moving the object up flexible waste is pulled up requiring a specific
combination of movement and rotation of the end-effector. (Maze) Gray plastic object needs to be moved out of a simple maze. This can be accomplished
by either rotating the object at a suitable location and pulling it up or by moving it through the maze and out of the side of the cardboard box. (Bunny)
Bunny needs to be moved out of the box through the hole on the side of the cardboard box: (b) initial configuration, (c) side view highlighting the difficulty
of the task, (d) successful final configuration. The robot does not use any sensors, does not know anything about the objects or the environment, and gets
feedback only about its own position. Similarly to simulation experiments, in order to disentangle the end-effector the robot tries movement paths until
succeeding or until 20 paths have been tried. In “Waste” the environment is flexible and in “Bunny” the grasped object is flexible.

a path, on a 4-core Intel i7 CPU, “Probabilistic” took from
9.9 seconds (|M| = 0) to 17.4 seconds ((|M| = 19). “Hard”
took from 9.7 seconds to 17.7 seconds. “Epsilon” took less
than 0.2 seconds for a planned path. Forward kinematics
computation was most time-consuming. We used a Python
implementation except we used C for forward kinematics.
We expect speed ups with a full C-implementation and when
using data structures such as KD-trees.

V. CONCLUSION

When physically disentangling entangled objects we often
do not have object models, and, especially with cluttered
irregularly shaped objects, the robot can not create a model
of the scene due to occlusion. Based on purely joint config-
uration information our approach learns a probability map
of movement success and plans paths based on path success
probability. The approach sequentially executes a planned
path, incorporates information about movement success into



the probability map and plans a new path. We demonstrate
the approach successfully in simulated 2-D and 3-D envi-
ronments and in three tasks with a real 7-DOF KUKA LBR
robot arm while outperforming comparison methods. While
the proposed approach worked well in the tasks we tried, we
are currently working on a POMDP solution allowing more
complex information gathering in even more complicated
tasks. Due to our probabilistic formulation incorporating
prior knowledge from sensors should be straightforward in
future work. To speed up the replanning part of our approach
further, we could combine ideas from [38]–[40]. In particular,
we could use caching together with discarding parts of the
RRT tree that are sub-optimal according to an admissible
heuristic while updating collision probabilities of existing
RRT edges and nodes. Finally, another possible direction
for future work would be to adapt our approach to new
disassembly applications in recycling.
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