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Abstract— We present a two-level branch-and-bound (BB)
algorithm to compute the optimal gripper pose that maximizes
a grasp metric in a restricted search space. Our method can take
the gripper’s kinematics feasibility into consideration to ensure
that a given gripper can reach the set of grasp points without
collisions or predict infeasibility with finite-time termination
when no pose exists for a given set of grasp points. Our
main technical contribution is a novel mixed-integer conic
programming (MICP) formulation for the inverse kinematics
of the gripper that uses a small number of binary variables
and tightened constraints, which can be efficiently solved via
a low-level BB algorithm. Our experiments show that optimal
gripper poses for various target objects can be computed taking
20-180 minutes of computation on a desktop machine and the
computed grasp quality, in terms of the Q1 metric, is better
than those generated using sampling-based planners.

I. INTRODUCTION

Grasp planning is a well-studied problem in robotics and
there is a large amount of work in grasp metric computation
[2] and gripper pose planning [3]. Since the two components
are somewhat independent, practitioners can build versatile
planning frameworks that allow an arbitrary combination of
grasp metrics and gripper pose planners for different applica-
tions [4]. A high number of choices have been proposed for
grasp metrics [2], and a few gripper pose planners are also
known. Some planners such as [1], [5] return sub-optimal
solutions, which are sensitive to initial guesses and can return
grasps of low qualities. Another planner based on simulated
annealing (SA) was proposed in [3], which can compute the
optimal solution if an infinite number of samples is allowed.

A promising direction of previous works [6], [7] use
branch-and-bound (BB) to compute optimal grasp points
that maximize a given grasp metric. Unlike SA, BB returns
the optimal solution or predicts infeasibility. However, BB
algorithms in [6], [7] only consider the optimality in grasp
points, the kinematics feasibility of gripper is either omitted
in [7] or considered without optimality guarantee in [6]. To
take the gripper’s kinematics into consideration, an inverse
kinematics (IK) algorithm is needed to determine whether
a given set of grasp points can be reached by the gripper.
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However, most available inverse kinematics algorithms, such
as [8], [9], are not optimal and can miss feasible solutions
when one exists. Recently, a complete IK algorithm is
presented in [10], which reformulates IK as a mixed-integer
conic programming (MICP). However, [10] involves the use
of a large number of integer parameters making it slow
to solve because the worst-case complexity of MICP is
exponential in the number of integer variables.

Main Results: We present a novel, two-level BB algo-
rithm to compute the optimal gripper pose that maximizes
a given grasp metric in a restricted search space. Our high-
level BB algorithm searches for points on the object’s surface
that can potentially be used as contact points. Our low-
level BB algorithm searches for collision-free gripper poses
that realize the given set of contact points. A set of lazy-
evaluation heuristic techniques are used to remove unneces-
sary searches and reduce the branch factor. We have tested
our algorithm on 10 target objects grasped by a 3-finger
gripper with 15 DOFs and a Barrett Hand with 10 DOFs.
Our experiments show that optimal grasps can be computed
within 20-180 minutes on a desktop machine for different
grippers. Furthermore, our low-level BB formulation results
in a speedup of 100× over [10] in terms of gripper’s
kinematics feasibility check. We have also compared our
algorithm’s performance with a sample-based grasp planner
[3] and observed the following benefits:

● Our method always computes higher quality grasps
based on Q1 metric, though we are 6 − 10× slower.

● Our method can detect infeasibility within finite time,
which happens frequently when target objects are large
compared with the gripper.

II. RELATED WORK

We review previous works on grasp metric computation,
gripper pose planning, and IK algorithms.

Grasp Planning takes the gripper’s kinematics feasibility
into consideration, which computes a gripper pose given
the set of contact points as end-effector constraints. Some
sampling-based planners [3], [4] determine the gripper’s
pose first by sampling in the gripper’s configuration space.
Varava [11] presented an algorithm that can check whether a
geometric body can cage another one or detect infeasibility.
However, it is rather difficult for the fingers to exactly lie on
the surface of target objects, so these planners have to close
the gripper to have the fingers on the object surface. Other
planners, such as [6] and our method, first select contact
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Fig. 1. (a): A toy example where the target object is a Z-shape (olive) on which we have P = 6 potential grasp points (red point). (b):
We first build a KD-tree for the potential grasp points. Our gripper has L = 5 links and K = 2 fingertip points. (c): For any BBNode, e.g.,
BBNode(1,2), we will use the IK solver for a feasibility check. We allow MICP to use few binary variables by allowing the target object
to move and fixing the palm of the gripper. (d): We build a bounding sphere, i.e. B(123456) and B(12), for each non-leaf KD-tree node.
(e): For an internal BBNode(12, ●) (● means any KD-tree node), x1 can either be at p1 or p2. This constraint has a convex relaxation
that requires x1 to be inside the intersection of bounding spheres (blue): B(123456) ∩B(126) ∩B(12).

points, compute the grasp quality, and then solve the IK
problem to compute the gripper’s pose.

Grasp Metrics measure the quality of a grasp and pro-
vide ways to compare different grasps. A dozen different
grasp metrics have been proposed and summarized in [2].
Sampling-based planners can be used to optimize all kinds
of grasp metrics. However, BB can only be used when a
grasp metric is monotonic [6], [7], i.e. the grasp metric value
computed for a superset of grasp points must be larger than
or equal to that computed for a subset. Fortunately, most
metrics, including QV EW [12], Q1,∞ [13], are monotonic.
We use the Q1 metric in our algorithm. The Q1 metric
assumes that the sum of the magnitude of forces is no
greater than 1. Every contact will generate a wrench and
the Q1 metric value is equal to the residual radius of the
convex hull of all these generated wrenches. Unlike [1], our
frictional cone is quadratic, i.e. no further linearizations are
used. Obviously, a positive Q1 metric implies force-closure.
In particular, [1] showed that the computation of Q1 can
be approximated by solving a semidefinite programming
(SDP), allowing the BB to be solved using off-the-shelf
mixed-integer SDP solvers [14]. Instead, we propose to use a
more generic form of BB-based algorithm for our high-level
problem in order to account for many different metric types.

IK Algorithms can be used to check kinematics feasibil-
ity. However, these algorithms are sub-optimal or sampling-
based. A sub-optimal IK algorithm such as [15], [8], [9]
can return false negatives, i.e. reporting infeasibility when
a solution exists. On the other hand, a sampling-based IK
algorithm such as [9] can always find the solution but assume
an infinite amount of samples are used. Recently, a new
IK algorithm based on MICP relaxation is proposed in [1],
which finds a solution or detects infeasibility in a finite
amount of time. However, we found that the formulation of
[1] requires too many binary variables, making MICP solve
time-consuming for its combinatorial worst-case complexity.

III. PROBLEM STATEMENT
In this section, we formulate the problem of grasp plan-

ning. All the symbols used in this paper are summarized in
Table I. As shown in Figure 1, the planner input includes:

● A target object that occupies a volume Ωo ⊂ R3.
● A set of P potential grasp points: p1,⋯,P ∈ ∂Ωo.
● A gripper represented as an articulated object, i.e. a set

of L rigid links. Each link occupies a volume Ωi(θ) ⊂

TABLE I
SYMBOL TABLE

Variable Definition Variable Definition

Ωo target object Ωi ith link of gripper
∂Ωo surface of target object pi ith potential grasp point
xi ith fingertip point n(pi) normal on pi
n(xi) normal on xi λ/β/γ auxiliary variables
X A set of potential grasp points Xi The KD-tree node for xi
Xp/XR parent of KD-tree node X / root of tree Xl/Xr left / right child of KD-tree node X
θ gripper’s kinematics parameter di grid index in piecewise approximation
θi kinematics parameter influencing xi lji /uji jth lower / upper bound in θi
Θ conceptual solution space B/C minimal bounding sphere / cone
c/r center / radius of B m/ε center / radius of C
ε′ ε considering user threshold L number of gripper links
K number of fingertip points P number of potential grasp points
S number of separating directions Q monotonic grasp metric
Ri/ti global rotation / translation of Ωi R/t global rotation / translation of Ωo
N #cells in piecewise approximation sk kth separating direction
w rotation vector of R D penetration depth

R3, where i = 1,⋯, L and θ is the set of joint angle
and globally transformation parameters. On the gripper,
there is a set of K fingertip points: x1,⋯,K(θ) and K <
L. Without loss of generality, we always assume the
first K links are fingertip links so that xi ∈ Ωi.

● A grasp metric Q(X) whose input is a set X of
grasp points satisfying ∀x ∈ X,x ∈ ∂Ωo. Moreover,
we assume that the grasp metric is monotonic, i.e.
A ⊆ B Ô⇒ Q(A) ≤ Q(B).

In this paper, we assume that the first 6 parameters in θ
are extrinsic parameters (3 for rotation and 3 for translation)
and the rest are intrinsic parameters, i.e. joint angles. Given
these inputs, the planner either predicts that the problem is
infeasible or outputs θ∗ satisfying the following conditions:

● C1: The gripper does not collide with the target object
or have self-collisions. In other words, ∀i = 1,⋯, L,Ωo∩
Ωi(θ∗) = ∅ and ∀1 ≤ i < j ≤ L,Ωi(θ∗) ∩Ωj(θ∗) = ∅.

● C2: Each fingertip point lies on the object surface, i.e.
xi,⋯,K(θ∗) ∈ {p1,⋯,P }.

● C3: For all other θ satisfying C1 and C2, we have:
Q({xi,⋯,K(θ)}) ≤ Q({xi,⋯,K(θ∗)}).

Note that previous works [6], [7] ignore C1 and C2 and
solve the problem using a one-level BB algorithm. On the
other hand, the sampling-based planner [3] solves the full
version of this problem by generating samples of θ and then
testing C1, C2, and C3, but SA cannot detect infeasibility.
Instead, our two-level BB algorithm takes C1, C2, and C3
into consideration with finite time termination. Conceptually,
we identify a large enough subset Θ of the entire solution
space. If we restrict ourselves by adding a condition, C4:
θ ∈ Θ, then the optimal solution to the planning problem can
be efficiently solved within a finite amount of computational



time. We solve for global optimal solutions in a restricted
search space because we only sample finite potential grasp
points for C1 and we use a subset of the solution space for
a gripper’s kinematics parameters for C4.

IV. TWO-LEVEL BRANCH-AND-BOUND
FORMULATION

A. BB Algorithm

BB algorithms can efficiently find globally optimal solu-
tions for non-convex optimization problems [16] in the form
of disjoint convex sets, which means that an optimization
problem can be decomposed into several sub-cases where
each case is convex. A BB algorithm can efficiently prune
sub-optimal cases at an early stage and accelerate the com-
putation. To this end, a search tree is constructed, each node
of which corresponds to a relaxed convex problem. Starting
from the root node, each node is evaluated to either find
a solution or to prove infeasibility or sub-optimality. If a
node is infeasible or its solution is sub-optimal, all its child
nodes must also be infeasible or sub-optimal and they will
be excluded from further traversal. Otherwise, the node is
branched into two or more child nodes. The key to the
success of a BB algorithm is the design of the relaxed convex
problem. In our high-level BB, the relaxation is provided by
the monotonicity of the grasp metric. In our low-level BB,
the relaxation is provided by turning all the integer variables
into continuous variables.

B. High-Level BB

Our high-level BB takes a very similar form as [6]. We
select K points, x1,⋯,K , from the set of P potential grasp
points, {p1,⋯,P }, such that the grasp quality Q({x1,⋯,K})
is maximized. To solve this problem, we first build a KD-
tree for {p1,⋯,P }. As illustrated in Figure 1b, each KD-tree
node is uniquely denoted by a subset X ⊂ {p1,⋯,P }. The
KD-tree is used both by our high-level and low-level BB. A
balanced KD-tree can effectively reduce the length of search
path in high-level BB. It can also restrict the search space
and accelerate MICP solve in low-level BB.

The BB algorithm builds a search tree and keeping track of
the best solution with the largest grasp quality metric found
so far, which is defined as Qbest. Each node on the search tree
can be uniquely denoted by BBNode(X1,⋯,XK), where
each Xi is the KD-tree node for the ith fingertip point.
This Xi is also the set of potential grasp points that xi can
possible be at. In other words, each BBNode represents a
Cartesian product of the K set of potential graph points. At
each BBNode, we encounter one of the two cases:

● If ∣Xi∣ = 1 for all i, then the BBNode is a leaf node
and we compute tentative grasp quality for this node:
Q(X1 ∪X2⋯ ∪XK). If the tentative grasp quality is
larger than Qbest, then this BBNode is known as an
incumbent and Qbest is updated.

● If there is an i such that ∣Xi∣ > 1, then the BBNode
is a non-leaf node. In this case, we also compute the
tentative grasp quality, Qupper = Q(X1 ∪X2⋯∪XK),
for this node. If the tentative grasp quality is smaller

than Qbest, i.e. Qupper < Qbest, then this BBNode is
eliminated for further processing. Otherwise, we branch
on all the Xi with ∣Xi∣ > 1.

It has been shown in [6], [7] that this algorithm will find the
optimal {x1,⋯,K} if Q is monotonic. When Q is monotonic,
the tentative grasp quality Qupper is an lifting of the grasp
quality metric to a superset, which is also an upper bound of
the actual grasp quality. Therefore, rejecting BBNode when
Qupper < Qbest will not miss better solutions. However, our
high-level BB does not take the gripper’s kinematics feasi-
bility into consideration. Each BBNode essentially specifies
all the possible positions of each fingertip point. If it is
impossible for the gripper to reach these positions, then the
given BBNode does not contain feasible solutions and should
be cut early to avoid the redundant search.

C. Gripper’s Inverse Kinematics

Before we discuss feasibility checks of BBNode, we first
propose a novel, MICP-based optimal IK algorithm, which is
the cornerstone of our feasibility check algorithm. Compared
with [1], which can be applied to solve IK for any articulated
robot, our formulation only works for the problem of gripper
pose planning but uses much fewer binary variables, leading
to significant speedup.

As illustrated in Figure 1c, our main idea is that applying a
global transformation of the gripper is equivalent to applying
a global inverse transformation of the target object while
keeping the palm of gripper fixed. However, if we keep the
palm of gripper fixed, then the fingers of the gripper be-
come decoupled. Specifically, we assume that each fingertip
xi(θ) = xi(θi) such that: θ = (0,0,0,0,0,0, θ1, θ2,⋯, θK ).
This assumption holds if we allow the target object to have
a global rigid transformation.

Based on this assumption, we can relax the IK problem
as MICP. Specifically, we introduce auxiliary variables Ri, ti
for the rotation and translation of the ith link. The main
constraint to relax is Ri ∈ SO3 where Ri is also a function of
θi. We relax Ri(θi) using a piecewise linear approximation
by introducing the following constraints:

Ri =
N

∑
d1,⋯,d∣θi ∣�0

λ
d1,⋯,d∣θi ∣
i Ri(θ

d1,⋯,d∣θi ∣
i )

N

∑
d1,⋯,d∣θi ∣�0

λ
d1,⋯,d∣θi ∣
i = 1

N

∑
d1,⋯,dj−1,dj+1,⋯,d∣θi ∣�0

λ
d1,⋯,d∣θi ∣
i ∈ SOS2 ∀j = 1,⋯, ∣θi∣,

(1)

where SOS2 is the special ordered set of type 2 [17]
and λ

d1,⋯,d∣θi ∣
i are continuous-valued auxiliary variables. This

piecewise linear approximation restricts the solution space,
which corresponds to our last condition C4 in Section III.
The mixed-integer constraints in Equation 1 require ∣θi∣ SOS2

constraints and hence ∣θi∣⌈log2N⌉ binary decision variables.
Finally, θ

d1,⋯,d∣θi ∣
i is defined as:

θ
d1,⋯,d∣θi ∣
i =

⎛
⎜⎜
⎝

l1i (1 − d1
N

) + u1i d1N
⋮

l
∣θi∣
i (1 − d∣θi ∣

N
) + u1i

d∣θi ∣
N

⎞
⎟⎟
⎠
, (2)



where lji and uji are joint limits. In other words, we build
a ∣θi∣-dimensional grid with N cells along each dimension.
Next, we discretize Ri(θi) on the grid and use mixed-integer
constraints to ensure that Ri falls inside one of the N ∣θi∣

cells. Note that all the Ri(θ
d1,⋯,d∣θi ∣
i ) are precomputed using

forward kinematics and used as coefficients of the linear
constraints (Equation 1).

Since the palm of the gripper is fixed, we have to inversely
transform the target object. As a result, each potential grasp
point pi can be transformed into Rpi + t where R ∈ SO3.
The technique to relax SO3 as MICP has been presented
in [1] but this technique requires too many binary decision
variables. Instead, we use a similar technique to Equation 1.
Based on the Rodrigues’ formula R = exp(w), where w is
an arbitrary 3D vector, we introduce MICP constraints:

R =
N

∑
d1,d2,d3�1

βd1,d2,d3exp(
⎛
⎜
⎝

−π(1 − d1
N

) + π d1
N

−π(1 − d2
N

) + π d2
N

−π(1 − d3
N

) + π d3
N

⎞
⎟
⎠
)

N

∑
d1,d2,d3�1

βd1,d2,d3 = 1

∑
d1,d2

βd1,d2,d3 , ∑
d1,d3

βd1,d2,d3 , ∑
d2,d3

βd1,d2,d3 ∈ SOS2,

(3)

which requires 3⌈log2N⌉ binary decision variables and
βd1,d2,d3 are continuous-valued auxiliary variables. Given
these constraints, the requirement that the ith fingertip point
is at pj can be formulated as a linear constraint:

Rixi + ti = Rpj + t. (4)

In summary, we reduce the IK problem for the gripper to a
set of linear constraints, whose feasibility can be efficiently
verified using off-the-shelf solvers such as [18]. Putting the
two parts together, our formulation needs (∣θ∣ − 3)⌈log2N⌉
binary decision variables to solve the IK problem.

D. Low-Level BB

The goal of solving low-level BB is to check whether a
BBNode(X1,⋯,XK) contains a feasible solution in terms
of gripper’s kinematics. In Section IV-C, the IK problem is
formulated as a MICP. However, solving IK is not enough for
feasibility checks of BBNodes because Equation 4 constrains
that each xi can only be at one point, while a BBNode
generally allows xi to be at one of several points in non-
leaf cases. In the latter case, we have at least one ∣Xi∣ > 1
so that xi can be at any point in the set {Rpj + t∣pj ∈ Xi}.
In order for the feasibility check to be performed using the
off-the-shelf MICP solver [18], we have to relax this point-
in-set constraint as a linear or conic constraint. A typical
relaxation is to constrain that xi lies in the convex hull of
the set. However, this constraint takes the following form
which is not convex:

Rixi + ti =∑
j

wj(Rpj + t) wj ≥ 0 ∑wj = 1. (5)

This is because wj and R are both variables, leading to a
bilinear form. It is possible to relax a bilinear form into MICP
by requiring additional binary decision variables. Instead, we

propose to construct a minimal bounding sphere for the set
Xi denoted as:

Xi ⊆ B(Xi) ≜ {x∣∥x − c(Xi)∥2 ≤ r(Xi)},
where c(Xi) is the center of the sphere and r(Xi) is the
squared radius. Next, we relax the point-in-set constraint as:

∥Rixi + ti −Rc(Xi) − t∥2 ≤ r(Xi), (6)

which is a quadratic cone and can be handled by [18]. Note
that c(Xi) and r(Xi) are constants and can be precomputed
for each node of the KD-tree (see Appendix A for details).
A minor issue is that Equation 6 is not as tight as Equation 5
in terms of the volume of the constrained space. To alleviate
this problem, we notice that if Xi has a parent in KD-tree
denoted as Xp, then xi should also satisfy the point-in-set
constraint of Xp. Therefore, we can backtrace Xi to the root
KD-tree node and add all the constraints of Equation 6 along
the path, as illustrated in Figure 1e.

(a)

(b)

√
ε

√

ε(X i)

√

ε ′(X i)

Fig. 2. (a): We illustrate the normal of fingertip points n(xi)
(white arrow) and the inward normal of potential grasp points n(pj)
(black arrow). We allow n(xi) to lie in a normal cone around n(pj)
(blue) with a threshold ε (dashed line). (b): We illustrate the relaxed
normal cone of the two potential grasp points (red) with threshold
denoted as ε(Xi

). The final threshold used in the constraint is
ε′(Xi

), taking the user-defined threshold into consideration. All
vectors have unit length. We use an extruded red region for clarity.

E. Normal Constraints
We can further optimize our formulation by taking the

surface normals of the target object into consideration, lead-
ing to even tighter constraints. As illustrated in Figure 2a,
each potential grasp point pj can be associated with an
inward surface normal denoted by n(pj). Also, each fingertip
point xi can also be associated with a normal n(xi). It
is intuitive to constrain that n(xi) should be pointing at
a similar direction to n(pj). In practice, we do not need
n(xi) to align with n(pj) exactly but allow n(xi) to lie in a
small vicinity. Therefore, if a leaf BBNode(X1,⋯,XK) is
encountered, then we add the following constraint to MICP
for each Xi = {p}:

∥Rin(xi) −Rn(p)∥2 ≤ ε, (7)

where ε is a user-defined threshold. If a non-leaf BBNode is
encountered, then we have to add a normal-in-set constraint.
Using a similar technique as Section IV-D, we construct a
normal cone denoted as:

{n(p)∣p ∈Xi} ⊆ C(Xi) ≜ {n∣∥n −m(Xi)∥2 ≤ ε(Xi)},
for each internal KD-tree node during precomputation. Here
m(Xi) is the central direction of the normal cone and ε(Xi)
is the squared radius. We can then add the relaxed normal-
in-set constraint for Xi:

∥Rin(xi) −Rm(Xi)∥2 ≤ ε′(Xi), (8)



where ε′(Xi) is the squared radius of the normal cone taking
the user-defined threshold into consideration, as illustrated in
Figure 2b (see Appendix A). Finally, we can further tighten
the normal-in-set constraint using a similar technique as
Section IV-D. We can backtrace Xi to the root KD-tree node
and add all constraints of Equation 8 along the path.

F. Collision Handling using Lazy-MICP

In addition to checking the gripper’s kinematics feasibility,
our low-level BB also ensures that gripper’s links do not
collide with each other or with the target object. It has been
shown in [19], [1] that collision constraints can be relaxed as
MICP. In order to reduce the use of binary decision variables,
we propose to add collision constraints in a lazy manner.

Specifically, we assume that the target object Ωo and all
gripper links Ωi are convex objects. If Ωo is not convex then
we can approximate it using a union of convex shapes. We
first ignore all collision constraints and solve MICP. We then
detect collisions between RΩo + t and Ωi(θ) and record the
pair of points with the deepest penetration denoted as D, e.g.
using [20]. If we find that a ∈ Ωo and b ∈ Ωi are in collision,
then we pick a separating direction from a set of possible
separating directions {s1,⋯, sS} and introduce the following
constraint as illustrated in Figure 3a and Figure 3b:

sTk (Ra + t) +D ≤ sTk (Rib + ti) + (1 − γoik )M ∀k

γoik ≥ 0
S

∑
k�1

γoik = 1 γoi1 ,⋯, γ
oi
k ∈ SOS1,

(9)

where SOS1 is the special ordered set of type 1 [17], γoik are
the auxiliary variables, and M is the big-M parameter [21].
Similarly, if there is a collision between a pair of points,
a ∈ Ωi and b ∈ Ωj , then we have the following constraint:

sTk (Rja + tj) +D ≤ sTk (Rib + ti) + (1 − γjik )M ∀k

γjik ≥ 0
S

∑
k�1

γjik = 1 γji1 ,⋯, γ
ji
k ∈ SOS1.

(10)

After adding collision constraints, the new MICP is solved
again with a warm-start and we again perform collision-
detection. This is looped until no new collisions are detected
or MICP becomes infeasible. Note that if a new collision is
detected for a link-link or link-object pair for which collision
has been detected in previous loops, then only the first lines
of Equation 9 and Equation 10 are needed. In other words,
binary variables are needed once for each link-link and link-
object pair and the binary variables number is ⌈log2S⌉.

Note that the collisions between the first K fingertip links
and the target object do not need to be detected or handled by
MICP. This is because each fingertip link contacts the target
object at one point with matched normal when Equation 7
holds with ε = 0, which is a sufficient condition for two
convex objects to be collision-free [22]. In practice, we allow
users to set a small, positive ε to account for inaccuracies in
gripper and target object shapes.

V. ALGORITHM ACCELERATION

Our method discussed in Section IV is computationally
costly due to the repeated use of the MICP-based IK algo-
rithm, to check the kinematics feasibility of the gripper. In
this section, we discuss three techniques to reduce the cost of

Li
nk

1 Link2

Link3 Link3

Collision

s1
s2

s3

s4
s5s6

s7

s8

(a)
(b)

(c)

Fig. 3. A 2D illustration of collision handling algorithm. (a): There
is collision between Link3 and the target object. (b): MICP selects
one of the 8 possible directions. (c): Collision can be resolved
when s1 is selected (red). MICP does not need to consider the
collisions between Link1, Link2 and the target object because they
contact at one point with matched normal. We choose S = 64 in
3D experiments.

MICP solving. Our first technique is bottom-up kinematics
check, which is based on the following observation:

Lemma 5.1: If the MICP-based IK problem for a
BBNode is feasible, then the MICP-based IK problem for
its parent is also feasible.

Proof: The IK problem for a BBNode is derived by
adding more constraints (in forms of Equation 4,7,6,8) to
the IK problem of its parent. (See Algorithm 4 for more
details on the construction of a MICP-based IK problem.)

Therefore, we can check the gripper’s kinematics feasibil-
ity lazily. Specifically, if a BBNode is a non-leaf node and
it has not been checked for gripper’s kinematics feasibility,
we skip the check and continue branching. If a BBNode is a
leaf node, we solve MICPs to check for gripper’s kinematics
feasibility for all the BBNodes on the path between this leaf
node and the root BBNode. If any of the MICP appears to be
feasible in this process, all ancestor nodes will also be feasi-
ble and their checks can be skipped. Our second technique is
warm-started MICP solve. We store the solution of MICP
for each BBNode and use this solution as the initial guess for
the MICP solves of its children. Our third technique is local
optimization. Note that MICPs are convex relaxations of
non-convex optimization problems. Non-convex optimization
problems are sub-optimal but efficient to solve. Therefore, we
propose to solve a non-convex optimization before invoking
a call to the MICP solver. If the non-convex optimization
appears to be feasible, we skip the MICP solves. We use
interior point algorithm [23] as our non-convex optimization
solver. The key steps of our algorithm are illustrated in
Figure 4 and we summarized our method in Appendix B.
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Fig. 4. We illustrate key steps of our algorithm. (a): We skip
MICP-based IK checks for non-leaf BBNodes. (b): We solve MICP
for BBNodes in a bottom-up manner. If a BBNode is infeasible
(red), then the feasibility of its parent BBNode must be checked
by solving another MICP. If a BBNode is feasible (green), then its
parent must be feasible and we can skip the check. (c): Another leaf
BBNode is cut due to the infeasibility of its parent. (d): The MICP
solve on a BBNode can be warm-started from a parent BBNode.

VI. EXPERIMENTS & RESULTS

We perform all the experiments on a single desktop
machine with one Intel I7-8750H CPU (6-cores at 2.2Hz).
Given a target object, we first sample p1,⋯, pP on ∂Ωo using
parallel Poisson disk sampling [24] and then build a KD-tree



for the set of P points using [25]. Finally, we solve low-level
MICP problems using [18]. To grasp the object, we use a
3-finger axial-symmetric gripper with ∣θ∣ = 6 + 3 × 3 = 15
and ∣θi∣ = 3. Each finger of the gripper is controlled by one
ball joint and one hinge joint. Under this setting, our IK
formulation requires 12⌈log2N⌉ binary decision variables
while [1] requires 630⌈log2N⌉ binary decision variables.
The average solving time using our formulation and [1] are
compared in Table II, which indicates that our formulation
is over 100× more efficient.

TABLE II
OUR MICP-BASED IK FORMULATION IS OVER 100× FASTER

THAN [1] BECAUSE WE USE VERY FEW BINARY DECISION

VARIABLES. FROM LEFT TO RIGHT: NUMBER OF PIECES IN

DISCRETIZATION, #BINARY DECISION VARIABLES USING OUR

FORMULATION, #BINARY DECISION VARIABLES USING [1], OUR

AVERAGE SOLVE TIME, AND THE AVERAGE SOLVE TIME OF [1]
(50 RANDOM TRIALS).

N #Binary Ours #Binary [1] Ours(s) [1](s)

2 12 630 0.034s 23.021s
4 24 1260 1.231s 287.741s
8 36 1890 48.366s 8632.237s

A list of results is demonstrated in Figure 5 and we show
the convergence history for one instance. In these examples,
we choose P = 100, S = 8,N = 8,Q = Q1, ε = 0.05.
Under this setting, our algorithm needs to explore 30 − 60K
BBNodes in order to find the optimal grasp and the com-
putation takes 20-180 minutes depending on the complexity
of target object shapes. We also plot the computational cost
of different substeps of our algorithm, where 65% of the
BBNodes are cut due to incumbent or gripper’s kinematics
infeasibility, MICP solves are only needed by 1.9% of the
BBNodes, and local optimization can be used to avoid
MICP solves need by 0.1% of the BBNodes. Finally, if we
ignore the low-level BB and only run the high-level BB,
our algorithm coincides with [6], which only searches for a
set of grasp points. The computation corresponding to high-
level BB takes less than 20 minutes. Therefore, the main
bottleneck of our algorithm is the gripper’s kinematics check
or the low-level BB.

In Figure 5, we also show two grasps for some objects
using a large and small gripper. The large gripper can hold
the entire object. But if the gripper is small, it can only hold
a part of the target object. A more systematic evaluation
is shown in Figure 6, where the quality Q monotonically
decreases as we use the larger version of the same objects.
In Table III, we show MICP solving time, total running time
and percentage of MICP solving time in total running time.

TABLE III
RUNNING TIME OF OUR RESULTS SHOWN IN FIGURE 5 WITH

THE LARGE GRIPPER.
Object MICP (min) Total (min) Percentage (%)

Bottle 43.766 71.337 61.351
Table 9.614 49.659 19.360
Plane 5.924 34.381 17.230
Chair 6.004 19.669 30.525

Camera 4.595 50.000 9.190
Cabinet 54.182 73.394 73.823

Finally, we compare the performance of our method with
a sampling-based method Figure 8 using both the 3-finger

gripper and the 10-DOF Barrett Hand. Being incomplete,
a sampling-based method sometimes cannot find solutions,
especially when the target object is large compared with
the gripper. This is because feasible grasps become rare
in the configuration space when object size grows and
most samples are not valid. For GraspIt![4] settings, the
space search type is Axis-angle, the energy formulation is
AUTO GRASP QUALITY ENERGY, the maximum itera-
tion number is 45000, and the planner type is Sim.Ann. As
a result, the initial guess of the gripper’s pose is important
when using [4]. However, our method can always find a
solution when one exists and we do not require users to
provide an initial guess. Even when a sampling-based method
can find a solution, our solution always has a higher quality
in terms of the value of Q1 metric. On the other hand, [4]
can find a sub-optimal solution within 10min which is 10×
faster than our method. However, we show in Figure 7a that
giving [4] more computational time does not improve the
solution and we speculate that the solution has fallen into a
local minimum. If only sub-optimal solutions are needed, the
user can choose to terminate our algorithm when Q is larger
than a threshold. According to the convergence history in
Figure 5, our method can usually find feasible solutions after
exploring 1 − 5K nodes, which also takes several minutes.
However, if our algorithm is allowed to explore more nodes,
as shown in Figure 7b, it can output multiple grasps for
an object by storing all the feasible solutions. This makes
our algorithm potentially useful for offline grasp dataset
construction and online learning-based grasp systems such
as [26], [27].

VII. CONCLUSION & LIMITATIONS

We present a two-level BB algorithm to search for the op-
timal grasp pose in a restricted search space that maximizes
a given monotonic grasp metric. The high-level BB selects
grasp points that maximize grasp quality, while the low-level
BB cut infeasible BBNodes in terms of gripper’s kinematics.
Our low-level BB uses a compact MICP formulation that
requires a small number of binary variables. Experiments
show that our method can plan grasps for complex objects.

Our work has several limitations. First, we only plan
gripper poses without considering other sources of infeasi-
bility such as environmental objects and robot arms. When
robot arms are considered, the decoupled assumption of Sec-
tion IV-C is violated and we need new techniques for relaxing
IK as MICP. Second, although our IK relaxation is more
efficient than [1], our method is not an outer-approximation.
In other words, if a gripper pose is feasible using exact IK,
it might not be feasible under our relaxed IK constraints.
Third, we only plan for precision grasps with fingertip-
contacts, while generating power grasps or caging grasps is
a good topic for future work. In addition, our formulation
incurs a high computational cost for complex object shapes,
such as those acquired from scanning real-world objects.
Finally, our method does not consider modeling or sensing
uncertainty, which is necessary to realize the grasp in a
physical platform.
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Fig. 5. We show a list of optimal grasps found for the 3-finger axial-symmetric gripper and a row of 6 objects. For some objects we show
two different grasps, one for a large gripper and the other for a small gripper. Finally, we plot the convergence history and computational
cost of different substeps of our algorithm for the bottle model.
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Fig. 6. We plan grasps with the target object being a tuning fork and rescale the object by 1,2,4,8 times. As the scale of the object
grows, the optimal grasp quality reduces and the gripper can only grasp a smaller part of the target object, leading to lower grasp quality.
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Fig. 7. (a): Q1 plotted against runtime for [4] and our method
with the Barrett Hand grasping a bulb (as shown in Figure 8). (b):
Generating 4 grasps for the plane.
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Fig. 8. We show the advantage of our method over the sampling-
based method [4]. (a): The sampling-based method can mostly find
a solution when an object is small, though the grasp quality is less
than our solution. (b): When the object is large, the sampling-based
method sometimes cannot find a solution, while our method always
finds solutions when one exists.

APPENDIX A: BOUNDING SPHERES & CONES

Each KD-tree node X , contains a set of potential grasp
points pj , each of which has an outward normal direction
n(pj). To generate an efficient MICP-based IK problem, we
need to compute a minimal bounding sphere that encloses
pj and a minimal bounding cone that encloses n(pj). In
this section, we present methods to compute these bounding
volumes via numerical optimization using the following
lemmas:

Lemma 7.1: The minimal bounding sphere B(X) can
be computed by solving the following conic programming
problem:

argmin
c(X),r(X)

r(X) s.t.∥c(X) − pj∥
2
≤ r(X) ∀pj ∈X,

where c(X) is the center of the bounding sphere and r(X)
is the radius of the bounding sphere.

Proof: Any valid bounding sphere should contain all
the potential grasp points pj , which justifies our constraints.
A minimal bounding sphere has the smallest radius, which
justifies our objective function.

Lemma 7.2: The minimal bounding cone C(X) can be
computed by solving the following non-convex programming
problem:

argmin
∥m(X)∥�1,ε(X)

ε(X) s.t.∥m(X) − n(pj)∥
2
≤ ε(X) ∀pj ∈X,

where m(X) is the central axis of the normal cone and
ε(X) is the radius as defined in Figure 2.

Proof: Any valid bounding cone should contain all
the potential grasp normals n(pj), which justifies our con-
straints. A minimal bounding cone has the smallest radius,
which justifies our objective function.
This optimization is non-convex due to the unit length
constraint ∥m(X)∥ = 1. To compute the minimal bounding
cone, we relax the unit length constraint using MICP via the
technique presented in [1]. Finally, we take the user-defined
threshold into consideration and compute ε′(X) as follows:

θ ≜ 2sin−1(

√
ε(Xi)

2
) + 2sin−1(

√
ε

2
)

ε′(Xi
) = [2sin(

min(θ, π)

2
)]

2

.

APPENDIX B: ALGORITHMS

A summary of algorithms. Given a gripper and a target
object, we first perform a precomputation using Algorithm 1.
Afterward, we use Algorithm 3 as high-level BB and use
Algorithm 4 as low-level BB. The accelerated bottom-up
kinematics check is summarized in Algorithm 2, which is
used as a middleware between the two levels.
Algorithm 1 Precomputation

1: Sample p1,⋯, pP on ∂Ωo using [24]
2: Construct KD-tree for p1,⋯, pP using [25]
3: for Each X in KD-tree do
4: Construct B(X) and C(X) (Appendix A)
5: for Each link on the gripper do
6: Construct relaxed IK constraints (Equation 1)
7: Construct relaxed IK constraint for Ωo (Equation 3)
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Algorithm 2 BottomUpKinematicsCheck(BBNode)
1: ▷ Check if ancestor BBNode.LowLevel=False
2: CurrentBBNode←BBNode
3: do
4: if CurrentBBNode.LowLevel=False then
5: BBNode.LowLevel=False
6: Return
7: CurrentBBNode←CurrentBBNode.Parent
8: while CurrentBBNode is not the root
9: CurrentBBNode←BBNode ▷ Bottom-up Kinematics Check

10: ChildFeasible←False
11: do
12: if CurrentBBNode.LowLevel≠Unknown then
13: Break ▷ The BBNode/ancestors have been checked
14: else if ChildFeasible=True then
15: CurrentBBNode.LowLevel=True
16: else
17: CurrentBBNode.LowLevel=
18: LowLevelBB(CurrentBBNode)
19: ChildFeasible←CurrentBBNode.LowLevel
20: CurrentBBNode←CurrentBBNode.Parent
21: while CurrentBBNode is not root

Algorithm 3 HighLevelBB
1: ▷ BBNode.LowLevel marks gripper’s feasibility
2: Qbest ← 0 ▷ BBNode.LowLevel initializes to Unknown
3: Queue← ∅, Queue.insert(BBNode(XR,⋯,XR))
4: while Queue ≠ ∅ do
5: BBNode(X1,⋯,XK

)←Queue.pop()
6: if BBNode is leaf then
7: BottomUpKinematicsCheck(BBNode)
8: if BBNode.LowLevel=True then
9: Qcurr ← Q(X1

∪X2
∪⋯XK

) ▷ Bound
10: if Qcurr > Qbest then
11: Qbest ← Qcurr
12: else if BBNode.LowLevel=True∨Unknown then
13: Find ∣Xi

∣ ≥ 1 ▷ Branch
14: Queue.insert(BBNode(⋯,Xi

l ,⋯))
15: Queue.insert(BBNode(⋯,Xi

r,⋯))
16: Return Qbest
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