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Abstract— The flexible musculoskeletal hand is difficult to
modelize, and its model can change constantly due to deterio-
ration over time, irreproducibility of initialization, etc. Also, for
object recognition, contact detection, and contact control using
the hand, it is desirable not to use a neural network trained for
each task, but to use only one integrated network. Therefore,
we develop a method to acquire a sensor state equation of the
musculoskeletal hand using a recurrent neural network with
parametric bias. By using this network, the hand can realize
recognition of the grasped object, contact simulation, detection,
and control, and can cope with deterioration over time, irrepro-
ducibility of initialization, etc. by updating parametric bias. We
apply this study to the hand of the musculoskeletal humanoid
Musashi and show its effectiveness.

I. INTRODUCTION

Various robotic hands have been developed so far [1]–
[5]. While there are many dexterous robotic hands with
multiple rigid links [1], [2], flexible robotic hands [3]–[5]
are prevailing in terms of the adaptable grasping and impact
response. The rubber hand structure of [3] is driven by air
pressure, and the hand of [4] is highly biomimetic with the
elastic pulley system. In this study, we use the flexible and
strong musculoskeletal hand [5] with machined spring fingers
and a larger number of sensors than those hands. However,
there are several problems concerning recognition of the
grasped object, contact detection, and contact control with
such a flexible hand [3]–[5].

First, its modeling is difficult, and therefore, controls di-
rectly using geometric models are challenging. This problem
is widely known now, and various learning-based object
recognitions and contact controls have been studied. [6]
predicted the success rate of grasping and realized regrasping
using reinforcement learning. [7] trained imitation learning-
based deep visuomotor policies and realized various ma-
nipulation tasks with a simulated five-fingered hand. While
these studies are applied to only rigid hands, some studies
can handle flexible hands as explained below. [8] applied
reinforcement learning of in-hand manipulation with the
under-actuated two-fingered robotic hand. [9] realized the
classification of the grasped objects using the pneumatic flex-
ible robotic hand. However, these applications are limited,
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Fig. 1: Overview of the developed system.

such as control on a two-dimensional plane or only grasping
classification.

Second, the modeling of the flexible hand is not only
difficult but also can change constantly. Especially, soft
materials such as rubber [3] and springs [4], [5] significantly
deteriorate over time, and also other materials such as wire
and metal deteriorate due to poor use. Also, joint angle
sensors sometimes cannot be attached to the flexible hand
[3]–[5], and it is difficult to initialize the joint angles of the
fingers. In the case of the hand [5] used in this study, there
are no joint angle sensors, and so the origin of the joint
angle is initialized when we manually extend the fingers.
However, the initialization is hard to reproduce, and the
irreproducibility of initialization changes the model we con-
struct. In addition, when we modelize a sensor state transition
of the hand by control commands, the model depends on
the surrounding environment (e.g. grasped objects). While
online learning methods of intersensory networks [10], [11]
have been developed for musculoskeletal humanoids to solve
these problems, online learning becomes difficult if the
dimension to be learned increases, and so these methods
can be applied to only static movements. Therefore, it is
necessary to develop a method stably modifying and adapting
the network to the current hand dynamics, including the
difference of initialization, deterioration, and grasped objects,
by changing only a small part of the network parameters.

Third, as seen in the introduced studies, various compo-
nents such as recognition of the grasped object, contact de-
tection, and contact control have been developed individually
[6]–[9]. While the individual network can specialize in each
component, we consider that only one network representing
sensor state transition is enough to handle these components
in a relatively low layer. By using the integrated network,
managing each network for each component is not necessary,
and the parameter update making a certain component better
can affect other components. Therefore, it is desirable to train
only one integrated network for these components.
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Fig. 2: The five-finger flexible musculoskeletal hand [5] of the musculoskeletal humanoid Musashi [12].

In this study, we construct a sensor state equation repre-
sented by a recurrent neural network with parametric bias
[13] (Hand Dynamics Network, HADYNET), and use it
for recognition of the grasped object, contact simulation,
detection, and control (Fig. 1). We implicitly embed the
information of deterioration, initialization, and grasped ob-
jects into the parametric bias (PB). By updating only PB,
the network can adapt to the current hand dynamics and
can cope with deterioration over time, irreproducibility of
initialization, the change in grasped objects, etc. We apply
this study to the flexible hand [5] of the musculoskeletal
humanoid Musashi [12] and verify its effectiveness. The
contributions of this study are shown below.
• Acquisition of a sensor state equation represented by a

recurrent neural network with parametric bias for the
flexible musculoskeletal hand.

• Coping with the change of the model due to dete-
rioration over time, irreproducibility of initialization,
the difference in grasped object, etc. by updating only
parametric bias.

• Recognition of the grasped object, contact simulation,
detection, and control using the trained network.

II. MUSCULOSKELETAL HAND

We show the musculoskeletal hand [5] used in this
study, in Fig. 2. This hand attached to the musculoskeletal
humanoid Musashi [12] has five fingers, and each finger
joint is composed of a flexible machined spring. To make
the machined springs anisotropic, Dyneema and PET plate
imitating ligaments are attached to the side of the fingers.

In the forearm of Musashi, there are eight muscle actuators
[14], and three and five of them are assigned to move
the wrist and fingers, respectively. Two of the five tendons
for fingers actuate the middle/index and ring/little fingers,
respectively. Two tendons branched by a pulley control the
two fingers at the same time. The other two of the five
tendons actuate the thumb, and the last one can change the
stiffness of fingers by pressing on the machined springs.

Nine loadcells are distributed in each fingertip and the
palm, and these arrangements are shown in the middle figure
of Fig. 2. Muscle tension and length can be measured from
the muscle actuator [14]. We represent the loadcell value as
fcontact , the current muscle length as l, and muscle tension
as f . The kinematics of the geometric model of this hand is
shown in the right figure of Fig. 2. The joints of machined
springs are simply represented by rotational joints. Although
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finger joint angles cannot be measured, the wrist joint angles
θ can be measured by a joint module [12] in the wrist joint.

The dimensions of l and f are 8, that of fcontact is 9, and
that of θ is 2. In the case of using only 4 muscle actuators #1–
#4 directly involving finger joints, we represent these muscle
tensions and lengths as f f inger and l f inger.

III. HAND DYNAMICS NETWORK

We show the detailed network structure in Fig. 3 and the
whole system in Fig. 4.

A. Network Structure

HADYNET is the network making use of the recurrent
neural network with parametric bias (RNNPB) proposed
by J. Tani [13]. Several studies using RNNPB have been
conducted [15], [16] so far, and RNNPB has been used
to embed multiple dynamics of various motion sequences
into one network. In this study, we make use of RNNPB as
the sensor state equation with multiple dynamics caused by
deterioration over time, irreproducibility of initialization, the
difference in grasped objects, etc.

HADYNET is represented by functions h{1,2} as below,

zt = h1(xt ,p) (1)
yt+1 = h2(zt ,ut ,p) (2)

where x is the initial sensor state of the hand, z is the
hidden state, u is the control command, y is the observed
sensor state, p is the parametric bias (PB), t is the current
time step, and •t is the value at the time step t. In this
study, x represents (lT ,∆lT ,fT ,fT

contact ,θ
T ,∆θT )T (∆{l,θ}

is the difference value from the previous time step, and the
dimension of x is 37). Also, u represents ∆lre f (∆lre f is
the change of the target muscle length, and the dimension of
∆lre f is 8), y represents (lT ,fT ,fT

contact ,θ
T )T (the dimension

of y is 27). We call Eq. 1 and Eq. 2 HADYNET. Thus,
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Fig. 4: The overall system using the hand dynamics network.

HADYNET represents the state equation of all the sensors
equipped with the hand by the control command of target
muscle velocity.

The detailed network structure is shown in Fig. 3. FC
represents a fully-connected layer, and LSTM represents
Long Short-Term Memory [17]. The number of units of
LSTM is 128, and the dimension of PB is 8. The number
of units of FC can be determined from the input and output
dimensions, and after feeding the input value into FC, the
value is fed into Batch Normalization [18] and ReLU [19].
The cell state of LSTM is initialized to 0.

In this study, the interval of the adjacent time steps is 0.2
seconds.

B. Training of HADYNET
To embed multiple dynamics into PB, we collect various

data with various dynamics, and train HADYNET as each
data corresponds to different PB.

First, we prepare the hand dynamics state k with differ-
ent initializations, deteriorations, and grasped objects. We
conduct various motions with the hand of each dynamics
state k, and obtain the N steps motion data of Dk =
{x[0,N),u[0,N),y[0,N)}k. In Fig. 4, •[0,N) is abbreviated to •seq.

Second, we convert the collected data. We determine
Ntrain, how many time steps are predicted by
HADYNET. We extract Ntrain steps of consecutive
data from Dk every one time step, and we represent
all the extracted data as D′k = {{x0,u[0,Ntrain),
y[1,Ntrain+1)}k,{x1,u[1,Ntrain+1),y[2,Ntrain+2)}k, · · ·}.
Regarding x, only the initial x is necessary. We execute this
process for all the collected data and prepare D′k={1,2,...,K}
(K represents the number of the collected hand dynamics
state).

Third, we train HADYNET using D′. We shuffle D′ and
train HADYNET by setting the batch size Ntrain

batch and the
epoch Ntrain

epoch. We use pk as PB of the hand dynamics state
k (PB is the same among the same hand dynamics state
but different among the different hand dynamics state), and
this pk is implicitly trained with HADYNET. All pk are
initialized to 0 before training.

In this study, N is different regarding each hand dynamics
state, and we set Ntrain = 10, Ntrain

batch = 100, and Ntrain
epoch = 200.

C. Update of Parametric Bias
Although the network weight of HADYNET and PB are

trained in Section III-B, we do not need the trained PB

when using HADYNET except for in the object recognition
task. When changing the grasped objects or initializing again,
we collect the data D′ regarding the current hand dynamics
state, fix the network weight of HADYNET, and update only
PB. As explained in Section I, by updating only PB rather
than all the network weight, we can adapt HADYNET to
be close to the current hand dynamics state, while avoiding
an over-fitting problem. Because only the low dimensional
space of PB is updated, only the hand dynamics of the
network is adapted while keeping the overall sensor state
equation. In Section III-B, if we train HADYNET with
various grasped objects, initializations, and deterioration, the
multiple dynamics states are constructed in PB. By searching
the PB fitting to the current sensor transition, we can obtain
the current hand dynamics state. We represent the batch size
as Nupdate

batch and the number of epochs as Nupdate
epoch , and use

MomentumSGD as the update rule.
Also, although the method to train HADYNET offline us-

ing the collected D′ is more stable, the online update of PB is
enabled because the over-fitting problem can be avoided. We
determine the data size Nonline

thre that starts the online update
of PB, and the maximum accumulated data size Nonline

max , by
which the update can be executed online. We accumulate
data as in Section III-B, and when the accumulated data
size exceeds Nonline

thre , PB starts to be updated by setting the
batch size Nonline

batch and the number of epochs Nonline
epoch . When

the accumulated data size exceeds Nonline
max , the oldest data is

removed.
In this study, N{update,online}

batch = N (N is the number of data
in D′), Nupdate

epoch = 20, Nonline
epoch = 3, Nonline

thre = 100, and Nonline
max =

200.

D. Recognition of Grasped Object

The robot can recognize the grasped object by making
use of the PB updated in Section III-C. Regarding the K
hand dynamics states used in Section III-B, we save the
trained PB pk and the name of each grasped object. We can
visually plot these pk by reducing the dimension of PB to
two-dimensional space using principal component analysis
(PCA). After updating PB in Section III-C, we convert the
updated p by the converter of PCA as above and plot it in the
two-dimensional space. We can visually obtain the current
object name from the position of p in pk. Also, by the nearest
neighbor method, the robot can recognize which object is the
closest to the current grasped object. This object recognition



is possible because the difference of hand dynamics caused
by initialization and deterioration is smaller than that caused
by the difference in grasped objects. This was found through
subsequent experiments, as the difference of grasped objects
appeared like in Fig. 9 and Fig. 10 even if we obtain PB
while changing the initialization and grasped objects.

E. Contact Simulation

The contact simulation is executed only by forwarding
HADYNET. We set the initial sensor state xsim

t , and by
feeding the control command usim

t into HADYNET, ysim
t+1 can

be obtained. We can visually simulate the force and position
of the hand by drawing f as color gradation, fcontact as the
size of the force arrows, and θ as the joint angle. Also,
just by changing PB, we can observe the change of hand
dynamics with various grasped objects and initializations.
This simulation can be used for reinforcement learning.

F. Contact Detection

From the prediction error of HADYNET, we can execute
contact detection (anomaly detection) of the hand. First,
before contact detection, we collect D′ and update PB as
in Section III-C without grasping anything. We determine
the time steps Ndetect (Ndetect ≤ Ntrain) to be predicted by
HADYNET, and regarding D′, we calculate the average and
covariance matrix of the prediction error of HADYNET
after Ndetect time steps. In detail, we extract xi−Ndetect and
u[i−Ndetect ,i) when setting i as the last time step of the Ndetect

steps sequence, calculate the error between yest
i predicted by

using the extracted data with HADYNET and yi in D′, and
obtain the average µe and the covariance matrix Σe of the
errors regarding all the sequence in D′.

Second, we will explain the actual contact detection phase.
We always accumulate x and u from the current time step
t to t−Ndetect . At t, we extract xt−Ndetect and u[t−Ndetect ,t),
and predict yest

t through HADYNET. Then, we obtain yt and
calculate Mahalanobis distance as shown below,

d =

√
(et −µe)T Σ−1

e (et −µe) (3)

where et = yest
t −yt . When d exceeds the threshold Cdetect ,

we regard that a motion different from the prediction occurs,
and so the unpredicted contact is detected. Although we can
use 3σ of d in D′ as Cdetect , as too many contacts should
not be detected, we set a higher constant value.

In this study, we set Cdetect = 100.

G. Contact Control

By optimizing the control command to make the predicted
sensor state close to the target value, the robot can realize the
target contact state. Here, the contact state means the values
of f and fcontact . This control is a method applying [20] to
HADYNET.

First, we determine the number of time steps Ncontrol

(Ncontrol ≤ Ntrain) to be predicted (control horizon) and the
target contact state yre f . Second, we determine the control
command uopt

[t,t+Ncontrol)
before optimization (we represent it

as uopt
seq below). By obtaining xt at the current time step and

feeding it with uopt
seq into HADYNET, the predicted sensor

state of yest
[t+1,t+Ncontrol+1) is obtained. Then, the loss of L is

calculated by the loss function hloss, and uopt
seq is optimized

as shown below,

L = hloss(y
est
seq,y

re f
seq ) (4)

g = ∂L/∂uopt
seq (5)

uopt
seq ← uopt

seq −αg/||g||2 (6)

where yest
seq represents yest

[t+1,t+Ncontrol+1), yre f
seq represents a

vector vertically arranging Ncontrol vectors of yre f , || • ||2
represents L2 norm, and α is an update rate. uopt

seq is
updated using Ncontrol

batch kinds of α , uopt
seq with the mini-

mum L in the batch is adopted, and the gradient g is
calculated again. This is repeated Ncontrol

epoch times. Also, we
use uopt

{t,··· ,t+Ncontrol−1,t+Ncontrol−1}, in which uopt
[t−1,t+Ncontrol−1)

optimized at the previous time step is shifted and its last term
is replicated, as useq

control . After optimization, uopt
t is sent to

the actual robot.
Here, we consider the design of the loss function hloss.

In this study, we mainly consider the stabilization of the
grasp and aim to keep the initial contact state at all times
when grasping the tool object. Therefore, yre f is the initial
value yinit when grasping the tool. For example, although the
contact state and the grasp condition gradually change when
grasping a hammer and hitting with it, we aim to inhibit the
change. In this case, we design the loss function as shown
below,

hloss(y
est
seq,y

re f
seq ) = hloss,1(y

est
seq,y

re f
seq )+hloss,2(y

est
seq,y

re f
seq ) (7)

hloss,1(y
est
seq,y

re f
seq ) = ||wT

1 (F
est
seq−F re f

seq )||22 (8)

w1[i] =

{
1.0 (F est

seq[i]≥ F re f
seq [i])

β (otherwise)

hloss,2(y
est
seq,y

re f
seq ) = w2||θest

seq−θre f
seq ||22 +w3||lest

seq− lre f
seq ||22

(9)

where, F
{est,re f}
seq represents a vector vertically arranging

f and fcontact extracted from y
{est,re f}
seq , and {θ, l}{est,re f}

seq
represents a vector vertically arranging {θ, l} extracted from
y. Also, w{2,3} is a constant weight, w1 is a weight vector,
w1[i] is the ith element of w1, and β is a constant weight.
The design of w1 considers the characteristics of the contact
sensors. Although the sensor values of the contact and muscle
tension sensors change just until 0 in the minus direction, the
values can largely change until the rated values in the plus
direction. When setting β = 1.0, as the result of optimization,
the contact state tends to change in the minus direction and
the initial contact state cannot be kept. Therefore, by setting
β > 1.0, we generate the control command to keep the initial
contact state. At the same time, by limiting joint angles and
muscle lengths by hloss,2, we can obtain the control command
which does not largely change the muscle length and joint
angle while keeping the contact state.

In this study, we set Ncontrol = 8, Ncontrol
batch = 4, Ncontrol

epoch = 3,
β = 3.0, w2 = 1.0, and w3 = 1.0.



Fig. 5: Grasped objects in this study: Hammer, Hammer-S
(hammer with soft cover), Cylinder, Gripper, and Ball.
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Fig. 6: Motion Sequences of the data collection phase of
Random-1 and Random-2.

IV. EXPERIMENTS

A. Training of HADYNET

The grasped objects used in this study are Hammer,
Hammer-S (hammer with soft cover), Cylinder, Gripper,
and Ball, as shown in Fig. 5. We handle the six objects,
including None without grasping anything. In this study, we
conduct two random motions of Random-1 and Random-
2 to collect training data. Random-1 is a repeating motion
that sends random target joint angles over random intervals
by converting the target joint angle to the target muscle
length using a geometric model as in Fig. 2. Random-
2 is a motion randomly changing finger muscle lengths
l f inger while grasping the object. Especially, Random-2 is
important for the contact control explained in Section III-G,
and consecutive contact changes by different grasps can be
obtained.

Holding these six objects by the hand, Random-1 and
Random-2 were each conducted 500 time steps (100 sec-
onds). The data collection experiment is shown in Fig. 6.
Although we must lightly tie up the object to the hand by
wires or tapes so as not to drop it regarding Random-1,
regarding Random-2, such a deal is unnecessary because
the grasping shape of the hand does not largely change.
Random-1 and Random-2 were each conducted three times
regarding one object while changing the initialization, and
36 experiments were conducted with all the objects. The
number of the collected data was about 18000, and we
trained HADYNET using it. We compare the loss transition
when fixing PB and training PB implicitly as different values
(this study) in Fig. 7. The loss of the latter was smaller by
about 20 %. However, because many data without grasping,
which is the same data with None, was included regarding
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Fig. 7: Comparison of the training results of HADYNET
between with fixed parametric bias (Constant) and with
variable parametric bias (Variable, this study).
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Fig. 8: Transition of loss when updating only parametric bias.

each grasped object, the actual difference is considered to
be larger. Thus, by adding parametric bias, the network can
implicitly train the difference of the grasped objects and
initializations. In this study, the trained network can cope
with the difference of the grasped objects and initializations,
and by collecting data after a while (e.g. one month), the
network becomes able to cope with deterioration over time.
The deterioration over time can mainly affect the elongation
of muscles and the change in the original length of the spring,
and this is about the same degree of difference that can be
seen due to the irreproducibility of initialization. Therefore,
we consider that deterioration over time can be taken into
account if irreproducibility of initialization can be taken
into account. Also, it is difficult to determine whether the
difference in PBs is due to irreproducibility of initialization
or deterioration over time, and so we do not perform any
direct experiments on deterioration over time.

B. Recognition of Grasped Objects

First, we conducted an experiment on the update of PB.
We initialized the hand and collected new data regarding
six objects. We show the loss transition when updating only
PB in Fig. 8. Regarding all the grasped objects, the loss
decreased by about 6–28% by updating only PB. Thus, by
changing PB, the hand dynamics states with various grasped
objects and initializations can be reproduced.

In Fig. 9, we plot PBs trained in Section IV-A and
PBs updated using the newly collected data in the two-
dimensional space as explained in Section III-D. Each PB
was distinctly grouped according to the names of grasped
objects. The data surrounded by a square is a new data, and
regarding each new data, the correct name of the new grasped
object can be recognized with the nearest neighbor method.
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Thus, by grasping the target object and moving the hand
randomly, the robot can recognize the object without visual
information.

We collected data regarding a new object, Cylinder-L, and
updated PB. The diameter of Cylinder-L is 68 mm, while the
diameter of Cylinder is 32 mm. Also, the width of Gripper,
which is the largest among objects used for the training, is
60 mm. We show the updated PB of Cylinder-L surrounded
by a triangle in Fig. 9. This PB is almost at the halfway
point of PBs of the Cylinder and Gripper. This is considered
to be valid because Cylinder-L has the shape characteristics
of Cylinder and the size characteristics of Gripper. Thus,
regarding such a new object, by referring to the trained
parametric bias, the robot can recognize the characteristics
of the grasped object.

Finally, we tried an online learning experiment of PB
explained in the latter half of Section III-C. We executed
only Random-2 in Section III-B over about one and a half
minutes each with objects Hammer-S, Ball, Cylinder, None,
Gripper, and Hammer-S, in order. We show the transition of
PB plotted in the two-dimensional space while updating PB
online, in Fig. 10. The PBs moved in the direction of the
arrows, and the transitions of the updated PBs are shown in
the same colors as the PBs trained in Section IV-A. From the
figure, although the accuracy decreased compared with Fig.
9, we can see that the current PB moved in the direction of
PBs of the current grasped object. While PB when grasping
Ball moved accurately, regarding the other objects, although
the current PBs moved near PBs of the grasped objects,
they could not completely reach the correct values. This is
considered to be because only the data up to Nonline

max is used,
the data used to update PB always changes, and the loss does
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Fig. 10: Online update experiment of parametric bias. The
graph shows the transition of parametric bias when updating
it online.
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Fig. 11: Contact simulation using parametric biases of None
Hammer-S, and Hammer.

not decrease completely. However, by updating parametric
bias online, we can see that the robot can gradually obtain
the characteristics of the grasped object.

C. Contact Simulation

We show the simulation results of Section III-E with None,
Hammer-S, and Hammer in Fig. 11. Regarding each, PBs
trained in Section IV-A were used. Here, the longer the
arrow is, the larger the contact force is, and the redder
the muscle color is, the higher the muscle tension is. The
joint angles of fingers are calculated by using a geometric
model and Kalman Filter. Regarding None, contact force and
muscle tension did not largely change when grasping. When
grasping Hammer-S, large contact forces were exerted at the
loadcells of the fingertips and the palm. Also, the muscle
tensions were high and some muscle colors became orange.
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Fig. 12: Contact detection experiment when grasping various
objects. The middle graph shows d when updating parametric
bias and the lower shows d when using parametric bias
trained previously.
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Fig. 13: Wiping experiments with and without contact de-
tection.

Comparing Hammer-S and Hammer, the contact force and
muscle tension of Hammer-S increased at an early stage of
grasping because the diameter of Hammer-S is larger than
that of Hammer due to the soft cover. Also, because of the
lack of the soft cover, the impact of the grasping is not
absorbed regarding Hammer. Therefore, in Hammer, it is
observed that higher contact forces are suddenly exerted than
in Hammer-S at the moment of contact. Thus, we can change
the hand dynamics only by changing PB. This can be used
for reinforcement learning of soft robotic hands which are
difficult to modelize.

D. Contact Detection

First, we observed how the value d in Section III-F for
contact detection changes when grasping various objects. We
show the transition of d when updating PB at the current
hand dynamics state of None (without grasping anything)
and when grasping None, Cylinder, Hammer-S, and Ball, in
order, in the middle graph of Fig. 12. In this study, because
Cdetect = 100, we can see correct transitions in that None
was not detected and Cylinder, Hammer-S, and Ball were
detected. When referring to Fig. 9, Ball and Cylinder, whose
PBs are distant from None, showed larger d than Hammer-
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Fig. 14: The transitions of d when wiping with and without
contact detection. The left figure shows the inclination of the
target surface to be wiped.

S, whose PB is near None. On the other hand, we show the
result of contact detection when using PB of None trained
in Section IV-A without updating PB at the current state of
initialization, in the lower graph of Fig. 12. d = 89, which
is near Cdetect , was measured regarding None, and d = 114,
which is near Cdetect , was measured regarding Hammer-S
at most. This causes the contact to be detected on and off
due to minor errors. Thus, PB includes the hand dynamics
information of initialization, and so we should update PB
again when the hand is initialized, even if the grasped object
is the same.

Second, the contact detection is used for not only detect-
ing but also keeping appropriate contact. We conducted an
experiment of wiping a surface while keeping d at Cdetect .
In detail, the robot moves the hand away from the surface
when contact is detected and moves toward the surface when
contact is not detected. We show the cleaning experiments
with and without contact detection in Fig. 13, and show the
transitions of d in Fig. 14. In Fig. 13, while the cloth slipped
from the hand without contact detection, the surface was
traced well with contact detection. As shown in the left figure
of Fig. 14, the surface to be cleaned has an inclined structure
in which the hand leaves the surface as it goes up. Thus, the
hand moved straight up without contact detection, the hand
left the surface, and the cloth slipped from the hand. Without
contact detection, d did not largely change. Compared with
this case, when using contact detection, the hand not only
moves straight up but also gets close to the surface, and the
hand can move along the surface. When moving the hand up,
because the inclination of the surface and the trajectory of
the hand getting close to the surface were almost the same,
we could not see a large change in d. However, when moving
the hand down, as the hand and surface got closer, d became
large, and d finally reached near Cdetect . Thus, we can make
use of the contact detection passively and actively.

E. Contact Control

We applied the strategy of grasping stabilizer explained
in Section III-G to the hammer hitting operation, and eval-
uated the contact stability. First, we obtained D′ regarding
Hammer-S, and updated PB. Second, regarding the cases
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Fig. 15: Hammer hitting experiments with and without the
grasping stabilizer. The graph shows the transition of the
evaluation value E.

with and without the grasping stabilizer, we verified the
transition of evaluation value E (explained subsequently),
when hitting a table using Hammer-S over 30 seconds as
shown in Fig. 15. yre f is yinit , which is the initial value of
y when grasping Hammer-S. In this study, because the main
purpose is keeping the initial contact state, we use hloss,1 in
Section III-G as E. The smaller the E, the more the grasping
is stabilized. We show the experimental results in Fig. 15.
In the case without grasping stabilizer, E gradually became
large, and the initial contact state collapsed. Compared with
this case, when using grasping stabilizer, E did not largely
change from near 0.3, and even when E became large, the
value reverted rapidly. Thus, by using HADYNET, the hand
can realize the target contact state.

V. CONCLUSION
In this study, for the flexible musculoskeletal hand, we

developed a method of the recognition of grasped objects,
contact simulation, detection, and control, coping with its
deterioration over time, irreproducibility of initialization,
and the difference in grasped objects. By constructing the
sensor state equation using a recurrent neural network with
parametric bias, the different dynamics of the hand is im-
plicitly learned. The hand can recognize the grasped object
by the difference of parametric bias and its contact states
can be simulated by the forwarding of the network. The
hand can conduct the contact detection using the prediction
error of the network, and can conduct the contact control
by making the current sensor state close to the target value
through backpropagation technique to the control input. We
integrated these various components into one network, and
verified the realization of various dynamics by changing only
the parametric bias of the network.

In future works, we would like to focus on the task
realization using these components.
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