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Abstract— We present a hierarchical framework for trajec-
tory optimization and optimal feedback whole-body control
of wheeled inverted pendulum (WIP) humanoid robot. The
framework extends rapidly exponentially stabilizing control
Lyapunov functions (RES-CLF) to operational space for con-
trolling WIP humanoid robots while utilizing a hierarchical
framework to compute an optimal policy. The upper level
of the hierarchy encodes locomotion tasks, while the lower
level incorporates the full system dynamics, including manip-
ulation tasks to be performed. The framework computes an
optimal policy directly in the operational space. Thus it avoids
computing inverse kinematics or inverse dynamics explicitly.
The framework can handle torque and task constraints while
guaranteeing exponential convergence and min-norm control
from RES-CLF. The efficacy of the framework is demonstrated
on 18 degrees of freedom (DoF) WIP humanoid robot, Golem
Krang, and 7 DoF planar WIP humanoid robot.

I. INTRODUCTION

Wheeled Inverted Pendulum (WIP) robots have received
significant attention recently. These robots share a number of
attributes with their bipedal robot counterparts. For example,
both can dynamically adjust their centers of mass, and hence
can lift and deal with heavy payloads. An advantage for WIP
robots is that their wheels enable fast and efficient locomo-
tion, which remains a challenging task for bipedal robots.
For this reason, WIP robots have been applied in variety of
applications such as the Segway personal transporter [1], [2],
WIP-based transporters [3], [4], WIP-based wheelchairs [5],
and WIP-based humanoid robots [6]–[8]. WIP humanoids
may also include one or more redundant manipulators,
enabling them to perform manipulation tasks, potentially
involving heavy payloads that require large forces.

For all of their advantages, however, WIP humanoids face
a unique set of challenges. They have highly nonlinear,
unstable, under-actuated dynamics. Most of the literature
deals with this problem by considering the upper manipulator
control as separate to the control of the lower body. The
lower body is considered as a simplified model with one
link, and control policy is designed for this system [9], [10].
A significant drawback to this approach is that the upper
body motion is not exploited to compensate for the pitch
changes induced by the forward motion of the wheels. This
becomes significant if the robot is tasked with safety-critical
or precision-critical tasks, or if there is a sudden change in
center of mass (COM) of the robot due to the introduction
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Fig. 1: WIP Humanoid Robot Golem Krang [14].

of large transient forces. Hence there is a need for a unified
approach to address locomotion and manipulation tasks.
The unified whole-body approach has been demonstrated
on several WIP humanoid robots [8], [11]–[13]; however,
most of these robots have single manipulator [12], [13] and
those with double manipulators have at most 10 degrees of
freedom [11]. In contrast, our proposed feedback whole-body
control is applicable to system with many more DoF and we
demonstrate this on Golem Krang with full 18-DoF [14].

In this paper, we present an approach to trajectory opti-
mization and feedback control for a WIP humanoid robot
that builds on previous work reported by Zafar [8], [15]
for the robot Golem Krang shown in Figure 1. In Zafar’s
approach, differential dynamic programming (DDP) was
used at the high level to optimize a trajectory for a simplified
system model, and a corresponding control was derived
using an MPC-based approach [8] as well as an LQR-based
approach [15]. At the lower level, a QP-based approach
was used to compute joint accelerations satisfying different
tasks. Then these joint accelerations were applied to isolated
manipulator dynamics, which were obtained by elimination
of the wheel dynamics from the overall system dynamic
model. It combined different tasks by assigning different
weights in the objective function of QP. Adding weights
to the objective function restricts the search space for the
nonlinear programming solver, and it may even produce
an unrealistic solution with the wrong set of weights [16].
In case of multiple tasks to be simultaneously satisfied,
choosing the correct weights is not trivial [17]. This also
meant re-tuning of the weights if the robot is assigned a
different task. Besides, there is no guarantee regarding the
exponential stability of the system.

Our work extends the work of [8], [15] in two ways.
First, we formulate the high-level control problem as a
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time varying LQR problem. Our approach is inspired by
[18], which proposed LQR-trees comprised of sparse LQR
stabilizing trajectories, and which provided performance
guarantees by verifying regions of attraction using sum-of-
squares (SOS) programming to certify Lyapunov functions.
Second, we formulate the low-level control problem using
rapidly exponentially stabilizing control Lyapunov function
(RES-CLF) [19]. RES-CLF computes point-wise min-norm
control and ensures exponential convergence. Therefore, it
is also more robust than traditional feedback linearized con-
trollers [20] and has been applied to control bipedal robotics
[21]. However, RES-CLF computes control in the joint
space and, therefore, cannot be applied to redundant robotic
manipulators without explicitly computing inverse dynamics.
We extend this formulation to whole-body control for WIP
humanoids with redundant manipulators using operational
state-space. The formulation can satisfy torque constraints
along with task constraints without specifying any weights
to the task while computing point-wise min-norm control
and ensuring exponential convergence. This implies that WIP
humanoid can perform multiple tasks without any changes to
the original formulation. To demonstrate the efficacy of our
approach, we report results for an 18 DoF WIP humanoid
Golem Krang. We also compare our approach with results
reported in [8] on the planar model of Golem Krang.

The remainder of paper is organized as follow. Section II
discusses system model of the simplified robot as well as
complete robot. Section III explains feedback motion policy
in hierarchical control framework, as well as input/output
feedback linearization in operational space. Results and anal-
ysis are presented in section IV on 7-DOF planar humanoid
robot model and 18-DoF 3-D Golem Krang. Finally, paper
is concluded in section VI.

II. SYSTEM MODELING

To perform whole-body control of a WIP humanoid, we
assume a hierarchical methodology as described in [8] con-
sisting of two hierarchy: low-level hierarchy, which performs
control on a complete model, and a high-level hierarchy,
which performs planning on a simplified model of the robot.
The complete dynamical modeling of our target system is
derived in [15]. This section briefly discusses the hierarchical
methodology and modeling for the sake of clarity.
A. Full System Dynamic Model

Our WIP humanoid robot is highly redundant manipulator
designed on differential drive wheeled robot. We refer the
first link of the robot as the base link and the rest of the
complete structure except the wheels is referred to as the
body. The full 3-D dynamic model can then be represented
by the differential equation:

M(q)

ẍψ̈
q̈

+H(q, q̇)− Γfric = Bτ (1)

where H(q, q̇) = C(q, q̇)
[
ẋ ψ̈ q̇

]T
+ G(q) for notation

simplicity. Here M is the inertia matrix, C is the Coriolis
matrix, G is the vector related to gravity related term, Γfric is

the friction torque, ẋ and ẍ are the base heading velocity and
acceleration, ψ̇ and ψ̈ is the robot spin velocity and accelera-
tion, q, q̇ and q̈ are the angular position, angular velocity and
angular acceleration associated with each joint with respect
to the reference frame, and τ = [τL τR τ2 · · · τn]

T is the
vector of torques acting on the joints, where τL and τR are
the wheel torques. B is given as

B =

[
B̄ 03×n

0(n−1)×2 In−1

]
, B̄ =

 1
R

1
R

−L
2R

L
2R

−1 −1

 (2)

where L and R are the distance between wheel center and
radius of the wheels respectively. For the case of Golem
Krang, wheel motors, τL and τR, are responsible for both
the pitch angle as well as position of the robot, hence it
is under actuated in nature. In addition, there is a reaction
torque of the wheel motors, since the motors are directly
mounted on the link. We can then define τ1 = − (τL + τR),
τ0 = L

2R (τL − τR) and Γ = [τ1 · · · τn]
T to write system

dynamics as

M(q)

ẍψ̈
q̈

+H(q, q̇)− Γfric =

− τ1Rτ0
Γ

 (3)

For a complete derivation, please see [8], [15].
In order to apply operational space control on our WIP

humanoid, we isolate manipulator dynamics and this results
in [8]

Mq̈ + κ (H(q, q̇)− Γfric) = Γ (4)
where M is the modified inertia matrix and
κ (H(q, q̇)− Γfric) is the modified Coriolis and gravity
related term. The complete derivation and detail is in [7],
[15]. It has been shown in [8] that the driving force of ẍ
is the body-weight torque and the parameters (q̇, q̈) capture
that motion. Hence we can approximate it as a simplified
model.

B. Simplified Model

The high-level hierarchy utilizes a simplified model of
WIP humanoid. The simplified model is considered to be
a wheeled inverted pendulum with just one link, shown in
Figure 1(b). It can also be defined as a cart pole model, where
a rigid body has to balance itself on the wheel or cart. We
utilized the same model given in [15], where state space of

the simplified robot is given as X =
[
x0 y0 ψ θ ẋ ψ̇ θ̇

]T
.

Here (x0, y0) represents the position of the midpoint of
the simplified robot in the world, ẋ represents the heading
velocity, θ and θ̇ are the inclination position and velocity,
and ψ and ψ̇ are the spin angle and velocity of the simplified
model with respect to the world frame. The state space for the
dynamics can be written as Ẋ = f(X,u), and we will refer
to it as such from now on. Here u represents the inclination
acceleration, and the complete derivation can be found in
[15]. The center of the mass trajectory of the simplified
model is then given byXCOM

YCOM
ZCOM

 =

xo + d sin (θ) cos (ψ)
yo + d sin (θ) sin (ψ)

R+ d cos (θ)

 (5)
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where d is the center of mass of the body link of the
simplified model in the body frame, θ is the angle of
inclination and ψ is the spin of the robot in the world frame.

The simplified model is also underactuated in nature. We
assume frame 0 is the frame attached to the base link,
defined such that the origin of the frame is located at the
midpoint of the two wheels of WIP with its x-axis always
along the heading direction. COM of the body link of the
simplified robot is computed by adding the product of mass
and COM of each link, represented in frame 0, and divide
it by the total mass of all the links. If the upper body is
compensating to fix the orientation and position of the end-
effector, it will change the center of mass of the simplified
model. Therefore the corresponding desired joint angle may
also be needed to be readjusted. We will, therefore, define a
feedback optimal control strategy that takes this into account
in the next section.

III. FEEDBACK MOTION CONTROL

In this section, we first define optimal motion planning
in the offline setting, followed by a low-level controller and
finally, feedback motion control in the high-level controller.
The objective of the control design is to perform manipula-
tion and locomotion tasks in safety-critical settings.

A. Optimal Motion Planning
The primary purpose of optimal motion planning is to

design feasible motions for the COM of a simplified model.
The planned trajectory should reach the destination while
satisfying state constraints and torque constraints. State con-
straints include balancing or any additional safety constraint,
and input constraint may include torque limit on wheels. For
this purpose, simplified dynamics are utilized for designing
optimal trajectories. The optimal control problem with the
initial condition, X(0), is formulated as follow

minimize
u

J(u) =

∫ tf

0

(
uTu

)
dt

subject to : Ẋ = f(X,u),

X(tf ) = Xdes, |u(t)| ≤ umax

(6)

where Xdes =
[
xdes ydes 0 0 0 0 0

]T
. Equation (6) is

solved by first sampling the time into ns discrete time
steps. It is then solved by using either nonlinear optimization
toolbox or any indirect method, like differential dynamic
programming (DDP) or Pontryagin’s maximum principle
(PMP). There is, in general, a trade-off between using a
densely sampled trajectory to get better a solution and
computation time in both methods. The generated optimal
trajectory serves as a reference to the low-level controller
for the locomotion tasks.
B. Low Level Control

For safety-critical or precision critical tasks, we often
require the precise position of the end-effectors. Hence tasks
defined in joint space formulation may not be suitable, and
it is often desired to design control laws directly in the
operational space [22]. Each task zτ can be performed by
some configuration of joints. We can then transform joint

velocity, q̇, to task velocity, żτ , through Jacobian matrix
Jτ (q), given as

żτ = Jτ (q)q̇. (7)

Similarly task acceleration, z̈τ is given as

z̈τ = J̇τ (q)q̇ + Jτ (q)q̈. (8)

We can write q̈ in terms of Jτ (q), J̇τ (q) and z̈τ as

q̈ = J†τ (q)
[
z̈τ − J̇τ (q)q̇

]
(9)

where J†τ (q) is the pseudo-inverse of the task Jacobian. In
addition, we also have system dynamics given by Eq. (4).
Substituting q̈ in Eq. (4) yields [23]

MJ†τ (q)
[
z̈τ − J̇τ (q)q̇

]
+ κ (H(q, q̇)− Γfric) = Γ. (10)

Eq. (10) can then be written as

z̈τ =
(
MJ†τ (q)

)−1
[Γ− κ (H(q, q̇)− Γfric)] + J̇τ (q)q̇

= f(q, q̇) + g(q)Γ
(11)where

f(q, q̇) = J̇τ (q)q̇ −
(
MJ†τ (q)

)−1
κ (H(q, q̇)− Γfric)

g(q) =
(
MJ†τ (q)

)−1
Eq. (11) defines the task dynamics in terms of system
dynamics. We will use it to define the notion of operational
state space and design our controller based on it.

1) Operational Space: We can define operational space in
terms of system dynamics, jacobian and torques. Let yτi =
[zτi , żτi ] represents the operational state space associated
with task τi, i ∈ {1, 2, · · · , N}, where N are the total
number of tasks. We can then write operational state space
for task τi as follow

ẏ1
τi = Jτi(q)q̇

ẏ2
τi = f(q, q̇) + g(q)Γ

(12)

where ẏ2
τi is derived using Eq. (11). We can then define

virtual output yτiv , also referred as virtual constraints, for
each task τi to modulate the robot to perform the desired
task [19]. They are termed as virtual because they are
implemented through feedback control rather than through
physical constraints. We can then apply input/output feed-
back linearization control on each virtual output to drive
them to zero [24], [25]. Each virtual output is of the form

yτiv = zτi (13)

Then the time derivative of yτiv results in
ẏτiv = ẏ1

τi

ÿτiv = ẏ2
τi = f(q, q̇)︸ ︷︷ ︸

Lγfv

+ g(q)︸︷︷︸
LgvL

γ−1
fv

Γ (14)

where γ ∈ {1, 2} is the relative degree,. Then we can drive
virtual outputs to desired task state by defining the control
law of the form [24]:

Γ =
(
LgvL

γ−1
fv

)−1 [ N∑
i=1

(
−
(
Lγfv

)
τi

+ µi

)]
(15)

where Γ is vector of torques defines in section II-A,(
LgvL

γ−1
fv

)
is the decoupling matrix for all the tasks, L
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is the Lie derivative and
(
Lγfv

)
τi

is the Lie derivative along
vector field yτiv . If there are no torque constraints, then µi
can be defined as [24], [25]

µi = −Kτi
pve

τi −Kτi
dv
ėτi (16)

where eτi = zτi − zdτi , z
d
τi is the desired task configuration

for task τi, Kτi
pv and Kτi

dv
are the gains associated with

task state space τi. This formulation was designed from an
input/output feedback linearization perspective with a generic
constraint. It also assumes LgvL

γ−1
fv

to be square, which
may require introducing additional outputs. However, we
can attain the same result, similar to Eq. (15), without any
additional constraints by considering Eq. (10) and applying
input of the form:

Γ = MJ†aug

(
z̈desaug − J̇aug q̇

)
+ κ (H(q, q̇)− Γfric) (17)

where Jaug = [Jτ1 · · · JτN ]
T , J†aug is the pseudo inverse

of the Jaug , and z̈desaug =
[
zdτ1 · · · z

d
τN

]
is the desired task

configuration for all tasks. Applying this input to the system
dynamics, given by Eq. (11), yields

z̈τi = z̈desτi ∀ τi, i ∈ {1, · · · , N} (18)

However, if we have torque constraints or have some require-
ment relating to convergence e.g. exponential convergence,
then we can modify Eq. (18) as

z̈τi = z̈desτi + µi (19)

where µ is an auxiliary control to incorporate torque limits
and ensure exponential convergence. The resulting torque
then takes the following form

Γ = MJ†aug

(
z̈desaug + µ− J̇aug q̇

)
+ κ (H(q, q̇)− Γfric)

(20)
where µ = [µ1 · · · µN ]

T . We can then reformulate it as
rapidly exponentially stabilizing control Lyapunov function
using quadratic programming (RES-CLF-QP) to ensure ex-
ponential convergence [19].

2) Rapidly Exponentially Stabilizing Control Lyapunov
Function: Rapidly Exponentially stabilizing control Lya-
punov functions, presented in [19], provide a method to
simultaneously satisfy torque constraints and achieve expo-
nential stability. First, we define a vector ηi := [eτi ; ėτi ]

T for
task τi. Then assuming that the preliminary input associated
with Eq. (20) has been applied, we can write Eq. (4) as
following linear system, also known as normal form in
control literature [24], [25]:

η̇i = Fτiηi +Gτiµi (21)

where Fτi and Gτi take the following form:

Fτi =

[
0 I
0 0

]
, Gτi =

[
0
I

]
(22)

If the operational state space associated with task τi is of
relative degree 1, then ηi := [eτi ] and Fτi and Gτi take
form:

Fτi =
[
0
]
, Gτi =

[
1
]
. (23)

We can then transform Eq. (21) into RES-CLF-QP by method
in [19]. For this, we first define control Lyapunov function

of the form V τi(ηi) = ηTi Pτiηi, where Pτi = PTτi � 0 is
obtained by solving the algebraic Riccati equation:

FTτiPτi + PτiFτi − PτiGτiGTτiPτi = −Qτi (24)

where Qτi = QTτi � 0. Then the time derivative of V τi(ηi)
yields:

V̇ τi(ηi) = LFV
τi(ηi) + LGV

τi(ηi)µi (25)

where LF and LG are lie derivatives along Fτi and Gτi and
have the following values:

LFV
τi(ηi) = ηTi

(
FTτiPτi + PτiFτi

)
ηi

LGV
τi(ηi) = 2ηTi PτiGτi

(26)

Rapidly exponential stability is then achieved by satisfying
the following inequality condition on V (η):

LFV
τi(ηi) + LGV

τi(ηi)µ ≤ −
λmin(Qτi)

λmax(Pτi)
V τi(ηi) (27)

where λmin(Qτi) and λmax(Pτi) are the minimum and
maximum eigen values of Qτi and Pτi matrices respectively.
It is shown in [19] that applying such input to robotics
system results in exponential convergence. We can then
design a quadratic programming based optimization problem
to satisfy this constraint at each instant of time and any
additional torque constraint optimally as follows:

µ∗ = arg min
µ

µTµ

subject to :

MJ†aug

(
z̈desτ + µ− J̇aug q̇

)
+ κ (H(q, q̇)− Γfric) ≤ um

−MJ†aug

(
z̈desτ + µ− J̇aug q̇

)
− κ (H(q, q̇)− Γfric) ≤ um

LFV
τi(ηi) + LGV

τi(ηi)µi ≤ −
λmin(Qτi)

λmax(Pτi)
V τi(ηi)

∀ τi, i = [1, · · · , N ]
(28)

where µ = [µ1 · · · µN ]
T and um is the vector indicating

maximum torque limit for each joint. The RES-CLF-QP
optimization problem is solved for a single time step to gen-
erate torques and computes point-wise min-norm control. It
computes a local optimal solution satisfying the constraints.
Task prioritization and QP formulation feasibility has been
briefly discussed in section V.

Resulting solution of RES-CLF-QP changes the joint posi-
tions, hence changing the center of mass of simplified robot
model. Therefore, we need a feedback tracking controller to
compensate for deviation in planned trajectory.

C. Time-Varying LQR

The objective of the low-level controller is to follow
the trajectory of the base angle computed by high-level
control on a simplified model. However, the dynamics of the
simplified model changes with the upper body compensating
for the end effector. That means that a feedback law must also
compensate for the corresponding trajectory. The optimal
trajectory generated, discussed in section III-A, serves as a
reference trajectory over finite time interval [0, tf ].
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Let us represent nominal trajectory as X0(t) : [0, T ] →
Rn and u0 : [0, T ] → Rm be the nominal controller for
the simplified WIP model. Let X̄(t) = X(t) − X0(t) and
ū(t) = u(t)−u0(t) represent new states and inputs defining
the deviation from the nominal state and nominal input, then
we can define the system dynamics in new coordinates as

˙̄X(t) = Ẋ(t)− Ẋ0(t) = f(X,u)− [f(X0), u0)]

=f(X0 + X̄, u0 + ū)− f(X0, u0)
(29)

The dynamical equation can then be approximated as

˙̄X(t) ≈ A(t)X̄(t) +B(t)ū(t) (30)

where A(t) and B(t) are time varying matrices given as

A(t) =
∂f

∂X

∣∣∣X(t)=X0(t)
u(t)=u0(t)

, B(t) =
∂f

∂u

∣∣∣X(t)=X0(t)
u(t)=u0(t)

(31)

We can then design a quadratic regulator cost to drive the
error to zero as

J(X̄, ū, t) =

∫ tf

t

[
X̄T (t)QX̄(t) + ūT (t)Rū(t)

]
dt

+X̄T (tf )Qf X̄(tf )

(32)

where Q and Qf are positive semi-definite and symmetric
matrices and R is a positive definite symmetric matrix. The
optimal cost-to-go takes the form

J∗(X̄, t) = X̄T (t)S(t)X̄(t) (33)

where S(t) is computed by solving the differential Riccati
Equation given by

Ṡ = −
(
ATS + SA− SBR−1BTS +Q

)
(34)

with boundary condition S(tf ) = Qf . The time varying gain
K(t) is then given as

K(t) = R−1BT (t)S(t) (35)

and the optimal control policy is then given as

u(t) = u0 −K(t)X̄(t). (36)

TVLQR gains are computed by linearizing the simplified
model along the nominal trajectory. However, COM of the
simplified dynamic model is changed due to change in joint
position to compensate the end-effector. This deviation from
the original model can be seen as a disturbance. However,
LQR gain will only be able to compensate for the changing
dynamics if the state lies in its region of attraction. Region
of attraction is the set of points that asymptotically converge
to the origin. In principle, we can compute the region of
attraction using sum of squares (SOS) based approaches [18],
[26]. We discuss this further in section V.

Fig. (2) shows the complete architecture comprising of op-
timal motion and feedback controller in whole body control
framework.

Full System 
Dynamics

RES-CLF QPTVLQR

Low Level Controller

𝑞, 𝑞  

𝑥, 𝑥  
𝜃,𝜃  

𝑥𝜏
𝑟𝑒𝑓

, 𝑥 𝜏
𝑟𝑒𝑓

  

Manipulator Task

Locomotion Task

𝑥𝑟𝑒𝑓 , 𝑥 𝑟𝑒𝑓   

High Level Controller

Fig. 2: Block Diagram of Low Level and High Level
Controller, comprising of RES-CLF-QP and TVLQR respec-
tively.

IV. RESULTS

The presented framework is applied to the 18 DoF WIP
humanoid robot, Golem Krang, using Dynamic Animation
and Robotics Toolkit (DART) physics engine [27]. The
objectives of the robot were as follows: a) Move the left
end-effector to the target position while keeping the right
end-effector fixed at a particular position and maintaining
the balance of the robot. The left end-effector movement
should also maintain orientation during the movement. b)
Carry a cup on the tray from the initial position to the desired
goal position such that the cup do not fall from the tray.
The snapshots of Golem Krang carrying a tray with a cup
is given in Fig. (3). Moreover, the complete video of both
tasks is submitted as a video submission as well as available
online [28], and it shows that the robot is successfully able
to perform both tasks without any change in formulation in
the low-level hierarchy.

For the sake of illustration, we also applied the framework
on 7-DOF planar robot, i.e., a robot with six serial joints
attached to the wheels and compared it with [8]. It is a
planar version of the Golem Krang, shown in Figure 1. The
objective is to maintain end-effector at a fixed position and
orientation relative to the body frame, while the robot moves
from the position, x = 0, to the position, x = 5. Initial values

of state for complete robot are
[
x(0) q(0)T ẋ q̇ (0)

T
]T

=[
0 − 24.3o 56.20 138.7o − 21.2o − 21.2o − 21.2o 01×7

]
.

The initial state for the simplified model was[
x θ ẋ θ̇

]
= 04×1.

For optimal motion planning, we used differential dynamic
programming to yield an initial optimal trajectory [29]. For
both DDP as well as TVLQR, we assign high value to the
final step and nominal value to intermediate steps. The time
step for TVLQR was set to 0.1 sec, while low-level QP
operated at 0.01 sec. The final time, tf , was set to 20 sec,
but the task was completed in 6 secs. This is due to the high
cost associated with the final state.

Tasks for the low-level controller were the following: a)
follow the reference trajectory θ̈ref generated by the high-
level controller, b) maintain the end-effector position while
moving, c) maintain the orientation of the end-effector. To
compare it with [8], we defined z̈desτi to take the form of
Eq. (16) with the same gains as of [8]. End-effector desired
position and orientation were set to some initial value, and
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time = 0.05 sec

time = 3.45 sec time = 5.7 sec

Fig. 3: Snapshots of 18-DoF Golem Krang carrying a tray with a cup at five different instants.
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Fig. 4: Reference and State Trajectory of Simplified Model showing (a) Robot Position x, (b) COM Angle θ, (c) Robot
Speed ẋ (d) COM Angular Speed θ̇ (e) COM Angular Acceleration θ̈ respectively from left to right. Blue line represents
MPC, red line represents the nominal reference trajectory and green line represents TVLQR.

Fig. 5: Snapshots of the full body at 6 different instant. Blue dot represents the COM of robot and red line represents the
tray attached to the end-effector at fixed orientation.

their corresponding velocity and accelerations were set to
zero. Similarly, θref , θ̇ref and θ̈ref were generated by high-
level controller.

Fig. (4) shows the trajectories of the simplified model
generated by the high-level controller and actual trajectory
of the simplified model after low-level RES-CLF-QP yields
the result on the complete model. It also compares the
trajectories generated by [8]. Although we see that TVLQR
and RES-CLF-QP yield smooth trajectories and better track-
ing, the improvement by the TVLQR and RES-CLF-QP is
minimal as compared to [8] for the same gains. However,
the strength of the formulation lies in its more general
setting with the ability to accommodate more tasks without
any weights re-tuning and its theoretical guarantees. This is
evident from the 3D simulation, where we perform two tasks
without changing the formulation in the low-level hierarchy.
Complete simulation results are shown in video submis-
sion supplementing this submission and available online at
https://youtu.be/MK95Pv f21A.

V. DISCUSSION
For this paper, we computed region of attraction using

SOS for just the boundary points at the time, t = 0, and time,
t = tf , to save computational effort. In general, we want to

compute a bounded region around nominal trajectory that is
an inner approximation of the true region of attraction [18].
We can therefore define a sub-level set B(ρ, t) = X|Ṽ (X) ≤
ρ} such that

X(t) ∈ B(ρ, t), X 6= 0 =⇒ Ṽ (X) > 0,
˙̃
V (X) < 0 (37)

where Ṽ = X̄T S̄X̄ and S̄ is the normalized solution of
differential Riccati equation, S, given by Eq. (34). The time
derivative of Ṽ is given as

˙̃
V = 2X̄T S̄f̂

(
X0 + X̄, u0 −KX̄

)
(38)

where f̂ is a polynomial approximation of f using Taylor
expansion. Then we can compute largest region B(ρ, t) by
solving the following optimization problem [18]:

max ρ subject to

− ˙̃
V +N(X̄)

(
Ṽ − ρ

)
SOS

N(X̄) SOS

(39)

where N(X̄) is the non-negative Lagrange multiplier term.
The above optimization problem is not convex in general
since it is bilinear in decision variable, N(X̄) and ρ. How-
ever, we can compute the solution by alternating between the
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two set by fixing one and computing other until convergence
is achieved [17]. Due to the computational complexity of
SOS solvers, the region of attraction cannot be done in real-
time. However, we can compute the region of attraction for
each instant of time in an offline manner and store them in
a look up table for verification.

RES-CLF-QP framework can also be extended to define
task prioritization in case of conflicting tasks. This can be
done by adding a relaxation term to the task with low priority
in the QP formulation, given by Eq. (28). This ensures
that RES-CLF-QP always yields a solution [30]. It can also
be extended to incorporate limits on the joint velocity and
incorporate safety by designing the control barrier function
in operational space. We have also assumed that all the states
of the robot are observable and provided by the physics
engine. However, in the real world, some of the states like
the position of the robot may need to be estimated. In that
case, we will need observers to be incorporated in the control
framework.

VI. CONCLUSIONS
We presented a feedback whole-body control framework,

where TVLQR provided feedback and disturbance were
quantified by the idea of the region of attraction. We also
proposed the RES-CLF-QP framework based on operational
state space. RES-CLF-QP framework offers pointwise min-
norm control and ensures exponential convergence. It also
circumvents the weights for joining different objectives. The
framework offers a generalized approach to combine and
control different tasks for complex robots. The framework
was performed on a scaled-down 7-DoF planar robot and
18-DoF complete robot, and analysis was performed with
the previous work of [8].
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