
Collaborative Mission Planning for Long-term Operation Considering
Energy Limitations

Bingxi Li1, Brian R. Page2, Barzin Moridian1, and Nina Mahmoudian2

Abstract— Mobile robotics research and deployment is highly
challenged by energy limitations, particularly in marine
robotics applications. This challenge can be addressed by
autonomous transfer and sharing of energy in addition to
effective mission planning. Specifically, it is possible to overcome
energy limitations in robotic missions using an optimization
approach that can generate trajectories for both working robots
and mobile chargers while adapting to environmental changes.
Such a method must simultaneously optimize all trajectories
in the robotic network to be able to maximize overall system
efficiency. This paper presents a Genetic Algorithm based
approach that is capable of solving this problem at a variety
of scales, both in terms of the size of the mission area and
the number of robots. The algorithm is capable of re-planning
during operation, allowing for the mission to adapt to changing
conditions and disturbances. The proposed approach has been
validated in multiple simulation scenarios. Field experiments
using an autonomous underwater vehicle and a surface vehicle
verify feasibility of the generated trajectories. The simulation
and experimental validation show that the approach efficiently
generates feasible trajectories to minimize energy use when
operating multi-robot networks.

I. INTRODUCTION

Robots have played an important role in long-term mis-
sions such as search and rescue, surveillance, and envi-
ronmental studies. One of the main limiting factors in the
deployment of robots is the energy limitation. Although
static charging technologies have shown success in extending
operational life by providing recharging opportunities [1]–
[3], their static nature limits their use in large area missions.
This limitation is due to the interruption in operation and
energy lost while traveling to and from a charging station.

Deploying mobile charging agents in the robotic network
has become one of the main approaches to ensure continuous
robotic operation. Research has been conducted to find
mobile charger paths and schedule rendezvous to extend
robots’ operational life given pre-defined robot paths [4]–
[7]. Simultaneous planning of both working robots and
mobile charging agents has the potential to further improve
overall mission performance. Fig. 1 illustrates a scenario
where three Unmanned Surface Vehicles (USVs) support
three Autonomous Underwater Vehicles (AUVs) in mapping
applications.
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Fig. 1: Sample scenario where three grey USVs serving as
mobile chargers respond to the energy limitations of three
yellow AUVs (working robots) in a large field.

Another limiting factor in robot deployment for long-
term missions is environmental disturbances. Unforeseen
disturbances during a mission usually have negative impacts
on robotic operations. This limitation becomes more critical
in applications where robots have limited communication,
such as underwater missions using AUVs. The key to solving
long-term mission planning problems with this uncertainty is
to have a mission planner that efficiently allocates resources
in the overall robotic network and recharging system while
having the capability to re-plan during a mission.

Long-term missions such as mapping, inspection, and
monitoring missions are generally considered as a Cover-
age Path Planning (CPP) problem. Traditional methods for
solving CPP problems such as the wavefront algorithm [8],
spanning trees [9], neural network-based approaches [10],
and other methods [11] can optimize the path length of
working robots. Although mission efficiency is improved,
these methods fail to consider the energy limitations of
robots restricting their use in the real world. Several methods
manage to plan mission scenarios efficiently in a limited
area considering energy limitations [12]–[14]; however, these
methods are not adaptable to the wide range of long-term,
large-scale missions.

To address the energy limitation of working robots, multi-
robot energy cycling utilizing mobile chargers has been stud-
ied extensively [15]–[18]. Without introducing a trajectory
planning strategy, it is difficult to implement the mobile
charger proposed in [18] into missions since the energy
consumption of the whole system is not optimized. Further,
optimal methods [15] and heuristic algorithms [16], [17] that
generate paths and charging schedules for mobile chargers
do not account for disturbances and uncertainty during the
mission. This is generally due to the increased computational
cost when solving the combinatorial optimization problem.
An alternative used in this paper is to utilize a Genetic
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Algorithm (GA) to find global, sub-optimal results in minutes
to hours, such that the proposed method can be used to re-
plan during the mission. The GA-based approach can also
be customized to consider different mission scenarios.

Prior knowledge of the environment including obstacles
[19], disturbances [20], [21], and adversary areas [22] have
been considered in pre-planning methods. However, these
methods are not scalable in size of the mission area and
the number of robots at the same time. Long-term mission
robustness requires consideration of unforeseen conditions
[6], [23], [24]. A multi-robot scheduling problem combined
with a collision avoidance routing problem was solved by
a hybrid approach using constraint programming and mixed
integer programming in [25]. Still missing is an approach that
simultaneously plans the working robots and mobile chargers
trajectories in the presence of a challenging environment.

In this paper, a mission planning method for multi-robot
systems on long-term coverage missions is proposed. This
work greatly extends our previous work on CPP trajectory
generation by simultaneously solving for worker and charger
trajectories with the possibility of re-planning. We have
previously generated trajectories for working robots given
static chargers with predictable disturbances in [1] and
mobile charger trajectories given predefined working robot
trajectories in [7]. In [26], we presented the concept of using
a GA approach to generate working robot trajectories and a
single mobile charger at great computational cost.

In this paper, we present a planning method to generate
trajectories for a team of mobile chargers and multiple
working robots deployed in an environment with unforesee-
able disturbances. The trajectories of mobile chargers and
working robots are planned together by a GA-based method,
considering energy and environmental constraints. The GA
in this paper fundamentally extends the planning method to
optimize mission time through efficient charger scheduling.
Further, the re-developed GA method is computationally
efficient and capable of supporting re-planning to accom-
modate unforeseeable disturbances. The specific trigger for
the re-planning used in this work is set based on expected
rendezvous times. Capabilities of the proposed approach are
demonstrated through simulation results. Field tests using
an AUV and a surface vehicle verify the feasibility of the
approach.

The paper is organized as follows, we define the problem
and present our approach in detail in Sec. II. The simulation
results and experimental validation are illustrated in Sec. III.
Finally, we conclude this paper and point out some future
work in Sec. IV.

II. MISSION PLANNING PROBLEM

In this section, we formulate the mission planning problem
for a multi-robot area coverage mission to be undertaken by a
team of primary working robots and a collaborating team of
mobile chargers. A Genetic Algorithm (GA) based approach
is introduced to solve the optimization problem.
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Fig. 2: The steps of GA solving the mission planning
problem by finding trajectories of working robots and mobile
chargers.

A. Problem Statement

Consider a mission where multiple working robots cover a
large area, the problem is to find the optimized working robot
trajectories to cover the whole mission area in the presence
of uncertainty with support from a team of mobile chargers.
We construct a 2D grid map to represent the mission area.
The constructed map has N uniform cells. Each cell needs
to be visited by one of the working robots at least once to
complete the mission. The center of the cells are defined as
mission points. The mission area is numbered arbitrarily.

We assume that disturbances such as currents will reduce
along track velocity of working robots but will not remove
them from their assigned trajectories. However, if the distur-
bance is too strong to overcome, the robot will be pushed
off track and will be removed from the working robot list
as safe operations are not possible. The robot will wait for
recovery until after the mission is completed. Disturbances
do not impact mobile chargers.

The number of working robots is represented by W and
the number of mobile chargers is represented by C. The
working robots can operate G hours at a speed of V relative
to the surroundings. We assume that all working robots have
identical energy capacity and maximum velocity, and G is
smaller than the actual battery capacity to account for a
level of safety. Before a working robot runs out of battery,
it needs to be recharged by docking into a mobile charger.
Mobile chargers have a maximum speed of Vc with unlimited
energy. Recharging procedures take a period of time, ∆T ,
for each rendezvous. Each mobile charger can charge only
one working robot at a time.

For a working robot indexed by w, its mission time, Tw,
is the summation of the trajectory following time, Lw, the



waiting time for mobile chargers, Yw, and the total charging
time. The trajectory following time, Lw, can be expressed as

Lw = Dw/V

where Dw is the total travel distance. The waiting time,
Yw, is considered when the mobile charger reaches the
designated rendezvous location later than the working robot.
The total charging time is calculated by the charging period,
∆T , multiplied by the number of chargings, Nw. The total
mission time is represented as

T =

w∑
(Lw + Yw + Nw∆T ), w ∈ {1, . . . ,W} (1)

The mission planning problem can be defined as finding
and updating the trajectories of W working robots and C
mobile chargers while considering the energy limitation of
working robots such that the total mission time, T , is mini-
mized. During the mission, the operation of working robots
can be delayed by unpredicted environmental disturbances
or mechanical failures, which may increase the total mission
time. The trajectories can be re-planned by re-running the
optimization using updated information.

B. GA Based Mission Planning Approach

Given mission specifications and available resources, the
mission planning problem is solved by a GA-based method.
The proposed GA uses discretized mission points with
number of working robots and mobile chargers and robot
configurations (including starting locations, battery capacity,
maximum speed, and charging period) as inputs to find
trajectories of working robots and mobile chargers. The
proposed optimization process can be repeated multiple
times during a mission to compensate for errors caused
by environmental uncertainty. In each repeated optimization
process, the inputs to the GA (number of working robots,
starting locations and times, and uncovered mission points)
are updated.

Having been widely used in the robotic path planning
fields [19], [26], [27], GAs utilize evolutionary operations to
produce new solutions through generations. An illustration
of GA design is presented in Fig. 2.

In the initialization process, the initial population is ran-
domly generated. We use a fixed-length decimal chromosome
to represent N mission points as N genes. The order of
the genes in the chromosome represents the trajectories of
working robots. Each chromosome is evenly divided by the
number of working robots (Fig. 3).

In the evaluation process, we calculate the cost of each
chromosome. The objective is to minimize the total mission
time, T , considering the energy limitation of the working
robots. The travel time of working robots, as well as ren-
dezvous locations and times, can be obtained by analyzing
the chromosome. For each segment of a chromosome that
represents a working robot trajectory, we analyze the tra-
jectory based on the order of genes. We keep track of the
remaining battery level by calculating the travel time from
one mission point to the next. If traveling to the next mission

Fig. 3: Each chromosome represents trajectories of all work-
ing robots.

Fig. 4: The population reproduction uses a single parent
two-point crossover process [28]. The illustrations of the
decoding of each offspring are shown on the right.

point requires the remaining battery level to drop below the
minimum safety level, then the current mission point of this
working robot is marked as a rendezvous location, and its
remaining battery level is reset to G.

Using the known rendezvous locations, the trajectories of
mobile chargers are created. Each mobile charger is only able
to rendezvous with one working robot at a time, causing it to
become unavailable for a period of time ∆T . The rendezvous
locations are assigned to mobile chargers such that the first
available charger goes to the first rendezvous location. If mul-
tiple chargers are available, the closest charger is assigned. If
the working robot arrives at the rendezvous location before
the charger, the working robot will have a waiting time, Yw.
This rendezvous scheduling and assignment strategy satisfies
the battery capacity constraint.

After calculating the costs based on total mission time,
Eqn. 1, all chromosomes are randomly grouped. Each group
has four chromosomes. A tournament selection is used to
choose the best chromosomes from the chromosome groups
as parent chromosomes of the next generation. A single
parent crossover is used to prevent duplicated genes (Fig.
4) in the crossover process. The child chromosomes are
obtained by performing two point flip, swap, slide, and same
to the selected parent chromosomes [28]. Flip reverses the
order of genes between two points; slide moves the gene
from the first point to just behind the second one, then
shifts all genes in between to the left to fill the gap; swap
exchanges the genes at the two crossover points; same copies
the parent chromosome. The crossover grows the number of
chromosomes four times, keeping the size of the population
constant from one iteration to the next.

The algorithm stops when it meets the maximum number
of iterations. The chromosome representing the trajectories
of working robots and mobile chargers with the lowest cost
is the output of the algorithm.



In the event that a working robot encounters a disturbance
in operation, the total mission time may be delayed. In the
worst case scenario, the mission can become infeasible due
to the failure of a working robot. To reduce the impact
of disturbances, the optimization can be performed again
to find new feasible trajectories for working robots and
mobile chargers. To re-plan, the GA updates the number of
available working robots with their current battery levels,
starting locations and times of all robots, and uncovered
mission points in the initialization process. The updated
information is used to change the length of the chromosomes
and generate a new workload distribution for the working
robots. The new chromosome’s length is shorter than before
as it is equal to the number of uncovered mission points.

The re-plan GA operates the same way as the pre-plan
GA by evaluating the mission cost in the evaluation process
and choosing the most fit chromosomes to produce the next
generation. The re-plan GA has a smaller population size and
number of iterations due to the reduced size of the remaining
mission area. Re-planning of the mission is triggered by
the detection of a robot that is no longer in communication
with the central node due to an environmental disturbance or
mechanical failure. For mobile chargers, the communication
is continuous and any sustained lack of signal causes that
mobile charger to be removed from the list of available
chargers. Working robots are limited to communicating with
the central node while docked. Since it can be estimated
when the working robots will arrive at the rendezvous points,
the lack of communication received by the central node
during the expected time window indicates that the working
robot is no longer available. In either of these cases, the GA
will re-initialize with the updated parameters to solve the
new trajectory optimization problem and send the updated
trajectories to the robots while at the rendezvous points.
Since the working robots may rendezvous at different times,
it is assumed that they are working as planned until shown
otherwise. At that point, the GA would then be re-initialized
again to solve the optimization problem.

Other strategies for triggering re-plans exist, such as
scheduled re-plans. In a scheduled re-plan scenario, the
planned trajectories could evolve to more efficiently manage
disturbances in the mission area.

III. MISSION PLANNING METHOD
VERIFICATION

In this section, we demonstrate performance of the
presented method using Autonomous Underwater Vehicles
(AUVs) as working robots with the support of Unmanned
Surface Vehicles (USVs) as mobile chargers. During the
mission, USVs carry batteries to the rendezvous locations,
where the AUVs will dock and replace their batteries. The
AUVs deployed in the mission can travel at the maximum
speed of 3 km/h for 12 hours with a safety level of 2
hours. The USVs have a speed limit of 16 km/h. For each
rendezvous, the battery charging process takes 8 hours. We
apply the proposed method to minimize total mission time.
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Fig. 5: Pre-plan simulation results with 8 hour charging
period: (a) Pre-plan GA optimizes trajectories of three AUVs
and two USVs to cover the whole mission area. (b) Timeline
of the mission including operation time, charging time, and
waiting time. The colors of the bars match the colors in (a).

We first present trajectories of AUVs and USVs optimized
by the pre-plan GA for the whole mission area in Sec. III-
A. Complete failure caused by environmental disturbance
is then applied to one AUV. The re-plan GA is used for
the uncovered mission area to reduce the impact of envi-
ronmental disturbances on overall mission performance in
Sec. III-B. Experimental verification of trajectory feasibility
is completed with a small test area in Lake Superior in Sec.
III-C.

A. Pre-plan GA Evaluation

An underwater coverage mission scenario in a square
mission area of 14×14 km2 of Portage Lake, Michigan
is simulated. We use 1×1 km uniform cells to grid the
mission area to ease visualization. In this mission, three
AUVs are deployed with the support of two USVs. The GA
is configured as having a maximum iteration of 1200 with
the population size of 1200. The pre-plan GA is repeated
100 times with the same inputs and GA configurations. The
best pre-plan GA result for completing the coverage mission
is presented in Fig. 5a. The mission timeline and rendezvous
schedule of robots is shown by the bars in Fig. 5b.

The mission area is within the black square. Three AUVs
and two USVs are deployed from the asterisk point in Fig. 5a.
This point can be outside of the mission area. We indicate
the optimized trajectories of AUVs with colored dashed lines.



The planned rendezvous locations of mobile chargers (USVs)
are shown as ‘X’s. The mission time for three AUVs is 38.8,
46.5, and 39.1 hours with the total travel distance of 205.3
km. In this mission, the two USVs need to travel 28.1 km
between all assigned rendezvous locations. Black bars in Fig.
5b are the time that the second AUV is waiting for the next
available USV. The user can choose to deploy the second
AUV later to avoid this waiting period without changing the
mission performance.

We measure the mean values and standard deviations of
mission time and travel distance of vehicles to show the
reliability and efficiency of the pre-planning by analyzing
the 100 randomly initialized GA runs. The average mission
time for 100 results is 126.4 hours, with standard deviations
of 0.8 hour. The average travel distance is 210.3 km with
standard deviations of 2.3 km. The results indicate that the
proposed pre-plan GA is consistent with all results being
within 3% of the best result.

Considering a case with a 3 hour charging period, as
opposed to 8 hours, and running the simulation, the mission
time for three AUVs is 29, 31.3, and 30.3 hours with the
total travel distance of 205.4 km. The two USVs need to
travel 39.5 km between all assigned rendezvous locations.
The average mission time for 100 results is 91.4 hours with
a standard deviation of 0.9 hour. The average travel distance
is 210.2 km with a standard deviation of 2.7 km.

To show the scalability of our model, another mission
scenario with a much larger area (3496 km2), seven AUVs,
four USVs, and a 3 hour charging period was simulated.
The mission was discretized into 124, 874, and 3496 uniform
cells. For the 124 mission point case, the GA was configured
with 2400 maximum iterations and a population size of 2400.
The optimization was completed in 4.9 minutes, Fig. 6. The
average mission time for 100 results was 316.2 hours, with a
standard deviation of 6.6 hours. The average travel distance
was 730.6km with a standard deviation of 15.5 km. In all
our simulated scenarios, the mission represents the area of
interest. In this more complex mission, both working and
charging robots sometimes leave the boundaries as it can be
more efficient for a working or charging robot to traverse
between points by going outside the mission area.

In the higher resolution cases (874 and 3496 points),
the GA was configured with 9000 and 12000 maximum
iterations and a population size of 12000 and 16000. Due to
computational complexity, the simulations were completed
with computational times of 328.9 minutes and 512 minutes
respectively. A statistical study was not completed due to
computational cost. The total travel distances for these two
higher resolution missions were 2460 km and 4021.6 km
with total mission times of 1272 hours and 1844 hours. Fig. 7
and Fig. 8 show the generated trajectories. A summary of all
results is presented in Table I.

The mission planning method presented here is capable
of efficiently finding sub-optimal solutions for complex mis-
sions. As a comparison, we applied an approach based on
the Lin-Kernighan heuristic (LKH) solver to the trajectory
optimization problem [7]. The LKH-based approach only

TABLE I: Pre-plan results

Area
(km2)

Resolution
(km2)

W C
∆ T
(hour)

Average T
(hour)

Mission 1 196 1 3 2 8 126.4
Mission 2 196 1 3 2 3 91.4
Mission 3 3496 28 7 4 3 316.2
Mission 4 3496 4 7 4 3 1272
Mission 5 3496 1 7 4 3 1844
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Fig. 6: Pre-plan simulation results with 3 hour charging
period: (a) Pre-plan GA optimizes trajectories of seven AUVs
and four USVs to cover the whole mission area. (b) Timeline
of the mission including operation time, charging time, and
waiting time.

optimizes charging robot trajectories with given working
robot trajectories, if able to find a feasible solution, and the
result is slightly better than the GA method and close to
an optimal solution [4]. In general, we cannot always find
optimal solutions, especially as problem size and complex-
ity scales. The presented GA approach generates feasible
trajectories with greater flexibility than optimal methods.
By simultaneously distributing working robots and charging
robots, manual distribution of workers in unstructured mis-
sion areas can be avoided. The working robot distribution is
critical for overall mission success and will cause the LKH
method to fail if not appropriately distributed. One of the
main limitations of LKH is that it does not provide solutions
when the charging period is not short enough, where the
presented GA method can consider realistic long charging
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Fig. 7: Sample result of pre-plan GA optimized trajectories
for seven AUVs and four USVs with 874 cells in the mission
area.
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Fig. 8: Sample result of pre-plan GA optimized trajectories
for seven AUVs and four USVs with 3496 cells in the
mission area.

periods. These constraints are generally not within the user’s
control, making the inherent flexibility of the proposed GA
method more robust for real-world implementation.

B. Re-plan GA Evaluation

Scenarios involving AUV failure are presented here to
show the capability of the proposed algorithm to adapt to
changing conditions by re-planning. Due to limited under-
water communication, in the presented scenarios re-plans
are only considered to be possible at rendezvous locations.
Therefore, we assume that AUVs will successfully cover
their trajectories up to their next rendezvous location in the
event of disturbance.

The result of the failure scenario with an 8 hour charging
period is presented in Fig. 9a. The mission area covered by
the three AUVs is indicated by colored solid lines. Waypoints
traveled by two USVs are represented by diamonds. In this
case, the third AUV (shown by pink lines) stops working
and fails to follow the rest of its assigned trajectory. We
implement the re-plan GA in this scenario with two AUVs
and two USVs to cover the rest of the mission area. The
uncovered mission area has 116 mission points. The results
show mission times for the three AUVs to be 54.9, 62.1,
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Fig. 9: Re-plan simulation results with 8 hour charging
period: (a) Re-plan optimizes trajectories of first and second
AUVs and two USVs to complete the mission area with the
failure of the third AUV. (b) Timeline of the re-plan mission
including operation time, charging time, and waiting time.
The colors of the bars match the colors in Fig. 9a.

and 8.9 hours when the first and second AUVs continue to
cover the rest of the mission area following the re-planned
trajectories. The mission timeline and schedule are shown in
Fig. 9b. Without the re-plan GA, the mission area would not
be completely covered.

In the 3 hour charging period case, if the third AUV stops
working and fails to follow the rest of its assigned trajectory,
we implement the re-plan GA with two AUVs and two USVs
to cover the rest of the mission area. The uncovered mission
area has 119 mission points. The results show mission times
for the three AUVs to be 40, 42, and 8.8 hours when the first
and second AUVs continue to cover the rest of the mission
area following the re-planned trajectories.

In the 3496 km2 mission area, we assume that multiple
vehicles will fail during the same mission to evaluate the
algorithms capabilities. AUV 5 fails at the first rendezvous,
followed by both AUV 1 and AUV 2 later in the mission. Re-
planning is performed after each detected failure. The final
trajectories for the re-plan scenario are presented in Fig. 10a.
Re-plan results are presented in Table II.

The simulations were performed in a MATLAB environ-
ment on a desktop computer running a 64-bit Windows 10
Home operating system with a 3.20 GHz AMD A8-5500
APU processor and 12GB memory. The computational time
for the 196 km2 Portage Lake scenario is 2.3 minutes in pre-
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Fig. 10: Re-plan simulation results with 3 hour charging
period. Fifth AUV (green) fails at the first rendezvous
location, and first (red) and second (orange) AUVs fail at
their second rendezvous locations.

TABLE II: Re-plan results

∆ T
(hour)

Failed
Robots

Average Mission
Time (hour)

Mission 1 8 #3 125.9
Mission 2 3 #3 90.8
Mission 3 3 #1, 2, 5 324.9

planning and 0.3 minutes for re-planning. The computational
time for the re-plan GA is related to the size of the remaining
mission area. The computational speed of the re-plan GA is
fast enough to be executed multiple times during charging
of the vehicles.

Based on the pre-plan simulation, the proposed method
successfully finds the trajectories of working robots and
mobile chargers to minimize the mission time with high
reliability. The approach is also capable of handling mission
uncertainty through a re-planning method. A mission with
robot failures and other disturbances can still be completed
using the re-plan method, as opposed to the pre-plan method.

C. Experimental Evaluation

Field experiments were completed for a small test mission
on Lake Superior using an AUV and a manned Surface
Vehicle (SV) to evaluate feasibility of the planning algorithm.
The test mission is 800 meters by 400 meters with a point
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Fig. 11: Experimental feasibility verification of the planned
trajectories using an OceanServer Iver3 and the manned SV
Osprey. The planned trajectory is shown as the black dashed
line with waypoints marked as ‘X’s. The actual trajectory
followed by the AUV is shown in red. The actual trajectories
were accurate enough that they appear overlaid over the
planned trajectories. The trajectory followed by the SV is
shown in magenta.

resolution of 100 meters. The AUV used is an OceanServer
Iver3 while the manned boat is the 7.3 meter SV Osprey.
The Iver3 AUV has a Doppler Velocity Log (DVL) to help
it navigate accurately underwater. Two trajectories are gener-
ated including three rendezvous. Mission waypoints are gen-
erated by the genetic algorithm and converted into an Iver3
mission using a custom MATLAB script. The waypoints are
augmented with additional points for GPS alignment, diving,
surfacing, and sensor control. Two missions are completed
using the Iver3 and SV Osprey on Portage Lake near Grosse
Point. The testing area is consistently sheltered from wind
and waves and is 10 meters deep with a flat, sandy bottom.
Fig. 11 shows the two trajectories.

In the first test (Fig. 11a), the AUV took 74 minutes to
complete the mission. Between surfaced GPS waypoints,
the AUV dove to 2 meters. The AUV had three virtual
rendezvous with the mobile surface charger during the tra-
jectory. At each of these rendezvous, the AUV parked for 5
minutes with a 10 meter capture radius. The AUV averaged
0.51 meters of cross track error over the entire trajectory.
The second test (Fig. 11b) took 75 minutes to cover the
same 800 by 400 meter area with similar configuration and



testing conditions to the first trajectory. The AUV maintained
an average cross track error throughout the operation of
0.71 meters.

For both tests, the manned SV Osprey was manually
piloted to achieve the rendezvous waypoints as commanded
by the planner. The SV operation was completed following
the conclusion of the AUV operation to minimize risk of
collision. Coordination of the two platforms is outside the
scope of this work and is an ongoing project.

IV. CONCLUSIONS

In this paper, we introduced a robotic network planning
architecture for long-term missions using mobile chargers. A
GA-based optimization algorithm was developed to optimize
the trajectories of working robots and mobile chargers, with
the capability of re-planning during a mission to compensate
for the impact of environmental or operational disturbances.
Simulation results demonstrate the reliability and efficiency
of the proposed method in a realistic underwater coverage
mission scenario. The ability to limit the impact on overall
mission time caused by individual robot failures with the
re-plan GA is also presented. Evaluation of the method is
conducted by numerical studies. Experimental validation of
the method is also presented that validates the feasibility of
the planned routes when implemented onto an AUV platform
and manned SV.

In the future, more constraints on robots and the envi-
ronment will be considered. These constraints can include
energy limits on charging stations, obstacles in the environ-
ment, and collision avoidance between the robots. Addition-
ally, the developed method will be used to generate efficient
mission trajectories for real-world field tests. We will deploy
teams of aerial and ground robots to undertake planned
missions in test areas. This future implementation will pro-
vide a better understanding of challenges and considerations
needed for applications such as air sampling or search and
rescue. Further, the actual docking and recharging process is
being explored between USV and AUV. A full experimental
validation of pre-plan and re-plan is being prepared using
multiple AUVs as working robots and multiple USVs as
chargers.
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