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Abstract— Personal robots and driverless cars need to be
able to operate in novel environments and thus quickly and
efficiently learn to recognise new object classes. We address this
problem by considering the task of video object segmentation.
Previous accurate methods for this task finetune a model using
the first annotated frame, and/or use additional inputs such
as optical flow and complex post-processing. In contrast, we
develop a fast, causal algorithm that requires no finetuning,
auxiliary inputs or post-processing, and segments a variable
number of objects in a single forward-pass. We represent an
object with clusters, or “visual words”, in the embedding space,
which correspond to object parts in the image space. This allows
us to robustly match to the reference objects throughout the
video, because although the global appearance of an object
changes as it undergoes occlusions and deformations, the ap-
pearance of more local parts may stay consistent. We learn these
visual words in an unsupervised manner, using meta-learning
to ensure that our training objective matches our inference
procedure. We achieve comparable accuracy to finetuning based
methods (whilst being 1 to 2 orders of magnitude faster),
and state-of-the-art in terms of speed/accuracy trade-offs on
four video segmentation datasets. Code is available at https:
//github.com/harkiratbehl/MetaVOS.

I. INTRODUCTION
Personal robots and driverless cars need to be able to

operate in novel environments, and thus be able to quickly
and efficiently learn to recognise object categories that
they were not originally trained on. Furthermore, detailed
segmentations of objects are also required for applications
such as robot manipulation [2], [3], grasping and learning
object affordances [4], [3]. Finally, as live camera streams
are processed in such applications, efficient and causal algo-
rithms are required. This paper addresses these problems by
considering the task of video object segmentation, following
the protocol defined in the DAVIS datasets [5], [6]. Here, the
ground-truth object mask of one or more objects are provided
only in the first frame, which must then be tracked at a
pixel-level throughout the rest of the video. Since obtaining
even a pixelwise segmentation for a single-frame may be too
onerous in robotics applications, we also further extend the
problem definition to only provide a bounding-box of each
object in the first frame.

Accurate approaches to video segmentation trained a fully
convolutional network (FCN) [7] for foreground/background
segmentation on existing datasets, and then adapted it to the
testing video by finetuning the network on the first, fully-
annotated frame [8], [9], [10], [11], [12], [13]. Although
these methods produce accurate results (and can be improved
further by using optical flow [14], [15], [16], [17], [18]
or post-processing with DenseCRF [19], [8], [15], [20]),
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they are extremely time consuming, taking between 700s to
3h to finetune per DAVIS video [8], [11], rendering them
unsuitable for real-life applications and robotics.

This paper, in contrast, considers the more challenging
(and practical) scenario where the network is not finetuned at
all, and uses no optical flow or extra post-processing, in order
to develop a fast and causal algorithm. Our approach is in-
spired by metric-learning methods which embed pixels from
the same object close to each other in a learned embedding
space, and pixels from different objects far apart. Chen et
al. [21] used this idea to formulate video segmentation as
a pixel-level retrieval task, where each pixel of the ground-
truth mask was embedded in the first frame to form an index,
and pixels in subsequent frames were classified with nearest
neighbours. Contrastingly, in the related context of few-shot
learning, Prototypical networks [22] represent each class with
the mean of their embeddings and classify subsequent queries
with a softmax over distances to each prototype.

Prototypical networks, although simple and fast, do not
have sufficient capacity to model complex, multi-modal data
distributions such as an object in a video that undergoes
deformations, occlusions and viewpoint changes. Nearest
neighbour approaches [21], [23], [24], [25] have greater
modelling capacity, but are more computationally expensive
as the time and memory cost to perform a lookup grows
linearly with the size of the index. For pixel-level tasks, they
also store many redundant pixels with similar appearance in
the index. Furthermore, they are more prone to overfitting
and noise, which becomes more prevalent during the “online
adaptation” of video segmentation models to account for
variations throughout the video [21], [25], [10], [13].

Our flexible approach interpolates the spectrum of metric
learning approaches by representing an object with a fixed
number of cluster centroids in the embedding space. We
denote this as a dictionary of visual words, because each
cluster centroid in the embedding space corresponds to a part
of the object in the image space as shown in Fig. 1, even
though these words are formed in an unsupervised manner.

The use of visual words enables more robust matching,
because even though an object as a whole may be subject
to occlusions, deformations, viewpoint changes, or disappear
and reappear from the same video, the appearance of some
of its more local parts may stay consistent. Moreover, the
robustness of this approach allows us to easily extend it to the
scenario where we only have weak bounding-box supervision
in the first frame.

These visual words are learned without any explicit super-
vision by clustering our embedding space, and using meta-
learning to ensure that our training objective matches our
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Fig. 1: Video object segmentation using a dictionary of deep visual words. Our proposed method represents an object as a set of cluster centroids in
a learned embedding space, or “visual words”, which correspond to object parts in image space (bottom row). This representation allows more robust and
efficient matching as shown by our results (top row). The visual words are learned in an unsupervised manner, using meta-learning to ensure the training
and inference procedures are identical. The t-SNE plot [1] on the right shows how different object parts cluster in different regions of the embedding space,
and thus how our representation captures the multi-modal distribution of pixels constituting an object.

inference procedure. This is in contrast to related metric-
learning based approaches [21], [24], [23] which are trained
with surrogate, and sometimes unstable, losses. Furthermore,
as our method requires only a single forward-pass to segment
a variable number of objects per video, it naturally scales to
the multi-object setting. Related methods [26], in contrast,
segment each object independently before combining results
and are thus slower for multiple objects.

The advantages of our simple and intuitive approach
is reflected by its performance on multiple single- and
multi-object video segmentation datasets (DAVIS 2016 [27],
DAVIS 2017 [6], SegTrack v2 [28], YouTube-Objects [29],
[30]) where we achieve comparable accuracy to finetuning-
based methods (whilst being 1 to 2 orders of magnitude
faster), and lie on the Pareto front as no other published
methods to our knowledge are both faster and more accurate.

II. RELATED WORK

a) Fine-tuning based approaches: The most accurate
video segmentation methods using the DAVIS protocol [27],
[6] currently finetune models on the first frame of the video
[9], [8], [10], [11] and/or use optical flow [17], [18], [16],
[14] or DenseCRF [8], [15], [20] post-processing, or use self-
paced learning [31] to improve performance. Our proposed
approach does not involve finetuning, or additional infor-
mation such as optical flow, and still achieves comparable
performance whilst being one to two orders of magnitude
faster.

b) Fast approaches: Fast approaches to video segmen-
tation, that do not finetune on the first frame or use optical
flow, can broadly be divided into methods performing mask
propagation or metric learning. Mask propagation methods,
such as [32], [26], [33], use the segmentation mask from
the one frame to guide the network to predict the mask in
the next frame (i.e. pixel-level tracking). These methods use
the prior that objects move smoothly and slowly over time,
and thus struggle when there are temporal discontinuities like
occlusion or rapid motion. Moreover, errors accumulate over
time as the model “drifts”, particularly if the algorithm loses
track of the object. Li et al. [34] addressed this issue using

re-identification modules which traverse the video back-and-
forth to recover any potential missed objects. However, this
method is not causal as it looks at future frames. Oh et
al. [26] do not only use the previous frame, but also the
first reference frame, to guide the tracking. However, this
does not completely alleviate the problem of model drift,
as if the model loses track of the object, its appearance may
have changed so much from the first frame that the reference
frame is not effective in recovering it. Moreover, since these
methods match the entire object as a whole, they struggle
with occlusions. This is in contrast to our approach which
represents objects by their constituent parts to be more robust
to appearance changes. Finally, [26] is designed for tracking
a single object, and thus handling multiple objects require
processing each object individually before heurstically merg-
ing results. Our method in comparison segments multiple
objects in a single-forward pass.

c) Metric learning based approaches: Our work is
more similar to methods using pixel-to-pixel matching or
metric learning [21], [25], [24], [12], [23]. Chen et al.
[21] formulated video segmentation as a pixel-level retrieval
problem, where embeddings from the first reference frame
are used to form an index for a nearest neighbour classifier.
Note that the method of [21] is trained with a variant of the
triplet loss, which though common for metric learning, does
not optimise explicitly for the nearest neighbour search at
inference time. The triplet loss is also difficult to train with,
as it is very sensitive to triplet selection [35], [36]. Siamese
networks have also been employed in a similar manner [25],
[24], [12], where one branch computes embeddings from
the annotated first frame which are used to match to the
embeddings computed by the other branch on the current
frame. When classifying query images, these methods all
effectively search all the pixels from the reference frame.
This approach is not only expensive in terms of time and
memory (as it retains redundant embeddings of similar
pixels), but is also more susceptible to noise. This is an issue
during the “online adaptation” [21], [13], [25], [10] of the
model which may introduce incorrectly labelled embeddings.
Our method retains only cluster centroids in the embedding
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space (which correspond to exemplars of object parts), which
enables faster and more robust matching.

Taking inspiration from classical computer vision, learned
feature descriptors have been used in localization [37], mo-
tion removal [38] and feature matching [39] because of their
robustness and efficiency. Note that our main contributions
are that we can learn to segment new object classes in video
from very few examples, and use a meta-learning technique
to train our model so that the training and testing procedures
match each other. The utility of object parts for more
robust matching for video segmentation has been identified
before by [20]. However, Cheng et al. [20] use handcrafted
heuristics to form object parts based on bounding boxes in
the image space. In contrast, we cluster our embedding space
in an unsupervised manner to obtain visual words which
resemble object parts (as pixels with similar appearance
cluster together). Moreover, the method of Cheng et al. [20] –
which tracks bounding boxes of object parts and then merges
foreground segmentations within these boxes – consists of
two separately trained modules (using different datasets),
whereas our method is trained via meta-learning with a single
objective function that matches our inference procedure.

d) Meta-learning: Finally, we note that meta-learning
has not been explored much in the context of video seg-
mentation. Yang et al. [40] used meta-learning to adapt the
weights of the final layer of a segmentation network at test
time. This is in contrast to our method which adaptively
computes the initial dictionary of visual words from the
first labelled frame in the video. Note that our method
can be viewed as a generalisation of Protoypical networks
[22] and Matching networks [41] for few-shot classification.
Prototypical networks represents the training data from each
class as a single prototypical vector. Matching networks,
on the opposite end of the spectrum, consider all training
data samples of a particular class to make a classification
regardless of how redundant or noisy these samples may be.
Our method interpolates these two methods by representing
an object class via a fixed number of cluster centroids, which
correspond to exemplars of object parts in the case of video
segmentation.

III. PROPOSED APPROACH

We first describe the formulation of video object segmen-
tation as a meta-learning problem. This allows us to train our
model in same way that it will be tested, unlike other metric-
learning based approaches to video segmentation [21], [25].

A. Video Object Segmentation as Meta-Learning

Meta-learning, or learning to learn, is often defined as
learning from a number of tasks in the training set, to become
better at learning a new task in the test set [42], [43], [44],
[45]. In the context of video object segmentation, the task is
to learn from the ground-truth masks of the objects in the first
frame of the video (support set) to segment and track them
in rest of the video (query set). Our meta-learning objective
is to learn model parameters θ on a variety of tasks (videos),
which are sampled from the distribution p(T ) of training
tasks (i.e. meta-training set), such that the learned model

performs well on a new unseen task (test video). Denoting
the loss of the model on the nth task, Tn, as LTn(θ), the
meta-training objective is thus

θ∗ = argmin
θ

∑
Tn∼p(T )

LTn(θ). (1)

The support set S is the set of all labeled pixels in the first
frame, S = {xi, yi}Ni=1. Here xi represents the pixel i in
the first frame, yi ∈ C = {1, ..., C} is the ground truth class
label of pixel xi, N is the number of labeled pixels in the
frame, and C is the number of object classes that need to
be tracked and segmented in the video. Similarly the query
set is defined by Q = {xj , yj}

NQ
j=1, where NQ is the number

of labelled pixels in the video after the first frame, j is the
index. The output of each task T is the set of predicted class
labels for the pixels in Q, Ŷ = {ŷj}

NQ
j=1.

Next, we describe our model for estimating the outputs of
each task, i.e. the object label for every pixel in the query
frames of the video.

B. Model
In order to predict the label for each pixel in the query set

Q, we need to learn a representation for each object using
information from the support set S. We represent each object
in the video using a dictionary of deep visual words. Each
pixel in the query set is then labelled based on the deep visual
word that it is assigned to. Our method is an online method
does not use future-frames during runtime, i.e, to segment a
new frame, only the information upto that point is used.

Learning visual words is a challenging task, as we do
not have any ground truth information of the object parts
that they correspond to. Consequently, as summarised in
Fig. 2, we use a meta-training algorithm, where we alternate
between the unsupervised learning of deep visual words
(Sec. III-B.1) and supervised learning of pixel classification
given these visual words (Sec. III-B.2). Our model thus
learns to learn a better classifier, by optimising the visual
words that it will produce at test-time.

1) Unsupervised Learning of Deep Visual Words: We
initially pass the first frame of the video, which is the support
set S, through a deep neural network f(θ), which is an
artificial neural network with multiple layers between input
and output, to compute the embedding for each pixel xi in
S, fθ(xi). We then compute a set of deep visual words for
all the pixels in each object class. Let Sc be the set of pixels
in S with class label c. Each set Sc is partitioned into K
clusters Sc1, ....,ScK using the k-means algorithm [46], with
µck being the respective centroids of the clusters, using the
objective:

Sc1, ....,ScK = argmin
Sc1,....,ScK

K∑
k=1

∑
xi∈Sck

‖fθ(xi)− µck‖22 ,

(2a)
µck =

1

|Sck|
∑

xi∈Sck

fθ(xi). (2b)

In other words, we represent the distribution of the pixels
within each set Sc in the learned embedding space with a
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Fig. 2: Overview of the proposed method. The first frame of the video (reference frame), which forms the support set S in our meta-learning setup,
passes through a deep segmentation network f(θ) to compute a d = 128 dimensional embedding for each pixel. A dictionary of deep visual words are
then learned by clustering these embeddings for each object in the reference frame (Eq. 2). Pixels of the query frame are classified as one of the objects
based to their similarities to the visual words (Eq. 3 and Eq. 4). The model is meta-trained by alternately learning the visual words given model parameters
θ, and learning model parameters given the visual words. During testing, the bottom path, without blue lines, is applied to all frames, whereas, the top
path is only applied to the first frame and the online adaptation frames.

set of deep visual words Mc = {µc1, ..., µcK}. We can,
in principle, use any clustering algorithm here and choose
k-means as it is computationally efficient and simple.

2) Supervised Learning for Pixel Classification: Once the
deep visual words for each object have been constructed, the
probability of assigning a pixel xj ∈ Q to the kth visual word
from the cth object class is computed using a non-parametric
softmax classifier,

p(ck|xj) =
exp

(
cos(µck, fθ(xj))

)∑
µi∈M exp

(
cos(µi, fθ(xj))

) , (3)

whereM =
⋃C
c=1Mc is the dictionary of deep visual words

for all objects present in the video, and cos is the cosine
similarity function. We enable our model to account for intra-
class variations by encouraging each pixel to resemble only
one relevant visual word. As a result, the probability of pixel
xj taking the object class label c is defined as

p(ŷj = c|xj) =
maxk∈{1,..,K} p(ck|xj)∑C
c′=1 maxk∈{1,..,K} p(c

′
k|xj)

. (4)

This allows our model to learn meaningful visual words
that correspond to the diverse object parts that constitute an
object. Note from the T-SNE visualisation of our embeddings
in Fig. 1 that pixels from different parts of the same object
cluster in separate regions of the embedding space. Finally,
our loss function for this pixel classification problem is the
cross-entropy loss.

C. Meta-training procedure
Each iteration of our meta-training algorithm consists of

an unsupervised learning process to construct a dictionary

of visual words from the support set S, followed by a
supervised learning step where the segmentation network
parameters, θ, are updated by minimsing the cross-entropy
loss function according to Eq. 1. In other words, the model
learns to learn deep visual words in the first frame of the
video to minimise a pixel-level loss over the rest of the video.

Our method is a form of non-parameteric meta-learning,
as described in [47]. Note that the cluster centroids can
be seen as the parameters of the final classification layer
(Eq. 3). Prototypical networks [22] represent each class
with a single prototypical vector (i.e. one visual word),
whilst Matching networks [41] represent each class using
all the samples of that class in the support set (i.e. the
embedding of each pixel in S would form a visual word).
Our method interpolates between these two approaches to
build a more robust representation of the support set S.
Also note that previous metric-learning approaches to video
object segmentation such as [21] learn an embedding using
variants of the triplet loss and perform nearest neighbour
classification at test time. This approach is thus similar to
Matching networks [41], with the key difference being that
the training objective (triplet loss) does not correspond to
the inference procedure (nearest neighbour search), which is
an essential component for meta-learning [47]. Our method
ensures that meta-train and meta-test setup match.
D. Online Adaptation

The objects of interest from the first frame, as well as the
background, often undergo deformations, occlusions, view-
point changes. As a result, adapting the model throughout
the video is vital to achieve good performance and done by
state-of-art video methods [10], [21], [25], [48].
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We adapt our model by simply updating the set of visual
words that represent the object. Concretely, given a dictio-
nary of visual words M, captured up to the frame tj , we
predict the segmentation map in frame tj+δ , and treat it
as a new support set Sδ = {xδi , yδi }Ni=1, where yδi is the
predicted object class for pixel xδi . Next, we compute an
updated set of deep visual words Mδ from the new support
set using k-means as described in Sec. III-B.1, and compute
their corresponding cluster centroid representations by

µδck =
1

|Sδck|
∑

xi∈Sδck

fθ(xi). (5)

To filter out incorrect predictions and prevent errors from
compounding, we only add new words that still resemble the
existing ones. This is based on the assumption that within
a time interval δ, where δ is chosen moderately, the objects
will deform slowly and their pixel-level embeddings will also
not vary greatly. Concretely, we update the main visual word
set M with the new set Mδ , if there are mδ ∈ Mδ

c and
m ∈Mc, for which

∥∥µδm − µm∥∥ ≤ α.
Additionally, to ensure that online adaptation uses reliable

and confident pixel-level predictions to update the visual
words, we apply a simple outlier removal process (that
assumes spatio-temporal consistency of objects over time) to
the pixel-level predictions. Specifically, we discard regions
from the adaptation process if they have no intersection
with the predicted object mask in the previous frame, using
connected components. Note that during online adaptation,
none of the existing words withinM are discarded, because
each object may revert to its original shape, appearance or
viewpoint during a video. This is also why the Eq. 4 takes
the maximum value to match to only the most relevant visual
word. The effect of this online adaptation procedure, and
other design choices, are experimentally validated next.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup
a) Model: We use a Deeplab v2 architecture as the

encoder [49], f(θ), which uses a ResNet-101 [50] backbone
with dilated convolutions. The encoder maps an input frame
of size H ×W to a feature of size H ×W × 2048. We add
an additional convolutional layer to produce an embedding
of d = 128 dimensions, and bilinearly upsample this to the
original image size. These 128-dimensional embeddings are
then clustered to form our visual words. Unless otherwise
specified, we use k = 50 visual words for the foreground
object classes. As the background typically contains more
variation, we use four times as manyclusters for the back-
ground. For online adaptation, we set α = 0.5. The ablation
study in Sec. IV-D shows the effect of the number of visual
words, k.

b) Datasets: We evaluate on standard video segmen-
tation datasets for tracking both single objects (DAVIS-
2016 [27], YouTube-Objects [29], [30]) and multiple objects
(DAVIS-2017 [6], SegTrack v2 [28]) given fully-annotated
object masks in the first frame. DAVIS-2016 contains 30
training and 20 validation videos. DAVIS-2017 extends

DAVIS-2016 to 60 training and 30 validation videos. Further-
more, multiple objects (ranging from 1 to 5, with an average
of 2) are annotated in the first frame and must be tracked
through the video, making it considerably more challenging
than DAVIS-2016. YouTube-Objects and SegTrack v2 do not
have a training split, so we evaluate our model trained on
DAVIS-2017 on them.

c) Training: Following competing methods which use
a model pretrained on image segmentation datasets [25],
[26], [21], [40], [51], [10], we initialise the encoder of our
network using the public Deeplab-v2 model [49] that has
been trained on COCO [52]. Thereafter, we meta-train our
model following the “episodic training” procedure, which
is the standard practice [41], [22], [45], [53]. Each training
episode is formed by sampling a support set S and a relevant
query set Q. The idea of episodic training is to, at each
iteration, mimic the inference procedure. In other words, the
query set should be classified given only the support set.
Here, we build each episode by first randomly sampling a
video from the training dataset, treating the pixels of the
first frame of the video as S, and randomly selecting a
set of query frames from the rest of the video and treating
their pixels as Q. Randomly selecting sets of frames in the
video make the method robust to temporal discontinuties,
occlusions and object complexity, thereby making it more
generic. We sample from as low as 3 frames to the entire
video length.

d) Evaluation metrics: We report standard metrics de-
fined by the DAVIS protocol [27]: The mean IoU (J ), the
F-score along the boundaries of the object (F) and the mean
of these two values (J&F). We also report the “decay” [27]
in J . This is calculated by splitting a video temporally into
four clips, and taking the difference of the IoU in the last
clip to the first clip. Lower scores of “decay” are better, and
was proposed by [27] to measure whether a model is robust
or if its predictions degrade over time.

Finally, we also report our runtime per-frame. Our runtime
is measured on a desktop machine with a single Titan X (Pas-
cal) GPU, and an Intel i7-6850K CPU with six cores. More
details and experiments are available in the supplementary
material1.

B. Comparison to state-of-art

Table I shows our state-of-art results on DAVIS-2017,
DAVIS-2016, YouTube-Objects and SegTrack-v2. On all
these datasets, there is no method that is both faster and more
accurate than us. This Pareto front is also visualised in Fig. 4
for DAVIS-2017, the most challenging dataset. The methods
that are more accurate than us all finetune on the first frame,
use optical flow or additional post-processing such as CRFs
[19] and thus have a runtime that is larger by a factor of at
least 8 [34], [8].

The only method that is close to us in terms of speed and
accuracy is RGMP [26]. However, the runtime of RGMP
increases linearly with the number of objects being tracked

1Supplementary materials https://harkiratbehl.github.io/
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DAVIS-2017 DAVIS-2016 YouTube-Objects SegTrack-v2

Method FT PP OF J&F (%) J (%) J Decay(%) F (%) Time(s) J&F (%) J (%) J Decay(%) F (%) Time(s) J (%) J (%)

OnAVOS [10] 3 3 65.3 61.6 27.9 69.1 13 85.5 86.1 5.2 84.9 13 77.4 –
OSVOSS [8] 3 3 68.0 64.7 15.1 71.3 – 86.5 85.6 5.5 87.5 4.50 83.2 65.4
PReMVOS† [9] 3 3 78.2 74.3 16.2 82.2 ∼ 70 87.0 85.5 8.8 88.6 ∼ 70 – –

MaskRNN [17] 3 – 45.5 – – 0.60 – – – – – – –
FAVOS [20] 3 58.2 54.6 14.1 61.8 >1.80 80.9 82.4 4.5 79.5 1.80 – –
CTN [54] 3 – – – – – 71.4 73.5 15.6 69.3 1.33 – –
FAVOS [20] – – – – – 76.9 77.9 – 76.0 0.60 – –
VPN [33] – – – – – 67.8 70.2 12.4 65.5 0.63 – –
BVS [55] – – – – – 59.4 60.0 28.9 58.8 0.37 68.0 60.0
OSMN [40] 54.8 52.5 21.5 57.5 0.50* – 74.0 9.0 – 0.14 69.0 –
VideoMatch [25] – 56.5 – – 0.35 – 81.0 – – 0.32 79.7 –
RGMP [26] 66.7 64.8 18.9 68.6 0.30* 81.7 81.5 10.9 82.0 0.13 – 71.1
Ours− 63.1 59.5 55.8 24.6 0.17 76.9 76.2 11.2 77.6 0.17 77.4 64.6
Ours 67.3 63.9 14.4 70.7 0.29 82.1 81.5 5.0 82.7 0.25 81.1 72.0

TABLE I: State-of-art results among methods not performing finetuning on four common video object segmentation datasets. Legend: FT: Fine-
Tuning on the first frame of the test video; PP: Post-Processing; OF: Optical Flow; Ours−: Our model without online adaptation; †: An ensemble of models
are used. *As the original authors did not report the runtime, we timed it using the public inference code. Evaluation metrics are detailed in Sec. IV-A.

from the first frame. This is because RGMP processes each
object instance independently through the “encoder” part of
their network [26], and combine their results together at the
end. Therefore, even though RGMP is faster than our method
on DAVIS-2016 (a single-object dataset), it is actually slower
on DAVIS-2017 (a multi-object dataset). As the authors did
not report the runtime of their method on DAVIS-2017, we
ran their publicly available inference code, and obtain an
average runtime of 0.30s per frame on DAVIS-2017 (Tab. I).
However, DAVIS-2017 only averages 2 objects per video.
We measured RGMP to average 0.11s, 0.41s and 0.60s per
frame for videos with 1, 3 and 5 objects respectively. The
runtime of our method, in contrast, increases much slower,
taking 0.25s, 0.38s and 0.53s respectively. Thus, the runtime
of RGMP increases by 5.4× from 1 object to 5 objects,
whilst our runtime only increases by 2.1×. This is because
our model only requires a single forward-pass through the
network, irrespective of the number of objects being tracked.
Thus, there is only a minor increase in runtime from DAVIS-
2016 to DAVIS-2017 as there are more visual words. Note
that the runtime advantage of our method would increase
over RGMP [26] if even more objects were to be tracked
in a video. Moreover, our speed could also be improved by
implementing CUDA kernels for k-means clustering.

Note that our method also achieves a lower J Decay [27]
than RGMP [26] indicating greater robustness. This is also
shown qualitatively in Fig. 3 where our method overcomes
occlusions and can recover from errors made in previous
frames, unlike mask propagation methods like RGMP. We
believe that representing objects with cluster centroids in
the embedding space (visual words), which correspond to
object parts in the image space, increases the robustness
of our matching, as the appearance of more local parts
typically stays consistent even though the object as a whole
transforms. And as our online adapatation process retains a
memory of previous visual words, our method can handle
objects disappearing and reappearing (Fig. 3) unlike RGMP.
C. Bounding box based initial mask

In this section, we do experiments when only bounding
box supervision is available in the first frame. Hence the

DAVIS-2017 DAVIS-2016 YouTube-Objects SegTrack-v2

Ours 63.8 81.5 81.1 72.0
Ours-BB 51.5 77.5 75.8 66.5

TABLE II: Results of our method (J&F ) with only bounding box based
initialization. Ours-BB: Our model with only bounding box mask provided
in first frame.

Model J (%) Time(s)

Single prototype 32.9 0.14
5 Nearest neighbours 45.9 5.50

Visual words (k = 50) 48.4 0.17

TABLE III: The effect of different object representations The same MS-
COCO pretrained network is used, without any online adaptation. We use
the 5 nearest neighbours, following [21].

aim is to segment the object in the video, given only the
bounding box in the first frame. To generate the dictionary of
visual words for a given object, we use a mechanism similar
to our online adaptation. We first take the embeddings of
all pixels in the bounding box of the object and segment
them into clusters. We then discard the ones that resemble
the background, with the difference that here we use resem-
blance with the background to eliminate some regions of
the bounding box. The remaining clusters are then used to
construct the visual word dictionary for this object. The rest
of the algorithm remains the same. The results are shown in
Table II. It can be seen that there is not a substantial drop
in performance in comparison to the mask based case. We
believe that our part-based approach makes our model more
robust to the noise in the input in this scenario.

D. Ablation study
This section studies how different design choices in our

algorithm impact overall performance on DAVIS-2017.
a) Effect of Meta-Learning: To evaluate the efficacy

of meta-learning, we evaluated our MS-COCO initialised
network and obtained a mean IoU of (J ) of 50.7. Meta-
training significantly improves our IoU to 63.9% (Tab. I).
Perhaps surprisingly, our initialisation already outperforms
published work like Mask-RNN [17] (Tab. I).
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Ours

RGMP
[26]

Ours

RGMP
[26]

Fig. 3: Qualitative comparison of our method to RGMP [26]. RGMP obtains good results initially in the video (first two columns), but cannot recover
after making errors (third column). Note how it misclassifies the yellow person (first example) and loses track of the rider (second example). In contrast,
our method overcomes occlusions in all of these cases by robustly matching an object to its constituent parts.

Dictionary Size (k) 1 5 10 50 100 200 400 1500 3000

J (%) 49.9 54.5 54.8 55.8 56.3 56.3 56.4 56.2 54.5
Time (s) 0.140 0.168 0.170 0.173 0.199 0.254 0.373 0.97 1.42

TABLE IV: The effect of the size of visual word dictionary on model
performance Results are on DAVIS-2017, without any online adaptation.

b) Object representation: We represent the object given
in the first frame with a dictionary of k visual words in the
embedding space. An alternative is to represent each object
with a single vector, i.e. k = 1 (as in Prototypical networks
[22]). In our case, this prototype is formed by taking the
mean embedding of all pixels of the object labelled in the
first frame. The other end of the spectrum is to represent
each object with separate embeddings for all of its pixels,
i.e. k = n where n is the number of labelled pixels in the
first frame, like [21] and Matching networks [41].

Table III compares these approaches for our MS-COCO
pretrained network. It shows that using k = 50 clusters out-
performs both nearest neighbour classification and a single
prototypical vector per class. This motivates our reason for
using k visual words to represent an object and suggests why
we outperform methods such as [21] in Tab. I.

Note how matching using our visual words representation
has a similar runtime to a single prototype and is signif-
icantly faster than performing a nearest neighbour search.
This is because the search time is linear in the number of
pixels, O(n). And like the other approaches we compare
to in Tab. III, we do the matching at full resolution. The
runtime could be greatly reduced by doing the look-up on a
subsampled image (for example, [21] do the look-up at 1/8
resolution which reduce the time by about a factor of 64).

c) Number of visual words: Table IV examines the
effect that the number of visual words in the dictionary
has on accuracy and runtime on DAVIS-2017. We can see
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Fig. 4: Comparison of speed and accuracy on DAVIS 2017. Entries on
the Pareto front (i.e. no other method is both faster and more accurate) are
marked by a star. Note the speed axis uses a logarithmic scale.

that accuracy steadily increases as the number of clusters is
increased from k = 1 (which corresponds to Prototypical net-
works [22]) and plateaus at k = 50. We believe that complex
objects with high intra-object variations produce embeddings
with multi-modal distributions, which is why they are better
represented with multiple visual words. Although increasing
k beyond 50 does not substantially change the accuracy, it
does increase the runtime, which is why we use k = 50 when
comparing to existing methods in Tab. I. Setting the number
of visual words to n, the number of pixels in the first frame,
would amount to the nearest neighbour search done by [21].

V. CONCLUSION AND FUTURE WORK
We proposed a novel representation of objects by their

cluster centroids in the embedding space (visual words)
which correspond to object parts. These visual words were
learned without supervision, using meta-learning. Visual
words enable robust matching, as the appearance of local
parts may stay consistent whilst the object as a whole
deforms or is occluded. Our novel representation, and meta-
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training procedure enabled our method to achieve state-of-art
performance on four common datasets in terms of speed and
accuracy trade-offs (with comparable accuracy to expensive
finetuning-based methods that take at least 8 times longer).
Moreover, our method readily scales to multiple objects in
videos, with its runtime only increasing slightly from single-
object DAVIS-2016 to multi-object DAVIS-2017. Finally, the
robustness of our part-based algorithm allows us to easily
extend it to the scenario where we only have bounding-box
supervision in first frame. Future work is to learn the number
of clusters automatically, and learn to generate synthetic data
[56] for video segmentation.
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