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Abstract— In this paper, we propose a framework that
recognizes and describes changes that occur in a scene observed
from multiple viewpoints in natural language text. The ability
to recognize and describe changes that occurred in a 3D scene
plays an essential role in a variety of human-robot interaction
applications. However, most current 3D vision studies have
focused on understanding the static 3D scene. Existing scene
change captioning approaches recognize and generate change
captions from single-view images. Those methods have limited
ability to deal with camera movement, object occlusion, which
are common in real-world settings. To resolve these problems,
we propose a framework that observes every scene from
multiple viewpoints and describes the scene change based on
an understanding of the underlying 3D structure of scenes. We
build three synthetic datasets consisting of primitive 3D object
and scanned real object models for evaluation. The results
indicate that our method outperforms the previous state-of-the-
art 2D-based method by a large margin in terms of sentence
generation and change understanding correctness. In addition,
our method is more robust to camera movements compared
to the previous method and also performs better for scenes
with occlusions. Moreover, our method also shows encouraging
results in a realistic scene-setting, which indicates the possibility
of adapting our framework to a more complicated and extensive
scene-settings.

I. INTRODUCTION

The ability to understand changes occurring in 3D scenes
is crucial for a variety of human-robot interaction (HRI)
applications. For example, the arrangement and locations of
objects usually change in a home, and home robots need
the ability to understand the dynamics in home scenes to
avoid the necessity of re-scanning and re-recognizing its 3D
surroundings frequently. For video surveillance systems, the
ability to automate the recognition and description of scene
changes can help reduce the labor costs of manually checking
every frame of a video.

The development in deep neural networks (DNNs) and
graphic processing units, along with 3D sensing technolo-
gies, have brought massive success to 3D recognition related
research. Many new tasks related to 3D recognition have
emerged, such as 3D object detection [1], 3D semantic
segmentation [2], and shape completion [3]. In contrast,
despite its significance in robotics applications, recognizing
3D scenes with dynamics and changes remains less studied.
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Fig. 1. Illustration of 3D scene change captioning. The proposed approach
observes a scene from different viewpoints before and after it changes and
describes the change with natural language.

Recently, several scene change captioning approaches have
emerged, which aim to understand scene changes and de-
scribe changes with natural language text. Scene change
captioning is highly practical in HRI applications as it
transfers scene understanding to natural language. Current
scene change captioning methods [4], [5] are mostly based
on 2D scene images. These works predict a natural language
description (caption) to describe the change that occurred
between two 2D images of a scene. These methods report re-
sults on 2D scene image datasets with slight camera jittering.
However, those 2D-based methods have limited abilities to
handle scenes with heavy occlusions from single-view scene
observation. In addition, those methods do not establish 3D-
based scene recognition that reasons about the underlying
3D structure of scenes, which makes them not practical
for huge camera movements. Furthermore, these situations
are common in real-world applications. For example, it is
difficult for robots to always photograph a scene from the
same viewpoints.

To solve these problems, as shown in Figure 1, we
propose a framework that establishes a scene understanding
containing underlying 3D information of the scenes and
describes scene changes based on the comprehensive infor-
mation of before- and after-change scenes. Based on the
above, after observing the original scene, our framework
can identify and describe scene changes by observing the
changing scene from different viewpoints. In addition, based
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on a continuous scene representation, our framework can
achieve scene change captioning directly from input mul-
tiview images without any registration and tracking stages.
We build three synthetic scene change captioning datasets
consisting of simple geometric primitives and photorealistic
daily supply object models. Experiments on these datasets
showed that our framework outperformed the previous state-
of-the-art 2D-based method by a large margin in terms of
change captioning accuracy and sentence construction. In
addition, our framework showed higher robustness for cam-
era movements and scenes with occluded objects. Moreover,
our framework also performs better on the dataset with
photorealistic objects, which provides the possibility for our
method to be adapted to real-world applications.

II. RELATED WORK

A. 3D Scene Understanding

3D scene understanding plays an essential role in various
robot applications. In [6], the authors proposed a method
that detects objects from multiview images and applies a
tree-structured inference strategy to determine the support
relationships in object clutters. The authors of [7] proposed
a method to choose observation viewpoints from multiple
viewpoints, which is intentioned for support relationships
understanding of scenes with occlusions. These non-neural
methods usually require less runtime and memory costs in
implementation. But these methods often have limited ability
for large scale and complex scenes.

Neural 3D scene understanding methods use CNNs for
learning latent representations. Among those methods, there
are 3DCNN-based methods that utilize 3DCNN structure
to learn representations for various 3D scene understanding
tasks such as 3D object detection [1], 3D semantic segmen-
tation [2], shape completion [3]. Due to the limitations in
memory and computing power, the resolution of input data of
3DCNNs is restricted and 3DCNNs often requires a massive
amount of training data, high memory, and execution time
costs.

In contrast, recently, a series of 2DCNN-based neural 3D
scene representation methods have been proposed [8], [9].
Those methods receive multiview 2D images of 3D scenes
as input and learn representations containing the underlying
3D information. The generative query network (GQN) [8]
is a conditional variational autoencoder (CVAE) [10]-based
network that learns meaningful 3D representation from
multiview images of scenes. Scene representation networks
(SRNs) [9] predict 3D range maps along with scene repre-
sentation of the input scene, which makes their framework
robust to unknown camera poses.

We applied 2DCNN-based scene representation method
GQN [8] to our framework because the model encodes
semantic scene information into latent vectors, and has
lower memory- and runtime- costs compared with 3DCNN-
based methods. Compared with 2DCNN-based methods
PointNet [11], PointNet++ [12] (handles coordinates only),
GQN handles 2D images containing both geometry and
color information. Moreover, the GQN network requires less

labeled training data, reducing annotation costs. The GQN
also has limitations. For example, it handles fixed camera
positions. We believe that recent works such as SRNs, which
is more robust to unknown camera positions, could enhance
the model to unknown camera positions.

B. Active Perception

Active perception [13] is widely used in robot applications
to select behaviors for increasing information from a series
of data. In [7], the authors proposed a method to select view-
points in a scene for lowering occlusion. The authors of [14]
introduced the active perception to help attain autonomous
robotics in unstructured environments by providing robust
perception. In embodied question answering task [15], the
active perception is introduced for choosing navigation routes
for answering scene-related questions. In our work, we use
a fixed number of observation viewpoints of scenes. It is an
interesting topic to integrate active perception in the context
of scene change captioning.

C. Change Detection

Change detection for street view images [16], [17] has
been widely studied. The authors of [16] proposed a
panoramic change detection dataset along with a method
that integrates CNN features with superpixel segmentation
for change detection. In [17], the authors proposed a dense
optical flow-based network for change detection from mul-
tiview images.

[18], [19], [20] have discussed change detection in
robotics. [18] proposed a method, which aligns two 3D
maps and computes the movement of surfaces to determine
the changed part. [19] proposed a method for recording
dynamic scenes (point clouds) by detecting and separating
dynamic and static elements in a scene. In [20], the authors
proposed a method to speed up the detection of novel objects
by calculating the regions of interest (changes) in a scene.
These previous works handle point cloud data while our
work directly deals with multiview images. In addition, our
framework is end-to-end with learnable parameters, while
previous works often require multiple processes, manually
designed functions, and parameters. Additionally, our model
describes detailed scene changes through language texts.
Moreover, our model can recognize scene change based on
partially observed scenes, while previous methods require
full observation of scenes.

D. Image Captioning

Traditional image captioning methods [21], [22] generate a
text description given an image. [21] proposed a model with
spatial attention, which generates captions about highlighted
image regions. In [22], the authors combined the bottom-up
and top-down attention to better determine the highlighted
region for caption generation.

DDLA [5] computes the pixel-level RGB difference be-
tween before- and after-change images for change caption-
ing. DUDA [4] proposes an extracted image features-based
approach. The authors of DUDA introduced a dual-attention



Fig. 2. Overall framework. Given an input of a scene before and after
changes observed from multiple virtual cameras , our approach produces
a change caption with models consisting of a scene representation module
and a captioning module. The input images are observed from viewpoints
(numbered 1 to K) sampled from the pre-defined viewpoint set.

mechanism to highlight the important region of scene im-
ages and a dynamic attention mechanism for weighting
the image features during the caption generation process.
DUDA achieves state-of-the-art performance among 2D-
based scene change captioning methods. However, both
DDLA and DUDA do not recognize the underlying 3D
structure of the scene; thus, these works have only limited
ability for camera movements between scene changes and
scenes with occlusions.

In contrast to DDLA and DUDA, our work is based on a
scene representation containing the underlying 3D structure
and semantic information. Therefore, our work establishes
3D correlations between before- and after-change scenes and
could handle scene observations from different viewpoints,
and scenes with occlusions. These characteristics make our
method more practicable for real-world applications with
constant object occlusions and changing observation view-
points.

III. APPROACH

We show the overall framework in Figure 2. We denote the
scene observed before scene changes as sbef , and the scene
observed after scene changes as saft. Our overall framework
generates a text caption indicating the scene changes based
on images of sbef and saft from multiple viewpoints. Our
framework consists of two modules: the scene representation
module, which extracts scene representation from the input
scenes sbef and saft; the caption module, which predicts a
change caption based on the extracted scene representation
features.

A. Scene Representation Module

We use the scene representation network proposed by
Eslami et al. [8] to obtain an integrated scene representation
from multiview images. For scene sj observed from K
viewpoints (K ≥ 1), the observation oj is defined via
(1). xk

j indicates image observed from viewpoint vkj (five-
dimensional vector (w, y, p), where w, y, p indicate the
three-dimensional position, yaw, and pitch of the camera):

oj = {(xk
j , v

k
j )}k=0,...,K−1 (1)

The scene representation network rj = fGQN SRN(oj) and
renderer network gGQN RN(x

m|vm, rj) are jointly trained for
image rendering from arbitrary viewpoint m to maximize the
likelihood between the predicted image xm and the ground
truth image. fGQN SRN integrates multiview information
into a compact scene representation. We train the overall
framework. The renderer network gGQN RN is discarded after
training. We use the latent scene features extracted via pre-
trained fGQN SRN to represent scenes.

B. Caption Module

The caption module predicts a text change caption given
input scene representations rbef and raft. Inspired by [4], we
first compute the difference between rbef and raft via:

rdiff = raft − rbef (2)

In [4], the authors compute the difference between image
features using equation (2). We compute the scene represen-
tation difference instead.

Next, as shown in (3), we modify the original dynamic
attention structure proposed in [4] by applying convolution
operations to rbef , raft, and rdiff respectively.

lbef = Conv1(rbef)

laft = Conv2(raft)

ldiff = Conv3(rdiff)

(3)

The remaining processes are adapted from [4]. We
use long short-term memory (LSTM)-structured networks
LSTMd (dynamic attention) and LSTMc (caption generator)
proposed in [4] to generate captions from lbef , laft, ldiff .
More details of LSTMd and LSTMc can be found in [4].

IV. EXPERIMENTS

In this section, we describe the evaluation of our model
against the previous state-of-the-art 2D-based method [4]
through several experimental setups. In detail, we first con-
ducted an experiment to test the effectiveness of models for
situations with different observation viewpoints of before-
and after-change scenes. We also conducted ablation exper-
iments on different sub-structures, including image feature
attention, ensembles of image features, attention mechanism
for decoder steps. Next, we conducted an experiment on
the robustness to camera movements brought by rotating
cameras. Finally, we tested the validity under a dataset setting
with photorealistic objects.

A. Experimental Setups

We built three datasets for the experiments mentioned
above. The statistics of these three datasets are shown in
Table I. Each dataset includes scene pairs (before and after
changes) observed from multiple viewpoints and related
change captions. The scene generation process is based on
CLEVR [23].

P change occlusion dataset. This dataset is composed of
scenes with geometric Primitives. We observe each scene
from four virtual cameras (Figure 3 left). Each scene consists



TABLE I
DATASET STATISTICS OF P CHANGE OCCLUSION, P CHANGE CAMERAS (GEOMETRIC PRIMITIVES), AND ROM CHANGE (REALISTIC OBJECT MODELS).

Dataset Scenes (train/test) Captions (train/test) Change types Viewpoints Object classes Unique objects Objects / scene

P change occlusion (24,000 / 6,000) (720,000 / 180,000) 5 4 - 30 2-6
P change cameras (24,000 / 6,000) (720,000 / 180,000) 5 7 - 30 2-7
ROM change (24,000 / 6,000) (720,000 / 180,000) 5 4 13 72 3-8

Fig. 3. Virtual camera setup for P change occlusion, ROM change (left),
and P change cameras (right).

TABLE II
OBJECT MODELS OF ROM CHANGE DATASET.

Classes Object instances Source dataset

snack 12 NEDO:2; YCB:5; Bigbird:5
cup 11 NEDO:6; YCB:4; Bigbird:1
shampoo 10 NEDO:1; Bigbird:9
dishwasher 9 NEDO:8; Bigbird:1
minicar 7 NEDO:7
bar soap 6 NEDO:3; Bigbird:3
bowl 4 NEDO:3; YCB:1
sponge 4 NEDO:3; YCB:1
soft drink 3 Bigbird:3
weight 2 NEDO:2
water bottle 2 NEDO:2
soccerball 1 YCB:1
teddy bear 1 NEDO:1

of geometric primitives numbered between 2 and 6 with
random colors (five colors), shapes (three shapes), and sizes
(two sizes). To evaluate occluded scene understanding ability
and make the scene change understanding infeasible to be
resolved through information from the same viewpoint, we
added an occlusion setting for before-change scenes, which
ensures that there are occluded objects (less than 100 pixels,
original image size: 320 × 240 pixels) from at least two
viewpoints. This dataset is used to evaluate the effectiveness
of models to integrate multiview information for change
captioning, and the robustness for occluded scenes.

P change cameras dataset. We created this dataset to
evaluate the models’ robustness to camera movements which
are achieved by rotating cameras between before- and after-
change scenes. This dataset is constructed from geometric
primitives with virtual cameras setup shown in Figure 3 right.
To exclude the effect of occlusion, we added a restriction that
each object can be observed from all viewpoints.

ROM change dataset. This dataset is composed of scenes
with Realistic Object Models. To evaluate the validity under
more realistic dataset settings, we built ROM change with

photorealistic object models collecting from three previously
published object model datasets: NEDO item [24], YCB [25],
and Bigbird dataset [26]. We annotated each model with
color (14 colors) and class label (13 classes). We show the
object classes, number of object instances per class, and
source datasets in Table II. The diversity in object shapes and
sizes makes it more difficult to include two occluded views
comparing with the P change occlusion dataset. Therefore,
we applied a restriction that at least one observation of each
scene contains one or more occluded objects.

Captions generation. To generate before- and after-
change scene pairs, we rendered twice for each scene and
added a change operation in between. We defined five change
types: add - adding an object to the original scene; delete
- removing an object; move - moving an object; swap -
swapping the locations of two existing objects; and replace
- replacing an object with a new object. We also added
a distractor type that does not contain any changes. We
recorded scene information through scene graphs [27], which
records object attributes and spatial relationships between
objects. The ground truth change captions were automati-
cally generated from recorded scene graphs and predefined
templates that record the sentence structures. We defined
five sentence templates for each change type. Through the
above processes, each scene is paired with thirty captions
(five captions per change type (or the distractor)).

Although we currently generate change captions directly
from scene observations, the framework also could be ex-
panded to simultaneously generate detailed change informa-
tion (e.g., change type) by integrating a multi-task structure
or a two-stage structure which first generates change infor-
mation and creates captions using pre-defined templates.

Implementation details. In all experiments, we pre-
trained the scene representation network for 200 epochs. For
both our and the previous method DUDA [4], we trained the
caption models for 40 epochs. We set the learning rate to
10−4 and used Adam optimizer for all experiments.

The DUDA model generates captions from two images
(before- and after-change images). The model first extracts
image features using the ResNet model [28], which is trained
on the ImageNet dataset. We input before- and after-change
image features into the DUDA model for caption generation
during training and evaluation process.

B. Experiments on 3D Scenes with Geometric Primitives

In this section, we conducted experiments on the
P change occlusion dataset to evaluate the validity of models
to integrate multiview information for change captioning.



TABLE III
EVALUATION ON P CHANGE OCCLUSION (TOP TEN ROWS) AND ROM CHANGE (BOTTOM SIX ROWS).

Approaches, (viewpoint pair) ROUGE L SPICE METEOR BLEU-4 [31]
[29] [30] [32] overall add delete move swap replace distractor

no-diff/-/spa-att, (1,2-3,4) 73.4 40.5 45.3 58.8 66.9 84.5 64.5 48.6 79.8 11.7
no-diff/-/no-att, (1,2-3,4) 76.3 41.0 46.9 63.2 67.4 84.6 68.2 50.6 82.3 24.5
no-diff/conv/no-att, (1,2-3,4) 87.8 47.8 54.1 77.9 79.0 90.2 85.8 57.4 81.1 78.6
diff/conv/no-att, (1,2-3,4) 87.9 49.3 54.1 78.5 80.5 88.9 83.9 55.9 83.1 81.5
diff/conv/dyn-att, (1,2-3,4) 88.4 49.4 54.7 79.4 81.2 89.7 85.2 56.3 83.1 84.4
diff/conv/dyn-att, (1,2,3,4-1,2,3,4) 96.4 56.9 64.3 92.3 99.8 99.8 97.6 70.3 97.1 100.0
diff/conv/dyn-att, (1-3) 79.4 42.6 48.1 67.9 64.0 75.9 80.8 53.4 71.2 60.1
diff/conv/dyn-att, (1-1) 84.6 45.9 51.5 74.2 71.7 74.5 75.8 50.8 72.8 99.7
DUDA, (1-3) 66.6 34.3 37.6 50.1 50.7 58.1 52.0 36.1 61.2 33.4
DUDA, (1-1) 80.7 43.6 48.7 68.6 63.8 71.1 62.2 47.5 67.5 99.4

Ours, (1-1) 73.2 33.1 40.8 58.6 51.0 57.0 58.2 28.1 52.4 100.0
Ours, (1-3) 64.0 25.7 33.7 47.6 36.9 54.7 54.3 25.5 48.9 56.3
Ours, (1,2-3,4) 73.4 32.8 40.0 58.1 54.5 68.2 59.4 30.1 63.3 65.6
Ours, (1,2,3,4-1,2,3,4) 94.6 46.9 59.5 87.1 96.1 97.3 89.4 50.2 91.9 100.0
DUDA, (1-1) 66.7 27.9 35.4 51.9 47.0 52.2 39.8 24.1 47.8 100.0
DUDA, (1-3) 46.3 14.6 21.9 26.1 22.4 45.3 32.2 12.4 27.9 10.4

TABLE IV
CHANGE CAPTION CORRECTNESS EVALUATION ON

P CHANGE OCCLUSION DATASET.

Approaches Accuracy
change type Object Color Shape Size

Ours (1-1) 87.1 74.6 89.4 84.9 91.7
Ours (1-3) 77.8 58.6 78.0 69.5 85.4
Ours (1,2-3,4) 90.4 70.1 87.4 78.8 92.3
Ours (1,2,3,4-1,2,3,4) 99.4 91.5 98.0 96.6 99.2
DUDA (1-1) 76.9 59.8 78.8 74.9 84.0
DUDA (1-3) 60.1 43.4 60.0 59.0 73.8

We also performed experiments on sub-structure ablations,
viewpoint settings of before- and after-change scenes.

Refer to the virtual camera setting in Figure 3 left, we first
created scene pairs by observing the before-change scene
sbef from viewpoints 1, 2, and after-change scene saft from
viewpoint 3, 4. This setting requires models to integrate
information from multiview images for scene understanding,
and associate before- and after-change scenes observed from
different viewpoints. We tested several structural ablations.
We represent different ablations as E/F/A, where E denotes
the type of ensembled features, F represents the feature
extraction structure, and A represents the decoder attention
mechanism. We introduce the details of each model below.

no-diff/-/spa-att: This structure is based on [21]. This
structure takes the concatenation of scene representation
rbef and raft as input. At each decoding step, we apply
spatial attention to concatenated scene representation. The
spatial attention mechanism is adopted by most current image
captioning methods. It is firstly introduced in the context of
image captioning in [21].

no-diff/-/no-att: This structure is created by removing
the spatial attention structure of no-diff/-/spa-att.

no-diff/conv/no-att: Compared with no-diff/-/no-att,
this structure applies separated convolution operations for
rbef and raft before the concatenation operation.

diff/conv/no-att: Compared with no-diff/conv/no-att,

this structure takes rbef , raft, and the difference between
these two representations, raft − rbef as input and applies
separated convolution operations on the three representations.

diff/conv/dyn-att: Compared with diff/conv/no-att, this
structure further uses a dynamic attention operation [4] on
scene representations processed by separated convolution
layers during decoding steps.

Quantitative Results.We show the evaluation results for
different evaluation metrics in Table III (top ten rows). These
metrics evaluate the similarity between generated captions
with ground truth caption sets. In detail, ROUGE L [29]
measures the recall rate of ground truth caption sets in
generated captions. SPICE [30] extracts semantic structures,
such as objects, attributes, relationships from captions, and
evaluates the similarity between generated and ground truth
captions based on semantic structures. BLEU-k [31] eval-
uates the precision of consequent words (length 1 to k)
in generated captions compared with ground truth captions.
METEOR [32] further introduces the semantic similarity of
words in addition to evaluation process of BLEU. We also
report BLEU-4 scores for different change types.

We first analyze the effects of different ablations. The
results on first, second and third row show that spatial
attention dramatically degraded the performance since the
no-diff/-/spa-att structure obtained the worst result and
the performance elevated by removing the spatial attention
operation, which provides a perspective that the scene repre-
sentation feature might not be suitable for directly adopting
spatial attention operations. By comparing the second and
third row, we found that the use of the convolution layers
improved the performance in a large margin. From the results
of the third and fourth row, we found that concatenating the
difference feature raft−rbef helped improve the performance.
From the comparison of the fourth and fifth row, we noticed
that the dynamic attention mechanism also helped improve
the performance slightly. Based on the above, we used the
diff/conv/dyn-att structure for all the following experiments.

We also implemented the diff/conv/dyn-att model with



Fig. 4. Example results on P change occlusion ((a-c)) and ROM change ((d-f)). The images in the first line show scene observed before changes and the
second line for after changes. The incorrect caption predictions are shown in red.

Fig. 5. BLEU-4 evaluation results on P change cameras.

Fig. 6. Per-class-BLEU-4 evaluation results on ROM change.

viewpoint pair setting (1,2,3,4-1,2,3,4) (before-after) for
before- and after-change scenes. For comparison, we imple-
mented viewpoint pair settings (1-3) and (1-1) for our and the
state-of-the-art 2D-based model DUDA [4], which handles
single view images for before- and after-change scenes.

Our model obtained higher performance when more view-
points were used except the (1-1) viewpoint setting. Our
models outperformed the DUDA under the viewpoint settings
(1-1) and (1-3) for all evaluation metrics on all change types.

These results show that, compared with the previously

TABLE V
CHANGE CAPTION CORRECTNESS EVALUATION ON ROM CHANGE

DATASET.

Approaches Accuracy
change type Object Color Class

Ours (1-1) 74.1 42.6 56.4 54.3
Ours (1-3) 63.2 31.7 45.5 43.0
Ours (1,2-3,4) 75.4 40.1 53.0 50.9
Ours (1,2,3,4-1,2,3,4) 98.2 81.6 88.1 86.9
DUDA (1-1) 64.2 37.8 50.9 46.8
DUDA (1-3) 37.0 19.8 31.5 28.2

reported 2D-based method DUDA, our model can effec-
tively integrate scene information observed from different
viewpoints and correlate before- and after-change scene
information. The significant performance gap between our
and the 2D-based method indicates that the understanding
of underlying 3D structure of scenes is essential for the 3D
scene change captioning task.

For both our and the DUDA model, the performance
of viewpoint setting (1-3) degraded compared with (1-
1), although the former setting brings more information.
Comparing with the viewpoint setting (1-3), which requires
alignment of multiview information, viewpoint setting (1-1)
makes it less challenging to point out the scene difference.

Caption correctness evaluation. Conventional evaluation
metrics, such as BLEU-4, cannot precisely evaluate the
correctness of generated captions. Therefore, we added a
caption correctness evaluation in addition to the conventional
evaluation metrics. In this evaluation process, we ignored the
validity of sentence structures and extracted “change type,”
“objects,” “colors,” “shapes,” and “sizes” from each gener-
ated caption based on relevant words appeared in captions.



Then, we calculated the overall accuracy for change type,
object, and attributes among the entire test set. The results
are shown in Table IV.

We implemented our best model diff/conv/dyn-att for
before- and after-change scenes with viewpoint pairs (1-
1), (1-3), (1,2-3,4), (1,2,3,4-1,2,3,4) and (1-1), (1-3) for the
DUDA model.

Compared with the DUDA model, our models with the
same viewpoint settings obtained higher accuracy in terms
of change type, object, and object attribute prediction, es-
pecially for change type prediction. Our model with four
viewpoints achieved nearly perfect correctness, which means
that alongside with generating sentences with correct struc-
ture, our model can give detailed and correct predictions for
change captioning. Also, there is still room for our model to
improve the object information related accuracy, especially
for our model with viewpoint pair (1-3).

Qualitative results. We show three example results in
Figure 4 ((a-c)). For the scene of example (a) with relatively
less occlusion, both the DUDA model and our models
correctly predicted the caption. However, for scene examples
(b) and (c) involving severe occlusions, our models predicted
correct caption types, while the object attributes are slightly
incorrect. In contrast, the DUDA method failed to provide
related captions in terms of both caption type and object
attributes.

Compared with the DUDA method, our framework can
identify the underlying 3D structure of scenes and associate
before- and after-change scenes based on 3D correspondence.
Thus, our model is more practical for interpreting scenes
with occlusions. This ability plays an essential role in po-
tential robot applications, which always require observing
the surroundings with occlusions from multiple viewpoints.

C. Robustness to Camera Movement
Here, we discuss the effect on the performance of camera

movement between the before- and after-change scenes. We
used P change cameras dataset for evaluation. We observed
the original scene from viewpoint 1 (Figure 3 right) and
changed the observation viewpoint for the after-change scene
from viewpoint 1 to 7 (0 degrees to 180 degrees). We trained
the DUDA and our model under these seven viewpoint pairs
setting. The BLEU-4 results are shown in Figure 5.

For viewpoint (1-1) pairs (same observation viewpoint for
the before- and after-change scenes), both the DUDA method
and our method obtained the highest BLEU-4 scores. After
rotating the virtual cameras for the after-change scenes, the
performance of the DUDA method was degraded signifi-
cantly, while our method achieved relatively stable perfor-
mance for different viewpoint pairs. This result indicates that
compared with DUDA, our method is more robust against
camera rotations, which makes our model more practical
for real-world applications, where observing surroundings
constantly from the same viewpoint is difficult.

D. Experiments on 3D Scenes with Realistic Object Models
In this experiment, we used ROM change, which consists

of photorealistic object models to evaluate the performance.

Quantitative results. Here, we used the viewpoint settings
adopted in experiments on 3D scenes with geometric prim-
itives. The overall and per-change type performance across
different evaluation metrics are shown in Table III (bottom
six rows). For our models and the DUDA model, perfor-
mance with ROM change dataset was degraded compared
with the performance with the CLEVR-based datasets. Com-
pared with CLEVR-based datasets, the ROM change dataset
has more complicated object models, which makes it more
challenging in terms of image content understanding. Our
models outperformed DUDA on all change types, especially
for distractors except the (1-1) viewpoint pair. Although there
is still room for our model with (1-3), (1,2-3,4) viewpoint
pairs to improve, the model with four viewpoints obtained
87.1 for BLEU-4, which shows a possibility of adapting the
model to more complex scenes.

Both models obtained higher performance with viewpoint
setting (1-1) compared with (1-3). Alignment from the same
viewpoint brings advantages to this task.

Imbalances sensitiveness evaluation. The ROM change
dataset has an imbalanced distribution over the object in-
stances. To measure the sensitiveness to imbalances, we
recorded test samples involving single-object change (add,
delete, move) to the changed object, and recorded samples
to the two changed objects for swap and replace. Then, we
computed the BLEU-4 score for each class for our and the
DUDA models with observation viewpoint pair (1-3). As
shown in Figure 6, for both two models, the BLEU-4 score
varies for different classes. Our model obtained a higher
variance value than the DUDA model. Our model tends to
obtain higher BLEU-4 scores for classes with large objects
(e.g., soccerball) and lower scores for classes with small
objects (e.g., bar soap). Increasing input image resolution
could help to improve performance for small objects.

Caption correctness evalutation. We show the correct-
ness evaluation result of generated captions in Table V.
Although compared to CLEVR-based datasets, all models
obtained a degraded accuracy, our model with four view-
points still achieved high accuracy for generating correct
captions, especially for change types. Our model with the
same viewpoint pair to DUDA obtained a significantly higher
accuracy on change type, which indicates that despite the
correctness on detailed object information identifying, our
model can effectively learn what kind of change has occurred
in the input scene.

Qualitative results. We show three example results in
Figure 4 ((d-f)). For example (d), which is relatively less
occluded, all models produced the correct caption. For dis-
tractor shown in (e), all of our models recognized distractor
and gave correct captions. In contrast, the DUDA model
tended to be confused for correctly identifying distractors.
For example (f), the DUDA model failed to identify change
types while all our models correctly recognized change types
but failed to predict the detailed object attributes.



V. CONCLUSION

We propose a framework that identifies and describes
changes that occur in scenes observed from multiple view-
points through natural language. The ability to understand
the changes involved in 3D scenes plays a vital role in
various robotic applications. Existing approaches focus on
2D images and have limited ability to handle occlusion,
camera movements, which is critical in real-world applica-
tions. Therefore, we propose a framework that establishes
scene representations containing underlying 3D structures of
scenes and describes the changes through associating the
before- and after-change scene representations. We created
three synthetic datasets. The experimental results indicate
that our method outperforms the previous state-of-the-art 2D-
based method by a large margin in both sentence construction
and captioning correctness. In addition, our method performs
better for scenes with occlusions and shows higher robustness
for camera movements. Our framework also shows encour-
aging results in a realistic dataset setting, which indicates the
possibility of adapting our framework to a more complicated
and broader scene-setting.

We conducted experiments on simulated datasets contain-
ing solid color scenes and object models. To provide a more
realistic environment for scene change understanding, we
will expand dataset setting by introducing more complex
scenes, object models with higher diversity, and placing
object models at various locations in the scenes.

Currently, our model builds scene representation from
images observed from viewpoints sampled from pre-defined
camera positions. Incorporating explicit 3D structures, such
as depth maps, could enable our model to handle flexible
camera positions and increase practicability in real-robot
applications. In addition, integrating semantic understanding
structures, such as semantic segmentation networks, could
help improve the performance of our model in real-robot
environments with higher complexity and diversity.
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