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Abstract— Robotic grasping systems often rely on visual
observations to drive the grasping process, where the robot
must be able to detect and localize an object, extract features
relevant to the task, and then combine this information to plan
a manipulation strategy. But what happens when some of the
most impactful features are not observed by the robot? Without
context on an objects center-of-mass, for example, a robot may
make assumptions such as uniform density that do not hold,
and which may in turn guide the robot into perceiving a sub-
optimal set of grasping configurations. In this work, we examine
how having prior knowledge of an object’s intrinsic properties
influences the task of dense grasp affordance prediction. We
investigate a simple, constrained grasping task where object
properties heavily regulate the space of successful grasps, and
further evaluate how learning is affected when generalizing
across unseen weight configurations and unseen object shapes.

I. INTRODUCTION

Grasping within unstructured environments is a major
challenge for many robotic systems, largely due to the
inherent complexity of the task. There are many factors
involved in this process: object characteristics (both intrinsic
and extrinsic), the gripper used, and the overall environment
all play a role in determining whether a grasping operation
is successful or not. As such, while traditional analytical
methods have been explored within grasping for over 30
years, there has been a significant push towards learning ap-
proaches — a shift from explicitly calculating grasp quality
metrics, to learning how to grasp based on real or simulated
grasping experiments.

Recent deep-learning based methods have demonstrated
particularly strong success generalizing across the visual
appearance of objects. These models have been applied to
many traditional areas of grasping, such as: object detection
and recognition (e.g. [1], [2]), pose estimation [3], and
in generating grasps for both rigid [4], [5], [6], [7] and
deformable [8] objects. Yet static, visual observations can
only identify some of the object’s characteristics; in this case,
mostly extrinsic ones such as shape and texture. Planning
grasps without understanding the full scope of the object
can lead to strategies that are neither optimal, nor actually
applicable given the objects true underlying context.

Intrinsic object properties such as center of mass (CoM),
surface friction, and rigidity play a significant component in
many grasping applications. Suction grippers, for example,
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are used in a wide variety of scenarios due to their ability
to grasps objects in the presence of clutter and with only
one contact surface (e.g. [7]). Yet suction grasps are highly
sensitive to the relative placement of the contact points with
respect to the object’s CoM. In some instances, this CoM
may be dynamic if the object contains fluid, is non-rigid, or
is even considered as part of a larger system with multiple
components. Without accounting for these properties within
the grasping process, there is a much higher likelihood
of a grasp failing. This holds particularly well for objects
that have very similar shapes, but different internal material
density and structure.

Over the years, different models have been proposed that
not only seek to identify these intrinsic properties, but also to
investigate how they can be used within a grasping context.
Works such Standley et al. [9] leverage deep learning to
estimate an object’s mass through RGB images and size
information. Kannabiran, Essa, and Liu [10] learn control
policies for estimating an object’s mass distribution. In [11],
an object’s visible appearance is used to learn different mate-
rial properties. Other works [12] have also been proposed that
bootstraps the prediction of object properties, by modeling
real-world scenarios within simulated environments, and
observing the objects behaviour. Local surface characteristics
have been used to learn different grasp quality metrics [13],
and in [14] capture context about a grasped object for
planning adjustments to a grasp. In other instances, force and
torque data has been used to help guide a humanoid robot
to selecting grasps close to an objects CoM [15]. Contact
feedback has also been used within reinforcement learning
to find control policies for stably grasping objects [16].

Finally, the overall task is also a critical factor in any
grasping operation. Grasp affordances reflect the myriad
of ways that a robot can grasp an object and complete a
task [17], [18], [19], [7]. Recent work in learning grasp
affordances has also looked at tasks that require a more so-
phisticated process, such as object throwing [20]. Important
to highlight about [20] is the notion that a robot can perceive
grasp affordances differently, depending on the requirements
of a task and the supervision a network is given. Researchers
have also studied how an object’s CoM affects human grasp
selection, given objects with different visible materials [21].

In this work, we are interested in developing a general
learning framework where the robot can not only predict
successful grasping configurations given an object image and
surrounding environment, but also learn about the object’s
intrinsic properties, and how they may influence the space
of grasp affordances. Without this knowledge, it is possible
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that a robot may perceive affordances that do not accurately
reflect the true set of action possibilities, and which in turn
may result in a sub-optimal task performance.

A. Paper Contributions

Our work is focused on learning a complete object model,
that includes both intrinsic and extrinsic features. In [22],
Veres et al. proposed a deep learning framework that learns
an object motor image, which links a visual object image
with grasp configurations. In this work, we extend this con-
cept by incorporating information about an object’s intrinsic
properties; namely, it’s center of mass. Our contributions are:

• We propose a learning framework that incorporates
CoM implicitly into grasp affordance prediction through
force and torque readings from a robot’s wrist. Together,
passive and active observations are linked to form a
grasp motor image of the object.

• We show how grasp affordances can be learned given
only a few prior experiments, by adapting the frame-
work of [23] to the problem of robotic grasping – using
prior experiments as “support” examples for condition-
ing affordance prediction.

• We demonstrate the proposed framework by investi-
gating a constrained grasping task where an object’s
density and center-of-mass heavily regulate whether a
grasp will be successful or not. Within this setting, a
robot must physically interact with the object in order to
understand how the object will behave once grasped. All
investigation is performed in real grasping experiments
using a suction gripper and wrist-mounted force sensor.
Our dataset can be found at: https://doi.org/
10.5683/SP2/YCBUSR.

II. METHODOLOGY

Self-supervised grasping is an appealing approach for
learning how to grasp, largely due to the autonomy of
the process and the lack of human bias in determining
whether a grasp will be successful or not. Yet one of the
challenges of this approach is that labels that are collected
for a single attempt are inherently sparse by nature: A robot
typically observes information relative to specific environ-
mental conditions, and grasps areas of an object that may
be highly localized. Below, we outline how different sources
of local information can be fused to predict global suction
affordances following an explore-then-act paradigm.

A. Problem Setup

We wish to predict a dense, grasp affordance map for
a suction cup gripper that has a limited maximum suction
force. The objects we are interested in are simple, planar
objects that are visible to an overhead camera. Each object
belongs to one of nine object classes, and contains some
unknown mass distribution. Because the object shapes and
appearances are so similar (by design), and because the mass
distribution cannot be sensed without physically interacting
with the object, this problem represents a real-world scenario
that “just because two object’s may look the same, does not

mean they are the same”. When combined with the limited
grasping force, the robot must carefully reason about the
object in order to predict successful grasp candidates.

Similar to [7], we refer to a grasp affordance map G as
a pixel-wise probability; that performing a top-down grasp
at pixel locations within in some query image Iq will lead
to a successful outcome. Here, we focus only on pixel
locations where the object is present. For any given object,
the robot is tasked with predicting G based on a small set
of previously-collected attempts grasping the same object,
i.e. p(G|Iq, e1, . . . , ek). Each prior experience ei contains an
image Is of the object, the location where the object was
grasped p (in pixel coordinates), the experienced wrist forces
f and torques t in the local sensor frame, and a boolean o
that denotes whether the explored grasp was successful or
not. Thus, ei = {Is,i, pi, fi, ti, oi}.

B. Approach
In order to predict G, our approach is to train a neural

network to learn how intrinsic and extrinsic features of prior
grasping attempts can be used to recognize other grasping
candidates. To accomplish this, we extend the guided net-
works approach of [23] to the problem of robotic grasping
with sensory feedback. Guided networks, at their core,
perform tasks such as semantic segmentation by learning
how to predict pixel-wise class association, conditioned on
average representations of both the target class (“positive”
support examples) and of other classes (“negative” support
examples). Importantly, these representations only require a
few sparse labels to be constructed. This is an important
characteristic for robotic grasping, where it might be difficult
to obtain large scale data from actual experiments.

In this work, our support examples refer to the set of
prior grasping experiences e defined above — where the
target class represents either a successful or a failed grasp,
and where the single pixel-location of the grasp attempt
is known. The guided network therefore is tasked with
extracting meaningful context from these support examples,
such that it can predict G for a new image observation of
the same object. To include additional context about the
support examples, we extend the architecture of [23] with
an additional network branch that learns to encode sensory
feedback previously captured during each grasp. Figure 1
highlights our model, with the sensory branch in yellow.

C. Model Description
We discuss our model setup with respect to Figure 1 below.

Training, hyperparameters, and discussion on how support
examples are chosen is discussed further in Section IV-B.
Visual Query Encoder: Given a query image x of an object,
a convolutional network (CNN) first encodes x through
several layers of convolution & pooling operations. The
output of this branch is a 3D grid of size 11 × 11 × 64,
which represents an 8× down sampling of the query image,
with 64 learned features at each location.
Visual Exploration Encoder: In parallel, a second CNN
encodes the support images that were collected during each
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Fig. 1: Affordance prediction model that leverages both visual information and sensory feedback. A CNN model (Visual
Query Encoder) first encodes an RGB object image through several convolution + pooling operations. The network is also
shown k previous grasping attempts of the exact same object, in the form of RGB images & force / torque readings, which are
encoded by another CNN (Visual Exploration Encoder) and MLP (Physical Exploration Encoder) respectively. The network
produces an affordance map with the same resolution as the input image, where each pixel location on the object represents
the probability of a grasp succeeding (red=high probability, black=low probability). The location and outcome of the first
prior grasp (a success) can be seen superimposed on the input sample. Additional details are provided in Section II-C.

of the prior k grasping attempts (for the same object). The
output for each support is also a 3D grid of size 11× 11×
64. To show the network where each support image was
grasped (and to extract features local to this location), we
follow a late-fusion strategy as in [23]. First, we plot the
original grasp location as a single pixel active in a binary
mask (size 88× 88 pixels), and then downsample the mask
using bilinear interpolation [24] to a resolution of 11×11. We
then perform an element-wise multiplication and summation
with the respective encoded support image. The output of
this step is a feature vector with a size of 64.
Physical Exploration Encoder: Once the local grasp fea-
tures have been extracted from each support image, we then
encode the wrist forces and torques through a small MLP
with a single hidden layer, before merging through another
hidden layer with the extracted local grasp features.
Query Affordance Decoder: After merging the visual &
physical encoded support features, as with guided networks
we separate each feature vector into positive and negative
classes, based on whether the support grasp was successful
or not. Given these groups, we then compute an average
representation for both classes, yielding two vectors with 64
units. These vectors are then replicated 11 × 11 times and
tiled to form an 11 × 11 × 64 grid. We then concatenate
and merge the query, positive, and negative representations
through a series of 1d convolutions, and then up-sample us-
ing a bilinear interpolator network [24] to match the original
image size. The output of this stage is a 1d channel image
with a binary probability at each pixel location indicating
whether a grasp at that location is likely to succeed or not.

III. DATA COLLECTION PROCEDURE

Objects can have many different intrinsic properties. In
this work, we focus on how an object’s mass, and mass dis-

tribution affects the performance of grasping with a suction
cup gripper. To account for real-world phenomenon (e.g. the
flexibility of a gripper’s suction pad), we collect data in the
real-world using a 6-DoF Fanuc 200iC arm, along with nine
custom 3d printed object shapes as shown in Figure 2.

A. Object Descriptions

Many real-world objects do not readily allow access
to their intrinsic properties, nor do they easily allow for
these properties to be re-configured in any consistent way.
We originally thought to construct different shapes through
e.g. lego-like parts, but found it difficult to build objects that
were able to support additional weight and consistently hold
their shape after being dropped by the gripper. By 3d printing
the objects, we were able to standardize these parameters.

Fig. 2: CAD models of the nine 3d printed object shapes.

Our objects are simple, planar objects, and share some
similarity to those used in [21]. Our goal however is in cases
where the CoM cannot easily be detected through visual
means alone. Five of the nine objects used this in work
represent tetrominoes from the classical game of Tetris (L,
Straight, S, T, Square). One object resembles a longer version
of the L-shaped object, and the remaining three “F”, “Ba-
nana” and “d” shapes were constructed by taking into consid-
eration object symmetry, and a similar planar structure. Each
shape is composed of multiple 40mm× 40mm× 40mm
hollow cells, and contains three different components: a solid



outer shell, a removable back cover, and a set of dividers that
can be inserted or removed to partition the individual cells.
Dimensions for each object can be seen in Table I.

After printing, we first smooth the object’s surface by
applying a top coat of nail polish, and then paint each
cell (on the outer shell) a different colour. Painting the
object this way enables us to quickly ground-truth where
the different weights are located, and provides context to the
robot (i.e. extrinsic features) to help localize prior grasps.

To emulate different masses and mass distributions, we
fully partition each object and fill select cells with 1/4 inch
diameter carbon steel ball bearings as illustrated in Figure 3.
Filling a single cell of an objects typically adds around 202 g
to the overall mass, apart from the banana shape (which has
a slightly modified cell definition) which adds around 140 g.

TABLE I: Object X, Y, Z dimensions and number of cells.

Object Cells X (mm) Y (mm) Z (mm)

L 4 120 80 40
Straight 4 160 40 40

S 4 120 80 40
T 4 120 80 40

Square 4 80 80 40
Long L 6 200 80 40

F 6 160 80 40
Banana 7 218 80 40

d 9 160 120 40

Fig. 3: Permutations of which cells were filled with weight
during data collection for the square object. The numbers
inside each cell represent a different way for ground-truthing.

B. Data Collection Parameters

Our robot cell can be seen in Figure 4. Force and torque
readings are captured by a Robotiq FT 150 sensor attached
to the robot’s wrist, while an Intel RealSense D435 camera
(also mounted on the wrist) is used to collect RGB-D images.

When choosing which internal object cells are filled
weight, we evaluate different configurations where either
the object has no additional weight added to it (0-cells
filled), configurations where 1 cell is filled with weight,
or configurations where 2-cells are filled with weight. For
the {Square, T, S, L, Straight, Long-L} objects, we collect
grasping experiments using all unique permutations of [0, 1,
2]-cell filled instances (e.g. the square object in Figure 3).
The larger {F, Banana, d} objects are grasped with an empty
configuration, and two random instances of 1 & 2-cell filled
configurations each. The choice to restrict these grasps was

made as we generally observed grasps became much more
unstable as the object’s size was increased.

Fig. 4: Overview of the robot cell (1. Force sensor; 2. RGB-
D camera; 3. Suction cup gripper), along with a sample
view taken from the gripper-mounted camera, and a sample
of cell configurations used for the L-shaped object. These
configurations are unknown to the robot prior to any contact.

Each grasp is performed by the robot in a “top-down”
manner. Our suction cup diameter is 17.5mm, and the
maximum suction force is constrained to 60 PSI, which
was found empirically to produce a modest amount of both
successful and failed grasps in the (heaviest) 2-cell filled
configurations (Figures 3 & 4). When lifting the object, we
set a threshold height of +18 cm along the world z axis from
the grasped location. An object still in the gripper at this
location is deemed to be a successful grasp; otherwise, the
grasp is recorded as a failure.

C. Data Collection

Data collection begins with an object’s shape and mass
distribution first chosen from a predefined list (Section III-
B). We then fill the corresponding object cells with weight,
and place the object flat within the workspace bin.

Once placed in the bin, the robot’s wrist is moved to a
home location perpendicular to the table’s surface, and an
RGB-D image of the object is recorded. We subsequently
segment the object from the background (using a combi-
nation of colour thresholding, depth thresholding, and a
simple fully-convolutional network trained to predict noisy
object masks), and then select a grasp location by randomly
sampling from the visible points across the object’s surface.
When choosing where to grasp, we mask the object’s edges
from being selected by computing a distance transform for
the object mask, and then thresholding it to keep the pixels
within 40% of the maximum distance value. We also apply
an offset of 2 cm along the world z to the chosen grasp
location to ensure the suction cup forms a complete seal with
the object. Parameters for the offset and distance transform
were found empirically to work well with our gripper.

If the suction cup is unable to form a proper seal on the
object (i.e. the pressure experienced between the object and
the suction cup fails to cross a threshold of −50 kPa), the
experiment resets with neither a success or a fail, and the
above process is repeated. Otherwise, the robot attempts to



lift the object and records the forces and torques during the
lift at a sampling rate of 20ms. If the object falls any time
during the lift, the end of the trial is marked – with the
outcome recorded as a failure and the robot reset to the
home position. If the robot is still grasping the object at the
height of the lift, the trial is marked as a success, and the
object’s pose is randomized prior to deactivating suction and
returning to the home position. A total of 50 grasp attempts
are collected per cell configuration, per object.

Depending on the object’s shape and cell configuration,
deactivating the suction while the object is above the table
could result in resting poses for the object that are counter-
intuitive to what we would expect without knowing the
object’s intrinsic characteristics. We generally tried to avoid
these during data collection by manually resetting the object
pose when this phenomenon was noticed, though some poses
do remain present in the data. Our pre-processed dataset
(Section IV-A) can be accessed online at: https://doi.
org/10.5683/SP2/YCBUSR.

IV. LEARNING

Our task is akin to semantic segmentation, with some
mild differences. Similar to [7], given an RGB image of an
object, we seek to predict a class value for every pixel in the
input image. In this work we deal with binary classes [0, 1]
which corresponds to whether a top-down suction grasp is
likely to fail or succeed at each pixel location, respectively.
Because the object’s intrinsic properties are unknown prior
to grasping however, we require additional context (through
previous grasping attempts) to guide the prediction process.

A. Dataset Pre-processing

A total of 3,649 grasp attempts were collected across all
object-cell configurations, where one attempt was removed
for missing a pre-grasp observation. The average grasp
success rate was 0.4713 (std=0.3306). Within the dataset,
we noticed it was possible for multiple grasp attempts
to be repeated within any given object-cell configuration,
simply due to the finite amount of variability and task setup.
Prior to learning, we filter these attempts by first measuring
the Jaccard similarity between any two centered object
masks (threshold = 0.75), and then by measuring the pixel-
wise grasp distance. Objects that have similar poses, grasp
locations, and outcomes were removed from the dataset.
Following this procedure, a total of 2,868 samples remain
for learning. An overview of the data is shown in Figure 5.
RGB Images: We first segment the object from the full
720 × 1280 resolution image, then subsequently remove the
depth channel and center the object by taking a fixed-size
crop of 352 px. After centering, we downscale the image by
a factor of 4, and normalize the values to [-1, 1].
Target Label: As with semantic segmentation, our target
label t is represented as image with the same height and
width as the RGB image. On this image, we toggle a single
pixel at the grasped location (see Section III-C) to have an
intensity of 1 if the grasp was a success or a 0 if the grasp was
a failure. All other locations are treated as masked regions,
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Fig. 5: Overview of the filtered data as a fraction of suc-
cessful grasps per object class, averaged over all object-
cell configurations. Note that the f shape, banana shape, and
d shape objects only had a select few weight configurations
tested due to their larger shape complexity.

which are not optimized for during training. The label is
centered and downscaled identically to the RGB image.
Sensory Feedback: For the sensory data, we use the force
and torque readings with respect to the local frame, and then
compute an average of the final 100ms of the lift. Both force
and torque data is standardized to have zero mean and unit
variance across the individual x, y, z channels.

B. Optimization

Our objective function is the binary cross-entropy loss:

L = t log(G) + (1− t) log(1− G) (1)

where t (the target) and G (the predicted affordance map) are
both represented spatially. We update network weights using
the Adam optimizer [25], with a learning rate of 5e−4 and
β = (0.5, 0.999). We use a small amount of weight decay
for regularization (2e−4) and apply dropout to the sensory
feedback encoder with p = 0.5, and convolution filters with
p = 0.1. During training, we also apply random horizontal
and vertical flips to the query image with p = 0.5.

To construct a mini-batch of training examples, for every
example, we first randomly choose an object class, and
then randomly choose a 0, 1, or 2-cell filled configuration
belonging to that class. Given this configuration, we then
randomly sample a query instance, along with k other grasp-
ing attempts to be used as the corresponding supports. We
do not discriminate sampling between successful and failed
grasps when choosing support instances, as it is possible that
a dataset may or may not contain one or the other.

C. Experimental Setup

We evaluate our models based on (1) how well a robot is
able to predict affordances if it has seen an object class be-
fore (but has not seen a particular object-cell configuration),
and (2) on how well the robot can generalize to objects it
has never seen before. Both settings employ cross-validation
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(a) AUROC for seen objects with unseen cell configurations.
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(b) AUROC for unseen objects.
Fig. 6: Mean & standard deviation of AUROC evaluated across both 5-fold stratified CV (partitioned by the 50 attempts
per object-cell configuration), and 5-fold CV split by object class. Our models are trained using k = 5 support examples
(except for the baseline); also reported here are the effects of using fewer than k samples during the inference procedure. The
baseline model reaches a (mean, std) AUROC of 0.67± 0.06 and 0.64± 0.04 for the stratified and object CV respectively.

(CV): the former uses stratified-sampling to balance the
object classes across each fold, while the latter employs a
leave-one-object-out scheme, in which every held-out fold
contains two novel objects (apart from the final fold).

Within both settings, we evaluate a baseline architecture
that predicts affordances without considering any prior grasp
attempts, an image-only architecture that predicts affordances
using only visual observations, and an image + sensory
feedback architecture that mimics the structure in Figure 1.
The baseline architecture uses the visual query encoder and
bilinear decoder network only. The image-only architecture
discards the sensory branch + merge layer, and immediately
splits the grasp feature vectors into their positive and negative
representations. With respect to Figure 1, both the query and
exploration networks are composed of three layers, having
2× Conv-ReLU-Dropout blocks each. We use 32 filters in
the first layer, and 64 in both the second and third. Each
convolution uses a kernel size of 3 and stride 1. Parameters
between the query and exploration encoders are shared.

V. RESULTS

We report our results as the mean and standard deviation of
the Area Under the Receiver-Operating Characteristic Curve
(AUROC) [26] across all CV folds. Figure 6 highlights
our results, and sample predictions can be seen in Figure
7. Across both cross-validation strategies, using sensory
feedback improves the models performance. The mean AUC
scores with sensory feedback are also generally more stable
across different k’s then when compared to using images
only – including those cases where fewer support examples
are used. For seen objects, the performance bands are larger
than for unseen objects, reflecting performance fluctuations.
The baseline model does not consider prior grasping at-
tempts, and performance is limited on the testing sets.

To illustrate the effects of the support examples when
making a prediction, Figure 8 presents sample outputs when
k = 0. These predictions are obtained by zeroing out the

latent representations for both the positive and negative
support examples in Figure 1, right before merging with the
query representation. In general, the system favours predict-
ing successful grasps near the object’s geometric center.

Fig. 7: Sample affordances predicted with k = 5 exploration
samples. Left Column: query image & which cells have
weight (circled in yellow). Middle: k exploration samples,
along with their grasp location and outcome (red=failed
grasp, green=successful grasp). Right: Predicted affordances
on the object. The more red the colour, the more likely a
grasp is to succeed at that location. Best viewed in colour.



Fig. 8: Sample “default” affordance predictions when k = 0

Figure 9 presents an example for how predictions change
as 1 ≤k ≤ 5 support examples are presented to the trained
networks. When comparing between the image-only and
image + sensory feedback rows, one can observe important
performance advantages for incorporating force / torque val-
ues. For example, when no cells are filled (i.e. the object can
be grasped almost anywhere successfully), the performance
is excellent even with k = 1 when using sensory feedback,
versus those from the image-only architecture for any k. With
one cell filled, with sensory feedback the predictions appear
to be much more localized to where the support grasps are
occurring (in this case, near the CoM).

Finally with two cells filled, the predictions become stable
near the CoM with k ≥ 2 both with and without sensory
feedback. However, we note that while both architectures
predict grasps around the same location, the prediction
confidence is different. With image-only, the grasp location
is predicted to be successful with a very strong probability
(i.e. a dark red colour). On the other hand, with image +
sensory feedback the same grasp location is predicted, but
not with the same probability of success (i.e yellow / green
colour). This is an important distinction given that Figure 5
shows that failure rate is higher with two-cell filled cases.

These observations show that using sensory feedback can
lead to a more accurate grasp prediction with fewer grasp-
ing experiments. Given the wide range of object materials
and density distributions, it is not practical to expect large
datasets to be available for each intrinsic object property.
Figure 9 shows that this can be avoided.

Figure 9 provides further insight into how the proposed
learning framework operates. Comparing the performance of
the one cell versus two cell-filled cases, one can observe
that the first support examples for each are positive and
negative respectively. Given that every prediction made by
our affordance network is made based on some past history
(k examples) grasping the exact same object, prediction ac-
curacy tends to improve once positive examples are provided
to condition the predictions. As such, it is important for a
model to understand the relation between the context of the
historical grasps, and the current observation.

This raises an interesting question — how do we predict
affordances that are not near the sampled prior grasps? Do
we just exhaustively grasp the object in order to build an
object model? If only visual observations are provided to
the network, there is a motivation for our model to overfit on
object shapes and learn average local representations where
grasps are likely to succeed. With these learned biases, one
way for the model to leverage prior grasping experiences is

Fig. 9: Predicted suction affordances with k = [1, 2, 3, 4, 5]
explored grasps. The top row of each segment shows the
exploration samples used (along with grasp location &
outcome), while the middle row shows predictions from the
image-only model, and the bottom row is from image +
sensory feedback model. Moving left to right, the networks
see all previous exploration grasps when making a prediction.

to use them to simply refine these assumptions on where
the CoM is likely to be. On the other hand, when sensory
feedback is available the model now has access to a signal
directly correlated with the object’s CoM, which has the
potential to discover graspable locations, or phenomenon
such as anywhere on the object can be grasped much quicker
then through visual observations alone.

VI. DISCUSSION

In terms of failure cases, we found it was possible that if
the support examples were low quality, or grouped in a single
location, the “default behaviour” (Figure 8) could suggest
incorrect grasp locations. We also noticed failure cases where
images of the support objects and query were vastly different
(e.g. an object sitting upright vs. flat); in this instance, more
geometric reasoning about the object may be required.

When building a grasp motor image of the object [22],
incorporating more intrinsic object characteristics and task
requirements in a motor image raises questions surrounding



scalability and the number of data points needed. By adapting
the late fusion architecture of [23] to our task, we can quickly
learn to predict affordances from only a few prior examples
(e.g. Figure 9) rather then collecting and training on a new,
large dataset for every novel object.

While the context of our experiments was limited to
suction grasps and a finite set of objects, we argue that the
presented results are not solely limited to this context due
to the way various experimental parameters were set. The
suction force for example, was determined to allow both
failed and successful grasped to be observed given the objects
— A much stronger suction force would have resulted in
all successful grasping experiments, while a much weaker
suction would have resulted in all failed grasping experi-
ments. The same applies to the kind of objects used and
how the CoM was changed. Many objects can be assumed
to have uniform density and symmetric shape, resulting in a
center of mass closer to the object geometric center. Some
of the objects in the object set exhibit this characteristic.
Other objects, however, have an asymmetric shape and the
weight distributions often create an off-(geometric) center,
CoM location. This generalizes to all types of objects in
real-world with non-uniform density or shape.

VII. CONCLUSION

Intrinsic characteristics are present in every single object
we encounter in the real world and it is important to account
for them during the modeling process. In this work, we
present a scenario where a robot must account for intrinsic
properties (in the form of an object’s CoM) when planning
suction grasps. We view this as a step for an affordance
model that incorporates many different intrinsic properties,
such as an object’s surface friction and rigidity.
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and J. Piater, “Learning grasp affordance densities,” Paladyn, Journal
of Behavioral Robotics, vol. 2, no. 1, pp. 1–17, 2011.

[18] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis,
“Detecting object affordances with convolutional neural networks,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2016, pp. 2765–2770.

[19] M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic, “Affordance
detection for task-specific grasping using deep learning,” in 2017
IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids). IEEE, 2017, pp. 91–98.

[20] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Toss-
ingbot: Learning to throw arbitrary objects with residual physics,”
Proceedings of Robotics: Science and Systems (RSS), 2019.

[21] L. K. Klein, G. Maiello, V. C. Paulun, and R. W. Fleming, “How
humans grasp three-dimensional objects,” bioRxiv, p. 476176, 2018.

[22] M. Veres, M. Moussa, and G. W. Taylor, “Modeling grasp motor
imagery through deep conditional generative models,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 757–764, 2017.

[23] K. Rakelly, E. Shelhamer, T. Darrell, A. A. Efros, and S. Levine, “Few-
shot segmentation propagation with guided networks,” arXiv preprint
arXiv:1806.07373, 2018.

[24] E. Shelhamer and K. Rakelly, “revolver,” https://github.com/
shelhamer/revolver, 2019.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Proceedings of 3rd International Conference on Learning Represen-
tations, 2015.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.


