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Abstract— The main contribution of this paper is the problem
formulation and algorithm framework for 2D laser SLAM with
general features represented by implicit functions. Since 2D
laser data reflect the distances from the robot to the boundary
of objects in the environment, it is natural to use the boundary
of the general objects/features within the 2D environment to
describe the features. Implicit functions can be used to represent
almost arbitrary shapes from simple (e.g. circle, ellipse, line)
to complex (e.g. a cross-section of a bunny model), thus it is
worth studying implicit-expressed feature in 2D laser SLAM.

In this paper, we clearly formulate the SLAM problem
with implicit functions as features, with rigorously computed
observation covariance matrix to be used in the SLAM objective
function and propose a solution framework. Furthermore, we
use ellipses and lines as examples to compare the proposed
SLAM method with the traditional pre-fit method (represent
the feature using its parameters and pre-fit the laser scan to
get the fitted parameter as virtual observations). Simulation
and experimental results show that our proposed method has
a better performance compared with the pre-fit method and
other methods, demonstrating the potential of this new SLAM
formulation and method.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a fun-
damental research problem for autonomous robot navigation
and map construction, comprising robot’s or sensors’ state
estimation and corresponding map construction. In the last
few years, one application that has been widely adopted
by industry and academy is planar SLAM based on 2D
lidar or laser rangefinder, and the number of approaches has
increased [1]–[5].

Currently, the two main common approaches to 2D laser
SLAM are scan matching based approach and feature based
approach. In a typical scan matching based approach, nearby
scans are registered to obtain the relative poses, and then a
pose-graph optimization is performed to obtain the optimized
poses. Finally, the map is built via the optimized poses and
the laser scans. Although it is beneficial for scan matching
not making assumption on environment, a prior knowledge
of the geometrical information is helpful to improve the
accuracy. In the industrial environment with multiple stacks,
for instance, the boundary description of manufactured ob-
jects can be easily obtained from the manufacturer, which
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is workable to model the boundary via implicit functions
for stacks. Furthermore, there is difficulty involved for scan
matching method in accurately fusing information from
consecutive scans.

Fig. 1. Schematic diagram of SLAM with implicit functions. Red rectangle
is the robot starting at [-8, -8]

ᵀ
. Features with implicit functions are defined

by:
Φ̄1

def.
= 0.6x2 − 0.8xy + 0.6y2 + 11.2x− 10.8y + 59.6;

Φ̄2
def.
= 0.4x2 − 2.7x + 0.4y2 + 5.3y + 19;

Φ̄3
def.
= 1.2|x + 2|+ 0.8|y + 2| − 1;

Φ̄4
def.
= 3(1−5(x−5))2e−(5(x−5)2)−(5(y−2)+1)2−10((x−5)−5(x−

5)3−3(y−2)5)e−2(x−5)2−5(y−2)2− 1
3
e−(5(x−5)+1)2−4(y−2)2−0.1;

Φ̄5
def.
= 1.2x4 + 0.4y4 + 2xy + 2.3x3y − 2.

Noted that x and y are points belonging to each feature in global frame.

Feature based approach estimates the parameters of the
feature present in the environment. One basic feature based
SLAM is point feature SLAM [6] where the feature param-
eter is the position of the point feature. Other features used
in laser SLAM include line feature [7], ellipse feature [8],
curve feature [9] and so on. A unified formulation named
matchable was employed in [10] to represent point, line and
plain features. Zhang et al. [11] utilized remote and near
feature parametrization to improve the robustness of rotation
estimation. Holỳ [12] combined points and lines for the
scan matching to decrease the computation time and increase
the accuracy. Our previous work [8] utilized ellipse feature
to reduce the number of points needed during calculation
and to compensate for errors in observations from different
perspectives. Rao et al. [13] extracted Bézier curves and used
four control points to parameterize curve features, then the
optimization problem was solved by Levenberg-Marquardt
algorithm. Pedraza et al. [14] were the first to use spline
to parameterize features and then optimized robot poses and
control points simultaneously.
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However, most of the existing feature based SLAM which
fit features before optimization can only handle limited types
of geometric features, which is possible to lose information.
Zhang et al. [15] extracted circle features from lidar data
and utilized circle centers to estimate navigation line. One
limitation is that they assumed all the features are circle
and possess similar radius. The navigation line is easily
influenced by fitted centers since fitting sparse lidar points
to circles introduced information loss.

In reality, laser scans reflect the boundary of an object,
which could be of arbitrary shape and cannot be easily
described with feature parameters. On the other hand, most
of the boundaries can be expressed by implicit functions
(every point on the boundary satisfies the function, referred
to Section II-C). Thus we would like to ask the question: Is
it possible to use implicit functions as features in SLAM?

It should be noted that implicit functions cover general
geometric features as special cases. As is shown in Fig. 1,
features like circle, ellipse, diamond, or even irregular closed
curve can be expressed by implicit functions. Thus, SLAM
with implicit functions as features is a very general feature
based SLAM and has the potential to be applied in different
scenarios (3D surfaces are implicit functions in 3D).

This paper studies the 2D laser SLAM problem utilizing
implicit functions as features. To the best of our knowledge,
no clear researches are made on formulating features as
implicit functions. We clearly formulate the problem as
an optimization problem, and (a) correctly compute the
observation covariance matrix, (b) formulate a symmetry
energy term for closed shapes. Then, we propose a potential
framework which can be adopted for all the types of features
represented by implicit functions. To illustrate the new pro-
posed SLAM technique, we use ellipse and line features as
two examples to demonstrate how the proposed problem can
be solved by iterative methods. We compare the performance
of our new technique with the traditional pre-fit method and
clearly show the advantages of the proposed approach. Our
main contributions are:
• We propose a framework for implicit function based

SLAM problem by clearly formulating the problem
with implicit functions to represent features, comput-
ing corresponding implicit covariance rigorously, and
presenting a framework for solving the problem using
iterative methods.

• By taking ellipse and line features as examples, we com-
pared the proposed method with the tradition feature
based method and proved the superiority of our method.

• We develop a novel logarithmic form objective function
for features with closed shapes to enhance the conver-
gence of the iteration based algorithms.

II. SLAM PROBLEM WITH GENERAL FEATURES
DESCRIBED BY IMPLICIT FUNCTIONS

In this section, we formulate a general SLAM problem
with features represented by implicit objective functions and
elaborate the feasibility and approaches of solving such a
problem.

A. Notation and Conventions

In this paper, the semicolon is to represent vertical vector
concatenation. An observed point is defined as p ∈ R2, while
p̂ is the same point in homogeneous coordinate. A 2D point
set is denoted by P = [p1, · · · ,pw]

ᵀ
, and the corresponding

homogeneous point set is P̂. We also assume observed points
have a zero-mean Gaussian noise nz ∈ R2 ∼ N (0,Σz).

For an angle φ ∈ [−π, π) , let R(φ) ∈ SO(2) be the
corresponding rotation matrix which is abbreviated as R. The
translation is denoted by t. {G}R, {G}t means the rotation or
translation defined in global frame. To simplify the formula,
{G} is usually omitted.

Suppose a robot pose Ξj = [tj ;φj ], we use T (Ξj ,
{j}χ)

to represent the process of transforming a {j}χ from frame
{j} to global frame {G}, and T−1(Ξj ,

{G}χ) indicates the
opposite process. χ can be a point, a point cloud, or a feature.

In order to evaluate approaches fairly, we assume that
which feature the collected data belongs to is known in the
following sections as well as in the simulation experiments.
The same ground-truth data association is also adopted to
all the other compared methods in simulation to ensure a
fair comparison. The data association of real application is
preprocessed and is discussed in Section IV-E.

B. General Feature Based SLAM Problem

Consider a general feature-based SLAM problem (see Fig.
1). Assume a robot moves n steps in the scenario containing
features Φ1,Φ2, · · · ,Φq . At each step, the robot collects
laser points hitting on features. The state is defined by:

Ψ
def.
=

{
Ξ1 Ξ2 · · · Ξn

Φ1 · · · Φq

}
def.
=< Ξ,Φ > (1)

under the assumption that initial pose Ξ0 = [0; 0; 0]. Thus,
the problem is minimizing the energy function:

argmin
Ψ

Etotal = Eodom +

q∑
j=1

Efeature,j︸ ︷︷ ︸
Efeature

(2)

and each term in Eq. (2) is defined by:

Eodom =
1

2

n∑
i=1

‖f(Zodom,i,Ξi−1,Ξi)‖2Σodom,i

Efeature,j
def.
=

1

2

n∑
i=1

‖g(Zfeature,i,j ,Ξi,Φj)‖2Σfeature,i,j

(3)

where Zodom,i is the observation vector of ith odometry,
Zfeature,i,j is the observation vector of feature j at pose
i.1 f(Zodom,i,Ξi−1,Ξi) and g(Zfeature,i,j ,Ξi,Φj) are the
cost functions for the two entries, respectively. Σodom,i is
the odometry covariance at the ith step. Σfeature,i,j is the
covariance of feature j’s observation from pose i.

1Without loss of generality, we assume feature j is observed from all the
poses 1 to n. For different SLAM formulations, the format of Zfeature,i,j is
different, as seen in Sections III-A and III-B (implicit function), Sections
III-D and III-E (pre-fit).



The energy term of a typical odometry observation (mea-
suring relative pose) is:

f(Zodom,i,Ξi−1,Ξi) = Zodom,i −
[
R

ᵀ

i−1(ti − ti−1)
dist(φi − φi−1)

]
3×1

(4)
where dist(φi − φi−1) is the angle distance between the ith

and the (i− 1)th robot orientation, and Zodom,i is the odom-
etry observation at pose i in the form of [∆xi,∆yi,∆φi]

ᵀ
.

In this paper, geodesic distance is used to find the difference
of angles, which is also known as “wrap”.

C. SLAM with Features Represented by Implicit Functions

Suppose an implicit function Φ̄j(P) = 0 holds2 for a
point set P that belongs to feature Φj and P is in the
global coordinate as well as Φj . As shown in Fig. 1, for
example, feature Φ1 to Φ5 are in complex shapes, and the
corresponding implicit functions Φ̄1 = 0 to Φ̄5 = 0 hold
for every point locating on each feature respectively.

If the perfect observation of Φj at pose i is a point set
denoted by {i}P, it must satisfy the implicit function after
transforming it to global frame, that is:

Φ̄j(
{G}P) = Φ̄j(T

−1(Ξi,
{i}P)) = 0. (5)

Eq. (5) is obviously an implicit function of Ξi,Φj and
{i}P. Since observations always contain noises, still taking
feature j as an instance, the energy term of feature j turns
to be:

Efeature,j =
1

2

n∑
i=1

∥∥Φ̄j

(
T−1(Ξi,Zfeature,i,j)

)∥∥2

ΣΦj ,i
(6)

where Zfeature,i,j are raw points belonging to feature j at pose
i, and ΣΦj ,i is the corresponding covariance, which will be
computed in the next section.

D. Implicit Covariance

In typical least squares problems, the energy term is
E = ‖z − f(x)‖2Σ and Σ is the covariance of the noise
in z. However, the covariance of implicit functions cannot
be obtained directly from observations. Thus the following
lemma is proposed to link the raw observation and the
implicit items and calculate the covariance ΣΦj ,i in Eq. (6).

Lemma 1: Consider a least squares problem with energy
term E = ‖f(x, z)‖2Σf with variables x and observations
z. Assume z = z0 + nz, where nz ∼ N(0, Pz) is a zero-
mean Gaussian noise. Since f(x0, z) approximately follows
Gaussian distribution around z = z0 as:

f(x0, z) ∼ N(f(x0, z0), (JzP
−1
z J

ᵀ

z )−1) (7)

where
Jz =

∂f

∂z

∣∣∣∣
z=z0

(8)

a good choice of Σf in the least squares problem is

Σ−1
f = JzP

−1
z J

ᵀ

z (9)

2We use Φj to represent the feature j and use Φ̄j to represent the
feature’s implicit function.

Proof: See Appendix V.
Remark 1: Since it is impossible to obtain z0 during

practical experiments, which are the ground truth of z.
Because the noise influence of observed points is similar to
that of ground truth points when the observations are near the
exact positions, we use the observed points to approximately
calculate the covariance in Eq. (6). The experiment in Section
IV-B shows the validity.

E. Approaches to Solve the SLAM Problem

One important difference between the new SLAM problem
and a traditional feature based SLAM is: Feature Φj in
Eq. (1) is expressed by an implicit function instead of a
finite-dimensional vector. Thus Ψ in Eq. (1) is not a typical
state vector and the problem cannot be directly solved using
iterative methods.

However, if we can identify some “changeable parame-
ters” in each feature Φj , then the problem is to find these
changeable parameters together with the poses such that the
total energy is minimized.

Suppose the “changeable parameters” in feature Φj

are defined by s elements in a vector form
−→
Φj =

[Φj1 ,Φj2 , · · · ,Φjs ]
ᵀ

, then standard iterative methods such
as Gauss-Newton and Levenberg-Marquardt can be used to
solve the problem.

Suppose the incremental ∆ is defined by:

∆
def.
=

{
∆Ξ1 ∆Ξ2 · · · ∆Ξn

∆
−→
Φ1 · · · ∆

−→
Φq

}
def.
=< ∆Ξ,∆

−→
Φ > .

(10)

Since we need to find ∆, an ⊕ operator is defined to apply
the increment ∆ to Ψold as:

Ψnew
def.
= Ψold ⊕∆

def.
=

{
Ξ1 ⊕∆Ξ1 · · · Ξn ⊕∆Ξn

Φ1 ⊕
−→
Φ1 · · · Φq ⊕

−→
Φq

}
def.
=< Ξold ⊕∆Ξ,Φold ⊕∆

−→
Φ > .

(11)

The step increment ∆ can be calculated by LM method.
The Jacobian of feature j alone is given as an example:

Jj =
[
∂Φ̄j

∂Ξ
∂Φ̄j

∂Φj1
· · · ∂Φ̄j

∂Φjs

]
(12)

the first element in Jj is the derivative with respect to all the
poses.

It is worth noting that the covariance adaptively varies
according to Lemma 1, and the implicit function allows very
flexible representation of the features in the environments.
The “changeable parameters” is a way to parameterize the
feature and adjust an initial value for the general feature
when the more detailed shape information of the feature
becomes available. Currently, the number of parameters is
determined manually to help optimization.



F. An Improved Objective Function for Closed Shape

One inevitable problem of implicit functions is: for fea-
tures with closed shapes, the value of implicit functions Φ̄j in
the error term Efeature,j various from −% (inside the boundary,
where % > 0, varying from different implicit functions) to
0 (at the boundary) and then from 0 to +∞ (outside the
boundary). % is generally a small number. The value of
Φ̄j changes slightly within the boundary, while the change
outside the boundary is dramatic. This will make it difficult
for the energy term to quickly decline to the optimal solution
when the virtual observation points are inside the boundary
during iterations.

We propose to improve Φ̄j to Φ̄?
j , following:

Φ̄?
j = log(

1

%
Φ̄j + 1) (13)

then the value of Φ̄?
j varies from −∞ (inside the boundary)

to +∞ (outside the boundary).

(a) Value of Φ̄5 (b) Value of Φ̄?
5

Fig. 2. Comparison of implicit functions for Φ5. Red line is the boundary
of feature Φ5. Blue contours are the values of Φ̄5 and Φ̄?

5 , respectively.

Fig. 2a shows a general implicit function defined by the
following function, taking Φ5 (in Fig. 1) as an example:

Φ̄5(P) = 1.2x4 + 0.4y4 + 2xy + 2.3x3y − 2 (14)

where a point set is P = [x,y] ∈ Rw×2 belonging to
Φ5. Obviously, the value of Φ̄5 outside the boundary grows
rapidly (from 0 to 200), while that inside the boundary does
not change much (from 0 to -5). Such value distribution can
cause an inefficient descending problem.

Hence, a logarithmic function is applied to reconstruct the
original implicit function as:

Φ̄?
5(P) = log(

1

%
Φ̄5(P) + 1) (15)

where % = 0.1543 for Φ5.
Fig. 2b depicts the improved implicit function. The value

of Φ̄?
5 inside and outside the boundary changes relatively

evenly, showing a symmetry property and leading to a steady
convergence.

III. ILLUSTRATION OF THE PROPOSED METHOD
WITH TWO EXAMPLES

In this section, we use two examples (ellipse feature and
line feature) to compare our method (called “post-count”)
with the traditional pre-fit method.

A. Post-count Method: Ellipse Feature

Suppose for an arbitrary point p = (x, y)
ᵀ

defined in the
global frame. Then Φ̄j is:

Φ̄j(p) =
((x− Fx) cosFφ + (y − Fy) sinFφ)

2

F 2
r1

+
(− (x− Fx) sinFφ + (y − Fy) cosFφ)

2

F 2
r2

− 1

(16)
where (Fx, Fy) is the center of the ellipse, Fφ is the angle
between the major axis of the ellipse and x axis, Fr1 and
Fr2 are the major and minor axis respectively, and the vector
form of changeable parameters for ellipse feature is

−→
Φj =

[Fx, Fy, Fφ, Fr1Fr2 ]
ᵀ

. The reason of formulating
−→
Φj as the

given way is to facilitate comparison with the pre-fit method,
which requires reasonable feature parametrization (discussed
in Section III-D and Section III-E).

(a) Value of Efeature,j . (b) Value of E?feature,j .

Fig. 3. Comparison of energy terms utilizing Eq. (16) and Eq. (17) for
ellipse feature.

We reduce the dimensions of Eq. (16) to 2 by fixing the
last three parameters of

−→
Φj and robot poses in order to

illustrate the convergence ability. Fig. 3a depicts the energy
term Efeature,j =

∥∥Φ̄j(p)
∥∥2

Σ
, and the black ellipse is the

ground truth ellipse [0, 0, 0, 2, 1]
ᵀ

depicted in xy-plane. It
seems that the function can converge well for any point from
a macro perspective. However, the fact is that Efeature,j is
hard to converge when the observed points locate within the
ellipse area. As shown in the sub-figure in Fig. 3a, we drew
a line where x = 0 as an instance. The value of Efeature,j

varies slightly if |y| ≤ 1, which means the gradient is too
small. It is worth mentioning that this figure is only a 2-
dimension example. The real function is in high-dimension,
and it is far more difficult for the energy function to decline
in the right direction when the observed points are inside the
ellipse area.

As the result, we reconstruct the implicit function by:

Φ̄?
j (pa) = log(Φ̄j(pa) + 1). (17)



Depict the new energy term in a similar way E?feature,j =∥∥Φ̄?
j (p)

∥∥2

Σ
and the result is shown in Fig. 3b. In this

example, the new objective function provides a sharp decline
when points fall inside the ellipse. It is still easy to descend
due to a large change in energy function.

The details of g(Zep,i,j ,Ξi,Φj), E?feature,j and ΣΦj ,i can
be found in [16, Appendix C].

B. Post-count Method: Line Feature

Similarly, assume {i}PΦk
is the homogeneous point set of

kth line feature in the pose i. The observations are defined
by Zlp,i,k = {i}PΦk

.
−→
Φk = [lα, p]

ᵀ
is the vector form of

changeable parameters normalized by p ≥ 0. The implicit
function of Φk is:

g(Zlp,i,k,Ξi,Φk) = Φ̄k(T (Ξi, Zlp,i,k))

= cos lαx + sin lαy − p
(18)

x and y are column vectors of Zlp,i,k. Since p is a scalar, the
“-” operator represents p is subtracted from each element in
the preceding term.

The details of g(Zfeature,i,k,Ξi,Φj), Efeature,k and ΣΦk,i

are also listed in the full version at [16, Appendix C].

C. Traditional Feature-based SLAM Problem: Pre-fit

In traditional feature-based SLAM using pre-fit, the obser-
vation Z̃feature,i,j is obtained by fitting the raw data following
a certain parametrization, and the covariance Σ̃feature,i,j is
from the fitting result. Hence, the optimization problem aims
to minimize the energy cost Ẽfeature,j between actual ob-
servation Z̃feature,i,j and theoretical observation T−1(Ξ,Φ).
To obtain the theoretical observations, we need to transform
feature states from global frame to the corresponding local
frame. In order to distinguish annotations from post-count
method, we use F to denote features. Taking feature j as an
example, the energy cost can be expressed as:

Ẽfeature,j =
1

2

n∑
i=1

‖Z̃feature,i,j − T−1(Ξi,Fj)‖2Σ̃feature,i,j
.

(19)
It is worth noting that Fj depends on how the feature
is parameterized, instead of only in the point form. And
Z̃feature,i,j is always in the same format of the feature state. It
is easy to find Σ̃feature,i,j if features can be observed directly
or fitted by raw data in advance. The comparison of pre-fit
and post-count method is shown in Tab. I.

D. Pre-fit Method: Ellipse Feature

The raw data can be used to fit an ellipse, one method is
presented in [8]. Denote Z̆ef,i,j as the observation of the jth

ellipse feature at pose i, then Z̆ef,i,j = {i}F̆j , where {i}F̆j
is the actual observation of {i}Fj .

Hence the pre-fit ellipse observation function can be
written as:

g(Z̆ef,i,j ,Ξi,Fj) = {i}F̆j −

T−1(Ξi,Fjxy )
dist(Fjφ − φi)

Fjr1,r2


5×1

(20)

where Fjxy ,Fjφ and Fjr1,r2 are the position, angle and axis
dimensions of the jth feature in global frame, respectively.
An extra wrap step is still needed for the 3rd element.

The ellipse feature uncertainty Σef,i,j is easily computed
by Σ−1

ef,i,j = J
ᵀ
Σ−1
z J (Discussed in our previous work [8,

Eq. 16]).

E. Pre-fit Method: Line Feature

We replace Fk with Lk to represent the line feature to
distinguish it from ellipse features. Suppose the kth line state
vector is parameterized by lk = [αk, pk]

ᵀ
(pk ≥ 0). Then the

corresponding line feature Lk normalized by lk is Lk =
[cosαk, sinαk,−pk]

ᵀ
. The observation of kth line features

in the local frame {i} is obtained by intuitively minimizing
the distance from discrete points to the line Z̆lf,i,k = {i}Lk.

The detailed derivation of pre-fit line model can be found
in the full version at [16, Appendix B, Lemma 2] and it can
be written as:

g(Z̆lf,i,k,Ξi, lk) = {l}Lk − T−1(Ξi,Lk) (21)

Remarked here that an implicit mapping lk ← Lk is done to
accomplish the state vector.

The uncertainty of line energy function Σlf,i,k can be
developed by Σlf,i,k = diag(Σz, 0) according to Zhao et
al. [17, Eq. (19)].

IV. EXPERIMENTS AND ANALYSIS

In this section several numerical examples were considered
to analyze the performance of the proposed method: firstly,
we investigated the validity of Lemma 1; secondly, we
compared the results of our method and pre-fit method; then
we tested our method by fixing the covariance to evaluate
Lemma 1; we also compared the performance between the
improved implicit functions for ellipse feature with the
original functions; and finally, we tested the robustness to
observation noise level and checked the influence of fusing
different types of features on both methods.

A. Simulation Environment

The simulated environment is a 15 m×8 m space contain-
ing walls and ellipse features. The robot starts at [0, 0, 0]

ᵀ
and

odometry information is provided via a virtual wheel encoder
with a random Gaussian noise diag(0.42, 0.42, 3e−6). The
initial observation noise is a random Gaussian noise nz ∼
N(0,diag(0.052, 0.052)). A 2D lidar is simulated with the
valid range of 10m and the angle resolution of 0.33◦. Range-
Azimuth model is adopted for simulation, but the range-
bearing data is transferred to Cartesian coordinate to form
the observation. Only points within valid range and hit on
features can be observed.

Our algorithm was tested in multiple settings: pre-fit
method with ellipse feature only (denoted as pfE), with
line feature only (pfL), and with both ellipse and line
feature (pfEL); post-count method with ellipse feature only
(denoted as pcE), with line feature only (pcL), and with
both ellipse and line feature (pcEL). All the three post-count
methods implemented variable covariance for ellipse and



TABLE I
COMPARISON OF TRADITIONAL FEATURE BASED METHOD (PRE-FIT) AND IMPLICIT FUNCTION FEATURE BASED METHOD (POST-COUNT)

Traditional feature based SLAM: Pre-fit Implicit function feature based SLAM: Post-count

Observation Depending on feature parametrization Z̃feature,i,j Raw points Zfeature,i,j

Properties† Need parametrization Fj Need Implicit function Φ̄j(p)

Objective
function

Equation‡ 1
2

∑n
i=1 ‖Z̃feature,i,j − T−1(Ξi,Fj)‖2

Σ̃feature,i,j

1
2

∑n
i=1

∥∥Φ̄j

(
T−1(Ξi,Zfeature,i,j)

)∥∥2

ΣΦj ,i

Frame change From global frame {G} to local frame {L} From local frame {L} to global frame {G}

Covariance

Notation Σfeature,i,j ΣΦj ,i

Dependence Depend on feature’s fitting; fixed Depend on feature’s implicit function; vary in each
iteration step

Information loss Accumulate with time and poses No accumulation
† Pre-fit: Different feature-based SLAM methods differ in parametrization. Post-count: Each kind of features possesses a unique implicit

function which holds for all the points belonging to the feature.
‡ Odometry part is omitted in the table.

TABLE II
RMSE COMPARISON OF MULTIPLE SETTINGS. THE DEFINITION OF ABBREVIATIONS IS IN SECTION IV-A.

pfE pfL pfEL pcE pcL pcEL pcEL fixCov pcEL oldFun pcEL oldFun fixCov

x/m 0.0974 0.1038 0.0806 0.0940 0.0776 0.0749 0.0780 0.0614 0.0940
y/m 0.1713 0.1332 0.1128 0.0762 0.1695 0.0520 0.0693 0.0872 0.1608
t/m 0.1971 0.1689 0.1386 0.1210 0.1864 0.0912 0.1043 0.1066 0.1863
θ/rad 0.0058 0.0068 0.0059 0.0067 0.0059 0.0043 0.0044 0.0078 0.0047
Remark: pf stands for pre-fit; pc stands for post-count; E stands for ellipse; L stands for line.

line features according to Lemma 1. As a comparison, post-
count method with a given unchanged covariance for both
ellipse and line features is prepared (pcEL fixCov). Another
two comparisons are post-count method with original ellipse
objective function (Efeature,j by Eq. (16)) (pcEL oldFun)
and the same configuration except fixing covariance matrix
(pcEL oldFun fixCov).

B. Feasibility of Implicit Covariance

(a) Noise of ellipse feature (b) Noise of Line feature
Fig. 4. Uncertainty comparison. Red line is the 3-Sigma bound calculated
by Lemma 1. Blue points are real values of implicit functions obtained by
repeated experiments.

In this part, we used ellipse and line feature for verification
of Lemma 1. We firstly verified whether g(Zfeature,i,j ,Ξi,Φj)
yields to ΣΦj ,i via feature points by Monte Carlo experiment.
300 points on the edge of an ellipse and a line are selected
respectively. Under the given noise, we repeatedly calculated

both ellipse and line’s implicit functions Φ̄j and Φ̄k with
noisy observation and noisy Ψ by 1000 times and marked
all results at each point as blue dots, as is illustrated in
Fig. 4. The red line represents 3-sigma bound that obtained
by Lemma 1. For both ellipse and line features, over 90%
sampled data are strongly limited in 3-sigma bound, which
verifies Lemma 1 statistically.

C. Results Comparison

Fig. 5. Trajectory comparison. 3-sigma bound for robot’s positions are
depicted by shadowed ellipse in specific color.

We compared the results of pcEL and pfEL, as shown
in Fig. 5. Because the line parameters in this paper cannot
represent line segments, the end points of each line at the first
observation are maintained dependently (Do not participate



in the optimization. We assume each observed line feature
contains all the points.) and the resulted line features are
drawn by transforming the end points to global frame. They
are not accurate lines but to make the results look better.

Obviously, the trajectory of pcEL is much better than
that of pfEL. Some sharp “jump” occurred for pfEL due to
the badly-fitted observations. The Root Mean Square Error
(RMSE) of pose is shown in the Tab. II. A main conclusion
is that the pre-fit model usually possesses a higher error
level than post-count model. The position error of pfEL is
0.1386m, while that of pcEL is 0.0912m, which is much
smaller than pfEL. Also, the final covariance of position of
pcEL is smaller than that of pfEL according to Fig. 5.

Then we evaluated pcEL fixCov in the same simulation
environment. In Tab. II, it can be found that the RMSE of
pcEL fixCov is slightly bigger than pcEL, but smaller than
any pre-fit approaches and post-count approaches.

D. Influence of Feature Fusion and Robustness

A secondary conclusion can be derived from Tab. II is that
the combination of ellipse and line features can effectively
improve the accuracy of the results compared with settings
only using one type of feature, whether it is pre-fit method
or post-count method.

Fig. 6. Error changes with noise increasing.

In the last experiment, we tested both pre-fit model and
post-count model with observing noise level increasing. The
observing noise increases from 0.05 m to 0.1 m, and for
each level we tested both algorithms by 50 Monte Carlo
experiments and used the average error to depict Fig. 6.

It is clear that post-count method is more robust to noise
than pre-fit method on both position error and rotation error.
The reason that pre-fit model performs badly is that the larger
the noise is, the less accurate the fitted features are.

E. Practical Experiment

In this part we implemented our approach on a real
scenario. The experiment is conducted in a lounge consisting
of several near-elliptical features (7 of which are manually
made and 1 of which is a round sofa) and glass wall. The
data is collected via Fetch robot [18]. The data association is
executed by two aspects: 1. we clustered the discrete points

(a) Practical scenario: a lounge consisting of
several near-elliptical features

(b) The irregular feature. On the right is the
estimated feature by our method

(c) Comparison of our method and Cartographer. Re-
gion A, B and C are highlighted to compare the results.

Fig. 7. Practical experiment.

of elliptical features by roughly projecting points back to
the initial frame via odometry information since the number
of features is known and features are sparsely placed; 2. a
simple way is used to associate lines. We first extract lines
at each single scan and then projecting line parameters to
the initial frame via odometry. As each line is represented
by the distance to the line and the angle of its normal line,
a threshold is selected to determine to merge the same lines.

The experiment compared our method and the state of the
art Cartographer [4]. As is shown in Fig. 7, we chose 7 ellipse
features and 1 irregular feature with quartic implicit function
(the irregular feature) in order to evaluate our method on
general shape features. The global guess of irregular feature’s
parameters is given by quartic parameters. The results of our
method and Cartographer are depicted in Fig. 7c. Similar to
simulation, line feature are depicted as segments for a better



visualization. In the first row we depicted results of both
Cartographer and our method together to show the difference.
Since the ground truth in real scenario is not available, we
cannot quantitatively evaluate the two methods. However,
it is possible to compare the results by re-projecting scan
points back to the initial frame via estimated poses of either
method. Three rectangle areas are highlighted in the figure.
In region A, more points of Cartographer exceed features’
boundaries, while our method can maintain the basic shape
of features. In region B and C, Cartographer’s results show
a clear dispersion compared with our method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a clear problem formulation and a solution
framework for implicit function based SLAM problem are
proposed. Two challenges involved in this novel SLAM
problem are addressed. One is finding the covariance of the
noises involved in implicit energy terms. Another is handling
the asymmetry of the energy terms for closed shape features.
Simulation results using ellipse and line features as examples
shows that the proposed method is more robust to observation
noises and outperforms the traditional pre-fit method. It is
also shown that using hybrid features can achieve better
accuracy in SLAM compared with SLAM with only ellipses
or lines. Practical experiment illustrates that our method has
the ability to acquire accurate result.

This paper is the first step in investigating SLAM prob-
lem with implicit function as features. More experiments
using actual laser data are required to further confirm the
effectiveness and the performance of the proposed approach.
Integrating feature identification methods such as machine
learning into the proposed framework to build up a practical
SLAM system is the next step of this research. The idea of
this paper can be easily extended to 3D lidar-based SLAM.
Effectively and accurately modeling complex 3D features
using implicit functions and using them in practical 3D lidar-
based SLAM and RGB-D based SLAM is our future work.

APPENDIX

In this appendix, we give the proof for Lemma 1.
Proof: [Proof of Lemma 1] Let f(x0, z0) = f0 and

Jx = ∂f
∂x

∣∣∣
z=z0,x=x0

. Expand f(x, z) around z0 and x0:

f(x, z) ≈ f0 + Jz(z− z0) + Jx(x− x0) (22)

and f(x0, z) around z0 is:

f(x0, z) ≈ f0 + Jz(z− z0) = Z. (23)

Since z has zero-mean Gaussian noise nz, the probability
distribution of Z yields:

Z ∼ N(f0, (JzP
−1
z J

ᵀ

z )−1) (24)

Hence, f(x0, z) approximately follows:

f(x0, z) ∼ N(f0, (JzP
−1
z J

ᵀ

z )−1) (25)

Then the minimizing problem can be rewriten by:

argmin
x

F ≈ ‖f0 + Jz(z− z0) + Jx(x− x0)‖2Σf

= ‖Z−A∆x‖2Σf
(26)

where
A = −Jx, ∆x = x− x0 (27)

Thus a good choice of Σ−1
f is Σ−1

f = JzP
−1
z J

ᵀ

z .
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Miró, “Extending the limits of feature-based slam with b-splines,”
IEEE Transactions on Robotics, vol. 25, no. 2, pp. 353–366, 2009.

[15] C. Zhang, L. Yong, Y. Chen, S. Zhang, L. Ge, S. Wang, and W. Li,
“A rubber-tapping robot forest navigation and information collection
system based on 2d lidar and a gyroscope,” Sensors, vol. 19, no. 9,
pp. 2136–2156, 2019.

[16] J. Zhao, L. Zhao, S. Huang, and Y. Wang. (2020) 2d laser
slam with general features represented by implicit functions (full
version). Github. [Online]. Available: https://github.com/JiahengZhao/
ImplicitFunction

[17] L. Zhao, S. Huang, L. Yan, and G. Dissanayake, “A new feature
parametrization for monocular slam using line features,” Robotica,
vol. 33, no. 3, pp. 513–536, 2015.

[18] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
and freight: Standard platforms for service robot applications,” in
Workshop on autonomous mobile service robots, 2016.


