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Abstract— This paper investigates the effect of time-varying
delays in bilateral teleoperation, with respect to stability and
performance, using the properties of passivity-shortage. Until
recently, the desired stability and performance characteristics
were achieved using the concept of passivity. However, passivity
is limited to systems of relative degree zero or one, while
passivity-shortage includes systems of higher relative degrees
and possibly of non-minimum phase. Passivity-shortage also
arises naturally when data transmission is subject to delays,
either constant or time-varying. In this paper, the properties
of passivity-shortage are employed to design a simple negative
feedback controller. We show that the proposed method pro-
vides a faster responding solution and improved performance
compared to the existing approaches. The performance im-
provements include improved steady-state error convergence,
and robustness against environmental disturbances, even in the
presence of varying delays.

I. INTRODUCTION

Bilateral teleoperation is a two-way communication and
coordination framework between master and slave robotic
systems (Fig. 1). The input and output information such
as position, velocity, and torque is communicated back and
forth between the two systems. The master robot (which
could be either physical or virtual) is controlled by a human
operator based on the feedback from both the robots, while
the slave robot gets its input from the master robot and the
environment. The goal of teleoperation is to make the slave
robot coordinate with the master robot, to either replicate its
actions or to work together.

The communication channel between the robots may
incur delays that can cause performance degradation and
even instability in teleoperation systems. Furthermore, time-
varying delays can stretch or compress signals and increase
position error between the two robots, thereby degrading the
performance of teleoperation [1].

The issue of instability and performance caused by time
delays is addressed by designing an appropriate controller.
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Over the past decade, several controls were reported for
systems with either small or large delays. In the case of large
delays, the so-called virtual environment based approach,
such as [2]–[5], was used to generate new models for tele-
operation scenarios, but no stability proof was reported. The
stability proof is generally based on the passivity properties
of robot dynamics (from torque input to velocity output). A
detailed survey of the existing passivity based approaches is
provided in [6], [7]. The classical approaches include two-
port formulation such as scattering transformation (linear
transformation of input-output signals to wave variables)
approaches [8], [9], force reflecting algorithm using wave
variable based four-channel approach discussed in [10], [11],
time-domain passivity approach (TDPA) discussed in [12],
[13], all of which address stability issues related to delays
by passifying the communication channel, under the de-facto
assumption that the robot dynamics are passive.

It is interesting to note that most systems in real life are
not passive since passivity is very restrictive. It requires the
system to be of minimum phase with relative degree equal to
zero or one. Specifically, the robot dynamics is not passive in
the position-force domain for all frequency ranges [14]–[16].
Even when the system is not linear and not passive, many
methods aim to correct the uncertainties to make the master
and slave system passive. These methods include integral
quadratic constraints (IQC) [17]–[19], that compensate for
the delay in the communication channel, saturation and
monotone nonlinearity of the environment by considering
them as a separate block connected in negative feedback with
the linear passive system by using appropriate multipliers
to make the overall system passive and compensate for the
lack of passivity, by introducing an excess of passivity, and
[20] where a neural network is proposed to eliminate the
dynamic uncertainties of the systems, and [21] eliminates
the constraints on the varying delay using adaptive laws,
[22] proposes a switching control to guarantee the passivity
of teleoperation, with position feedback to improve their
tracking performance. Stability proof of all these approaches
requires the overall system to be passive.

In addition, there exists studies in the position-force do-
main that does not make any passivity assumptions. The au-
thors of [23] consider the telerobotics systems as a functional
differential equation, and use adaptive control to design
stable bilateral teleoperation. A high-gain velocity observer is
used in [24], to show the convergence of position error, in the
presence of time delays. PD-like controllers are used in [25],
where the solutions of linear matrix inequalities are used to
analyze the stability, [26] uses the same approach with the
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terminal sliding mode controller to estimate its velocity. In
these existing approaches, the knowledge of the dynamics of
the system is required to design the controller.

An alternate dissipativity-based teleoperational framework
based on the concept of passivity-shortage is proposed in
[15], which can employ systems of higher-order (with rel-
ative degree zero, one and more). Passivity-shortage is an
extension of passivity, where the system under consideration
is energetically bounded by input-output power, input energy
and output energy (instead of just input-output power as in
the case of passive systems) [27]. In [28]–[30], passivity-
shortage-based semi-autonomous human-robot swarm inter-
connection is discussed, and the authors observe the tendency
of the human operator to lose passivity and become passivity-
short in various scenarios such as network delay when the
inter-robot network is sparse [29], when the human operator
is not trained enough [30], especially when the network
includes multiple slave robots. The insufficiency of passivity
has been well established in recent literature, but only a little
information is evident about what lies beyond passivity.

Our primary goal is to develop a teleoperation framework
that guarantees both stability and good performance (in the
sense of position tracking), that works beyond passivity. This
paper extends the results of our earlier conference version
[15] by considering both time-varying communication delays
and robot-environment interactions. The highlights of the
results shown in this paper are as below:

1) varying time-delays by nature are passivity-short,
2) appropriate feedback interconnections of passivity-

short systems can guarantee L2 stability of the overall
system in the presence of environmental disturbances
and varying time delay.

3) Experimental results (using Phantom Omni devices)
show that the proposed approach has less chattering
and improved steady-state error convergence compared
to the existing approaches.

The rest of the paper is organized as follows: A brief
overview of passivity-short systems, their properties, and the
problem statement are given in section II. Two different
configurations of passivity-short systems are investigated,
and their stability conditions are developed in section III.
The performance of the proposed feedback control method
is analyzed in section IV to show that the proposed method
has better performance in terms of phase lag and steady-
state error when compared to the existing methods. Section V
provides the experimental results and they are in agreement
with the results from the earlier sections.

II. PRELIMINARIES

Consider the following general class of dynamic systems:

ẋ = f(x, u), x(0) = x0,

y = h(x, u),
(1)

where u ∈ <m, x ∈ <n, and y ∈ <p. Dynamic mapping P
of system (1) denotes the input-output mapping from input
u to output y. Mapping P can be analyzed and characterized

generally using the dissipativity theory [31] or, more specif-
ically, the passivity-short property [27] defined below (often
coupled with an appropriately designed feedback control).
Definition: Dynamic mapping P of system (1) is said to be
input passivity-short or simply passivity-short if there exists
a positive definite and continuously differentiable storage
function V (x) and non-negative weights {ε, %} such that

V̇ =

(
∂V

∂x

)T
f(x, u) ≤ uT y + ε

2
‖u‖2 − %

2
‖y‖2. (2)

The system (1) is said to have passivity-shortage or is
said to be passivity-short as energy changes of the system
are upper bounded by the weighted sum of power injected,
input energy and output energy. On the other hand, energy
changes of a passive system are upper bounded only by the
input-output power injected. That is, if ε = 0 in (2), mapping
P is said to be passive. In addition, according to (2), system
(1) is L2 stable with and L2 gain of 2ε

% + 4%2.
Passivity-shortage and passivity have different implica-

tions for system stability. Previous studies have identified
certain properties of the passivity-short systems that are
distinctly different from that of passive systems with respect
to stability and delay. The following properties summarize
the results from these studies:
P1 System (1) is L2 stable, if V (x) is positive definite and

% > 0 [32], [33].
P2 When % = 0, system (1) can recover its L2 stability

using a negative feedback control u(t) = v − y(t)
ε for

the input output pair, {v, y} [33].
P3 If system (1) is L2-stable passivity-short and zero-

state observable, then according to the Lyapunov direct
method, (1) is asymptotically stable at the origin [33].

P4 Nyquist plot of a passive system lies completely on the
left half of the s-plane, but an L2 stable passivity-short
system is not limited to the left half of the s-plane. It
can lie slightly on the right half plane.

P5 Negative feedback interconnection of two passivity-short
L2 stable systems are also passivity-short and L2 stable,
under certain gain conditions [27].

In the subsequent discussion, the passivity-short and L2-
stability properties are established for robotic dynamics in
general. Consider the n-link dynamics for the ith robot:

Mi(xi)ẍi + Ci(xi, ẋi)ẋi + gi(xi) = τi, (3)

where xi, ẋi, ẍi are joint displacement, velocity and acceler-
ation, respectively; Mi(xi) is the inertia matrix, Ci(xi, ẋi) ≤
ξci(xi)‖ẋi‖ is the Coriolis matrix, ξci(xi) is either a known
constant if the arm is all-revolute-joint or a known function
if the arm has prismatic joint(s), gi(xi) is the gravity vector,
and τi is the torque control input chosen as

τi = vi + gi(xi)− kpixi − kvi ẋi, (4)

which is a simple PD feedback control, with gravity com-
pensation, and vi is the overall system input (for force or
torque). And, the corresponding Lyapunov function is given



Fig. 1: Bilateral Teleoperation

by

Vi =
[
xTi ẋTi

] [ αiI σiMi

σiMi Mi

] [
xi
ẋi

]
= αix

T
i xi + ẋTi Mi(xi)ẋi + 2σiẋ

T
i Mi(xi)xi, (5)

where αi > 0 is a constant, σi is a positive constant sat-
isfying σ2

i ≤ αiλmin(Mi)/λ
2
max(Mi). It is straightforward

to verify that, under the choices of αi and σi, Lyapunov
function (5) is positive definite. Based on standard properties
of robotic dynamics summarized in [34], it is shown in [15]
that the robot dynamics in (3) is passivity-short and L2

stable from input vi to position output xi, with passivity-
short indices [%i, εi] = [kpi , 1/(2αi − λmax(Mi))] in (2).

Remark 1: Passivity holds only from vi to velocity output
ẋi. One of the existing approaches in the literature to address
the loss of passivity is to introduce an input feedforward, but
passivity is only for the augmented output and the real system
output suffers from degraded performance. In comparison,
the proposed method establishes passivity-short and L2-
stable properties for the physical output.

In addition, it has been proven in [15] that properties of
passivity-short systems are retained in different configura-
tions, and in teleoperation in the presence of constant time
delays, and it is extended to the varying-delay case in this
paper. Teleoperation is a negative feedback configuration of
robotic systems with delayed communication channels as
shown in Fig. 1. In a force-position based teleoperation cycle,
the following steps take place: the master system receives
an operator force Fh; the slave system receives a delayed
version of the transmitted signal from the master (torque
τm); the slave system which is subjected to an environmental
force (Fe), sends its feedback (xs) back to the master. Since
passivity is a special case of passivity-short systems, the
master/slave systems can be passive (if the output/input is
velocity) or passivity-short. The master robot sends its state
as well as the received slave state back to the operator. The
communication channels back and forth may have different
delays, which may vary with respect to time, which is the
main issue that the proposed feedback control design should
tackle.

The control design problem is to synthesize both master
and slave controllers to meet the following objectives:
(i) For any finite time-varying delays incurred in the com-

munication channels, the overall system is to be input-
to-state stable (with respect to operator input Fh).

(ii) If the communication channels are interrupted, the sys-
tem remains to be stable.

(iii) Since the operator has direct control of the master

device and wishes to control the slave (through delayed
channels), the proposed controls are to minimize the lag
and errors between the master output and slave output.

(iv) The overall system remains L2 stable, even when the
environment is not stable.

III. EFFECTS OF VARYING TIME DELAY

In this section, time-varying delayed interconnections of
passivity-short systems are investigated in serial and feed-
back configurations. It is shown that passivity-short systems
arise naturally from these configurations. The conditions for
parameter selection are presented, which would eliminate
the potentially destabilizing effect of varying time delays
and preserve passivity-shortness and in turn stability of the
overall system.

A. Serial Connection

Consider a serial interconnection of dynamic mapping P
of input-output pair {u, y} and a time-varying delay channel
whose output is z(t) = y(t− T (t)), as shown in Fig. 2a.

In what follows, an assumption regarding the bounds on
the rate of change of delay is discussed. In general, bounds
can be set on either the delay itself or on the rate of change
of delay, which is less restrictive than the former.

Assumption 1: The maximum rate of change of delay is
lesser than 1, Ṫmax < 1.

Note that for a causal continuous system, Ṫ ≤ 1 is
naturally guaranteed [35]. For different values of Ṫ , the
following outcomes are observed on the sample time ts =
(t− T (t)) and the delayed signal:
• If the delay increases with Ṫ < 1, the sample time

increases slowly, and the delayed signal is stretched.
• If the delay increases as fast as the time itself with
Ṫ = 1, the delayed signal becomes a constant.

• If the delay increases faster with Ṫ > 1, then the sample
time goes backward, making the system non-causal.

To preserve all the data, and the order in which the data is
transmitted, the rate of change of delay should be less than
1. In the case of discretized systems, the rate of change of
delay can be higher than one. Then, a discretized counterpart
of the preliminary results in this paper can be derived using
the conditions in [36]. This paper only considers continuous-
time systems, and hence Assumption 1 is held throughout the
paper.

The following lemma summarizes the stability properties,
and its proof is included in the appendix.

Lemma 1: Consider passivity-short mapping P as defined
in (2) and with weights {ε, %}. Suppose that there exist
positive constants c1, c2 and %′ such that

% ≥ c1 +
1

c2
, (6)

0 ≤ inf
t

[
c1
2

(
1− Ṫ

)
− 1

2c2

]
4
= %′. (7)

Then, the dynamic mapping P ′ from u to z is also passivity-
short with weights {ε′, %′}, where ε′ = ε + 2c2 and %′ is
defined by (7).



(a) Serial configuration

(b) Feedback configuration

Fig. 2: Interconnection of a passivity-short system and a
time-varying delay

The Assumption 1 ensures inequality (7) and in turn
existence of %′ > 0 since inequalities (6) and (7) can be
satisfied by choosing small c1 and large c2. Thus, L2 stability
of the serial connection in Fig. 2a is assured.

The expression of ε′ = ε + 2c2 has two implications.
First, it illustrates the invariance of passivity-shortage under
time delay. Second, a pure time delay is not passive (its
Nyquist plot is a unit circle, refer property P4) and, as shown
by lemma 1, a passive system (with ε = 0) followed by
a time delay is no longer passive but passivity-short (i.e.,
ε′ > 0). That is, a time delay or a delayed dynamic system
is passivity-short by nature. This is one of the reasons that
the passivity-short framework is adopted in this paper to
investigate the stability of teleoperation.

It is important to note, when % = 0, mapping P is
passivity-short but not L2-stable. In this case, inequality (6)
cannot be satisfied, thus resulting in an additional positive
term and consequently, loss of L2 stability. Nonetheless, ac-
cording to the property P2, the L2 stability can be recovered
by using a feedback control u(t) = v − bz(t) with the new
input-output pair {v, z}.

B. Feedback Configurations

It is known that passivity is preserved in a delayed negative
feedback interconnection. In this subsection, it is shown
that the same property applies to a passivity-short system
as well. Besides, it can also be shown that a varying-time
delayed positive feedback interconnection of any system is
also passivity-short, and L2 stability can be achieved by
a simple feedback interconnection. The following lemma
summarizes the stability results, and its proof is analogous to
that of Lemma 1, and due to space limitation, it is omitted.

Lemma 2: Consider passivity-short mapping P as defined
in (2) with input-output pair {uf , y} and weights {ε, %}.
Suppose that the Assumption 1 is satisfied and there exist
positive constants c1, c2, k and b such that

0 ≤ inf
t

[
%+ 2b

2k
− c2

2
− bεf + c1

2k

]
4
= %f , (8)

0 < εf <

[
c1
2k

(
1− Ṫ

)
− 1

2c2

]
, (9)

where εf = ε

(
k +

b

2

)
. (10)

Then, the dynamic mapping Pf from v to y is also passivity-
short with weights {εf , %f} defined by (10) and (8) respec-
tively.

Lemma 2 has two conditions: First, the condition (8)
ensures the existence of %f > 0, thus L2 stability of the
overall system in Fig. 2b. Second, the value for εf is given
directly by equation (10). The condition (9) for εf implies
that the resulting system can be passivity-short but not
passive.

The gains are chosen as follows: For given weights {ε, %},
a small positive value for c1 is chosen such that the quadratic
inequality εb2

2 − 2b < % − c1
2 can be solved for a positive

b. Substituting the chosen values of c1 and b in % ≥ c2k +

c1, and k ∈
[
0, 1

c2+εb

{
%+ 2b− εb2

2 −
c1
2

}]
, would yield

two linear inequalities with two unknown variables c2 and
k, that is solved for a large positive c2 and a small positive
k. Small c1 along with large c2 and k ensures (9) as long as
Assumption 1 holds true. It is to be noted that the left-hand
side of (9) is satisfied as k > 0 in (10) making εf > 0.

Lemma 2 can also be applied to passivity-short mapping
P with no L2 stability (% = 0). In this case, the L2 stability
of the negative feedback is achieved by choosing a local
gain b > 0. On the other hand, if the mapping P is passive
(ε = 0), then the overall negative feedback is passive.

From Lemma 2 it is evident that if system P in Fig.
2b is passivity-short, then the overall system is passivity-
short, and L2 stability for this interconnection can always be
achieved. If P is passive, then the overall system is passive.
This property can be used to design a teleoperation controller
that can include either passive or passivity-short master and
slave systems.

In the following section, the above negative feedback con-
figuration is extended to a multi-loop feedback configuration
for the bilateral teleoperation shown in Fig. 1.

IV. MAIN RESULTS

In this section, stability analysis and performance con-
ditions are discussed for a teleoperation configuration. The
master and slave robots are considered to be passivity-short,
with individual PD control and gravity compensation (as
discussed in section II) and the communication channel is
assumed to have a time-varying delay. The slave robot is
subjected to an environmental force, and the environment is
considered to be passivity-short. It is shown that the overall
system is passivity-short and L2 stability is achieved under
certain conditions.

Consider passivity-short mappings Pm with input vm and
output xm, and Ps with input vs and output xs to represent
the master and slave systems, with the rigid body dynamics
(3), and for positive definite storage function (5), they are
L2 stable with parameters [%m, εm], [%s, εs] respectively.

The bilateral teleoperation configuration can be repre-
sented by a master and slave negative feedback design. Fig.
3 shows the negative feedback representation of teleopera-
tion with additional simple individual position-only negative
feedback for the master and slave systems to improve the
performance of the overall system and to handle the potential
instability issues already discussed in previous sections. The



control inputs vm and vs can be written as:

vm(t) = k1 (kfFh(t)− kszs(t)− bmxm(t)) , (11a)
vs(t) = k2 (kmzm(t)− bsxs(t))− Fe(t), (11b)

where bm and bs are individual feedback gain for the master
and slave systems respectively; km and ks are communi-
cation channel gains; and k1 and k2 are additional gains
introduced to improve the performance characteristics, and
kf is the input scaling factor. The variables zm(t) = xm(t−
Tm(t)) and zs(t) = xs(t − Ts(t)) denote the varying-time
delayed outputs. The following theorem outlines the stability

Fig. 3: Proposed passivity-shortage based framework

results of this system based on the passivity-short properties
(which include passive systems as a special case), and the
proof is included in the appendix.
Theorem 1: Consider passivity-short mappings Pm, Ps. The
overall system in Fig. 3 with control input (11a) and (11b), is
passivity-short and L2 stable, from input [Fh, Fe], to output
[xm, xs], and new weights {ε′, %′}, if Assumption 1 holds,
and the following condition is satisfied:
(i) There exists positive gains and arbitrary constants c1,

c2 and c3, such that:

0 ≤ inf
t

[
%m
2

+ k1bm −
3b2mεmk

2
1

2
− c1

2
− cm

]
4
= %′m,

0 ≤ inf
t

[
%s
2

+ k2bs −
3b2sεsk

2
2

2
− c2 −

cs
2

]
4
= %′s,

ε′m =

[
3

2
εmk1kf

]
, ε′s =

[
3

2
εsk

2
2

]
. (12)

The weights cm, cs associated with the delay channel are
chosen as:

cm ≥
1

(1− Ṫ1,max)

(
3εsk

2
2k

2
m +

k22k
2
m

c2

)
,

cs ≥
1

(1− Ṫ2,max)

(
3εmk

2
1k

2
s +

k21k
2
s

c1

)
. (13)

To achieve condition (i), and in-turn L2 stability of the
overall system, gains km, ks, bm, bs, k1, k2, kf need to be
picked, such that (12) and (13) are satisfied.

However, in addition to achieving stability, teleoperation
needs improved performance such as minimum error be-
tween the output of the master and slave systems, and
minimum phase lag. Such performance improvements are
model-specific. This is achieved by ensuring a unity DC

Fig. 4: Experimental Setup

gain in the closed-loop transfer function between the master
and slave subsystems, as discussed in [15]. The gains can
be chosen using a simple iterative search under the above
conditions.

It is also interesting to note, Theorem 1 implies that the
overall system is passivity-short, but not passive because the
gains k1 and kf are positive, hence ε′m and ε′s are positive.

V. EXPERIMENTS

In this section, the experimental setup is outlined and the
comparative results are provided. The setup consists of two
Geomagic Touch (previously Phantom Omni) haptic devices
as shown in Fig. 4. They have 3 DOF actuated joints and a
3 DOF stylus pen. In this experiment, only the first 3 joints
are considered and the stylus pen is immobilized. The two
devices are connected to the same computer, and master/slave
controllers are implemented in MATLAB/Simulink, using
the Simulink library PhanSim [37]. Two sets of experiments
are conducted: one in the environment where a “rigid” object
in the form of a red box (as shown in Fig. 4) constrains the
slave’s first joint, and another in the free space (without any
constraint).

The input from the human operator aims to move all the
joints to their full ranges of motion. The communication
channel is simulated with a variable-time delay, randomly
generated under a normal distribution. Unless stated oth-
erwise, the randomly varying time delay is generated with
mean 0.6s and the maximum rate of change of delay, Ṫmax =
0.1. Since the master and the slave devices have the same
structure, their PD parameters set as kpi = 0.6, kvi = 0.2,
for i = m, s. The maximum eigen value of the inertia matrix
used in the experiment is λmax(Mi) = 3.19 ∗ 10−4 (same
for both master and slave), obtained by a simple system
identification of the haptic devices used. Hence, following
(12), the control gains are chosen as kf = 1.6, km = 0.5,
ks = 0.55, k1 = 1, k2 = 1, bm = 1.05, bs = 0.5.

A. Free-Space Motion

The results of the free-space experiments are shown in Fig.
5 in terms of joint position outputs of the master and slave
systems, their joint torques, and the instantaneous position
errors over time. It can be seen that the position and torque
trajectories of the master and slave converge to each other,
and hence stability is demonstrated. The position errors are
due to the phase lag caused by the delay, which is inevitable;
but at the steady-state, the position errors become convergent.



Fig. 5: Joint position (top), torque (mid) and position error
(bottom) of the proposed approach in free space

Fig. 6: Cartesian trajectories under the proposed approach in
free space

Their torque response shows that the proposed method has
a good force reflection. Their corresponding cartesian trajec-
tories are shown in Fig. 6. It can be seen that in addition
to velocity synchronization (which is used in all passivity-
based teleoperation approaches in the literature and [17]), our
proposed approach also ensures that position synchronization
in the joint space renders position synchronization in the task
space.

In addition to stability, there exists a measure of perfor-
mance known as transparency, generally discussed in the
force control literature [38]. In ideally transparent teleopera-
tion, where the master and slave systems are defined by the
same dynamics and Denavit-Hartenberg (DH) parameters,
with delay-free communication, there exists a kinematic
correspondence between the resulting master and slave posi-
tion and force responses, throughout the teleoperation cycle.
During such a correspondence, the impedance perceived by
the human operator matches the environment impedance.
Transparency of teleoperation can also be measured by the
transparency index (µ), which is the ratio of percentage
amplitude error (PAE) between the master and slave position
responses, and PAE between their torque responses. Such an

Fig. 7: Joint position and torque for the proposed approach
in free space with large slow-varying delays

Fig. 8: Joint position and torque output of the proposed
approach in a “rigid” environemnt
index of an ideal transparent system would be µideal = 1.
Given the objective of this research on robust stability and
convergence, and with the master and slave systems defined
by the same dynamics and DH parameters, the measures of
phase lag and PAE are used as performance indices in this
paper. The PAE and phase lag between the master and slave
position response for the three joints are [0.65425,−0.0053],
[2.55, 0], and [0.99, 0], and between their torque responses
are [0.7921,−0.0620], [3.110, 0], and [3.78, 0], respectively.
The average transparency index of this teleoperation cycle is
µavg = 0.6323 and a phase lag closer to zero indicates that
the slave responds very fast to the master system.

The proposed approach is also applied to teleoperation
with larger communication delays. Since the performances
on different joints are similar, only the results of the first
joints of the master and slave are presented here in this para-
graph. Performance of the proposed approach in the presence
of higher varying-delays (of a mean 5s and maximum rate of
change Ṫmax = 0.1) is shown in Fig. 7, where the position
and torque trajectories of the slave track those of the master,
with the same amplitudes but with a higher phase lag. The
PAE and phase lag of this position and torque responses are
[2.432,−0.1850], [4.0392,−0.1581], µavg = 0.6021. Higher
phase lag is expected due to a larger delay, but it is evident
that the transparency is not affected due to the large delay.

B. Motion in Constrained Environment

The experiment is also conducted in a “rigid” environment
where a hard constraint is placed on the first joint (by the
red box in Fig. 4). The position and torque output are shown
in Fig. 8. It can be seen that the environment constrains the
movement of the slave system (position trajectory) from 50s
to 65s and, during that period, the torque is increased on
the slave side. This contact torque is also felt on the master



side, even though the operator tries to keep moving along
the desired trajectory, and this force feedback increasingly
forces the master position back to that corresponding to the
slave position.

C. Comparative Study

To further demonstrate the effectiveness of the proposed
approach, a comparative study against [17] is presented. The
technique proposed in [17] is an integral quadratic constraint
(IQC) framework that uses a Zames-Falb multiplier to model
delays and the environment of two-channel teleoperation.
The overall system is transformed into a negative feedback
interconnection of two blocks: a linear system block and
the uncertainties block. Then, a multiplier is searched such
that the uncertainties satisfy the IQC. Even though this
approach allows the uncertainties block to accommodate the
loss of passivity in master or slave systems, the formulated
constraints require strict passivity. As a result, the overall
system is subjected to passivity conditions. The result of this
approach is shown in comparison to the proposed in Fig.9,
which compares the master and slave joint position errors
and torque errors. As used in [17], the gains are chosen as
µ = 0.8, and Kf = 0.6. The proposed method is far more
effective than IQC, in the sense of smaller errors. Besides,
it can be seen that the position error during contact with the
rigid body (between 50s and 65s) is lesser for the proposed
approach, and it is also more responsive to the environmental
disturbances.

Fig. 9: Comparision between the proposed approach and [17]
VI. CONCLUSION

In this paper, a new multi-loop feedback control configu-
ration is proposed for bilateral teleoperation. The proposed
control design framework uses the concept of passivity-
shortage and hence, can make a much wider class of dy-
namic systems admissible for teleoperation. Included in the
proposed design are two separate, local negative feedback
loops for the master and slave systems, respectively, so both
become L2 stable. Then, a larger feedback loop is closed to
include the master system, the slave system, and the commu-
nication channels between them. Analytical design criteria
are found for choosing control gains so that the stability
of the overall system is ensured for all delays that may
be time-varying. Experiments are carried out to demonstrate
that the proposed control enables fast-responding and stable
teleoperation for manipulators that are potentially of high-
order and high-relative degree dynamics, even in the presence
of time delay and stiff environment.
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APPENDIX

A. Proof of Lemma 1

It follows from Fig. 2a that z(t) = y(t − T (t)). Choose
the storage function of the overall system as

L = V + Vd, (14)

where V is the storage function of mapping P and Vd is the
storage function associated with delay for positive constant
c1 is

Vd(t, T (t)) =
c1
2

∫ t

t−T (t)

‖y(τ)‖2dτ. (15)

Then, it follows from (3) that

L̇ ≤ uT (t)y(t) + ε

2
‖u(t)‖2 − %

2
‖y(t)‖2 + V̇d

≤ uT (t)y(t) + ε

2
‖u(t)‖2 − %

2
‖y(t)‖2 + c1

2
‖y(t)‖2

− c1
2

(
1− dT

dt

)
‖z(t)‖2 (16)

≤ uT (t)z(t) +
[ ε
2
+ c2

]
‖u(t)‖2 −

[%
2
− c1

2

− 1

2c2

]
‖y(t)‖2 −

[
c1
2

(
1− dT

dt

)
− 1

2c2

]
‖z(t)‖2

≤ uT (t)z(t) + ε′

2
‖u(t)‖2 − %′

2
‖z(t)‖2, (17)

where c2 is any positive constant. This together with (6)
completes the proof.

B. Proof of Theorem 1:

Consider the following storage function Lt:

Lt =
1

k1kf
Vm(t) + Vs(t) + Vdm(t, T1) + Vds(t, T2),

where Vm(t) and Vs(t) are the storage functions in the
form of (5) (i.e., by replacing subscript i by m or s), and
Vdm(t, T1) and Vds(t, T2) are delay channel storage functions
in the form of (15), with associated positive constants cm and
cs. Then, the time derivative of Lt becomes

L̇t ≤
1

k1kf

[
vTm(t)xm(t) +

εm
2
‖vm(t)‖2 − %m

2
‖xm(t)‖2

]
+ vTs (t)xs(t) +

εs
2
‖vs(t)‖2 −

%s
2
‖xs(t)‖2

+
cm
2

[
‖xm(t)‖2 − ‖zm(t)‖2(1− Ṫ1)

]
+
cs
2

[
‖xs(t)‖2 − ‖zs(t)‖2(1− Ṫ2)

]
.

Substituting the proposed controllers in (11a) and (11b) into
the above yields

L̇t ≤ FTh xm + FTe xs +
3εmk1kf

2
‖Fh‖2 +

3εsk
2
2

2
‖Fe‖2

−
[
%m
2

+ k1bm −
3b2mεmk

2
1

2
− c1 − cs

]
‖xm‖2

kfk1

−
[
%s − %e

2
+ k2bs −

3b2sεsk
2
2

2
− c2 − cm

]
‖xs‖2

−
[
cm
2
(1− Ṫ1,max)−

k22k
2
m

c2
+

3

2
εsk

2
2k

2
m

]
‖zm‖2

−
[

cs
2kfk1

(1− Ṫ2,max)−
3

2kf
εmk1k

2
s +

k1k
2
s

c1kf

]
‖zs‖2.

It follows from passivity-shortage parameters εm, εs and
%m, %s in (12) and from delay channel parameters in (13)
that passivity-shortage is established as

L̇t ≤ uT y +
ε′

2
‖u‖2 − %′

2
‖y‖2,

where u = [Fh, Fe] and y = [xm, xs]. Positive values of
the parameters ε′ = [ε′m, ε

′
s], %

′ = [%′m, %
′
s] are ensured by

(12). Thus, passivity-shortage and L2 stability of the overall
system is proved.


